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Myeloid cell interferon responses correlate with
clearance of SARS-CoV-2

Dhiraj K. Singh® ">, Ekaterina Aladyeva® 2°, Shibali Das>°, Bindu Singh', Ekaterina Esaulova® 2,
Amanda Swain® 2, Mushtag Ahmed3, Journey Cole', Chivonne Moodley#, Smriti Mehra', Larry S. Schlesinger’,
Maxim N. Artyomov® 2% Shabaana A. Khader® 3°* & Deepak Kaushal® 16>

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-
related death necessitates better understanding of the early viral dynamics, host responses
and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual
cells, uncovering heterogeneous and variable responses to environment, infection and
inflammation. While studies have reported immune profiling using scRNAseq in terminal
human COVID-19 patients, performing longitudinal immune cell dynamics in humans is
challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal
scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques
infected with SARS-CoV-2 (n=6) demonstrates dynamic changes in transcriptional land-
scape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery
phase) and pre-infection (baseline) showing accumulation of distinct populations of both
macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene
signature at 3dpi. Type | interferon response is induced in the plasmacytoid dendritic cells
with appearance of a distinct HLADRTCD68+CD163TSIGLEC1T macrophage population
exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages
are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while
expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of
these responses correlated with decline in viremia and recovery.
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he underlying immune mechanisms that drive disease
versus protection during the Coronavirus disease 2019
(COVID-19) are not well understood. Analysis of system-

wide transcriptomic responses can be extremely useful in iden-
tifying features of protection and pinpoint the host immune
processes involved in the control of infection and drivers of
pathology!2. Transcriptional changes in cells in the broncho-
alveolar lavage (BAL) and peripheral blood mononuclear cells
(PBMCs) of COVID-19 patients show distinct host inflammatory
cytokine profiles, suggesting that excessive cytokine release is
associated with COVID-19 pathogenesis®>. However, analyses
were conducted using end-point samples in patients, and it is
possible that the excessive cytokine storm at that time is a
representation of an exacerbated viral infection and associated
immune dysregulation. We recently developed a nonhuman
primate (NHP) model of SARS-CoV-2 infection?, where NHPs
develop signs of COVID-19 disease including characteristic
ground-glass opacities in lungs, coinciding with a cytokine storm
and a myeloid cell influx, followed by clearance of the virus and
recovery?. This model has been used extensively for the evalua-
tion of both therapeutics® and vaccines® against COVID-19.
Using RNAseq, we showed that Interferon (IFN) signaling,
neutrophil degranulation, and innate immune pathways were
significantly induced in the SARS-CoV-2-infected lungs of NHPs,
while pathways associated with collagen formation were
downregulated’. Since these animals controlled infection natu-
rally, our results highlight the importance of early innate immune
responses and cytokine signaling, particularly Type I IFN sig-
naling, in protecting against COVID-19. One limitation of the
above study was that it was conducted in terminal lung samples
and thus may not represent the dynamic changes that occur
immediately after infection. Furthermore, system-wide tran-
scriptomics was studied using bulk-RNAseq, thus averaging the
overall contributions of various cell types and pathways at play.
The use of single-cell technologies such as single-cell RNA-
sequencing (scRNAseq) allows for unbiased and significantly
more in-depth profiling of immune cell populations in animal
models and humans in both healthy and diseased states. Because
scRNAseq can define the transcriptomic heterogeneity of a
complex community of cells and assign unbiased identity classi-
fications to cell populations, it is optimally suited for the study of
complex inflammatory states such as the one engendered by
SARS-CoV-2 infection. SCRNAseq has recently identified initial
cellular targets of SARS-CoV-2 infection in model organisms®-1!
and patients!2-17 and characterized peripheral and local immune
responses in severe COVID-1918, which is associated with a
cytokine storm and increased neutrophil accumulation. However,
the human studies have mostly been performed in peripheral
blood samples!8, BALIZ, and tissues!? from a limited number of
moderate or severe COVID-19 patients within limited age ranges.
To overcome the limitations associated with longitudinal early
immune profiling in human subjects and to get more in-depth
understanding of the early dynamics of transcriptional changes
during COVID-19, we characterized the transcriptional sig-
natures at the single-cell level in the broncho-alveolar compart-
ment of rhesus macaques at pre-infection collected 7 days before
infection (—7 dpi), at acute phase of SARS-CoV-2 infection
(3 dpi) and endpoint of the study (14-17 dpi). Thus, the immune
landscape in the broncho-alveolar compartment of SARS-CoV-2
infected rhesus macaques serves as a surrogate of early immune
dynamics of protective immune responses in lungs after SARS-
CoV-2 infection. Here we show the appearance of distinct mac-
rophage and T-lymphocyte populations exhibiting IFN-driven
inflammatory gene signatures at 3dpi (acute COVID-19). The
IFN responsive macrophage populations upregulate ACE2
expression and are infected by SARS-CoV-2. Further analysis of

upregulated genes in the macrophages reveal IFN-driven innate
antiviral defense and negative regulation of viral genome repli-
cation, suggesting a prominent role of macrophage-driven innate
immunity in the resolution of SARS-CoV-2 infection.

Results

Landscape of immune cells in the BAL of rhesus macaques
during SARS-CoV-2 infection and recovery. To understand the
early immune responses generated by SARS-CoV-2 in the NHP
model of COVID-19, we analyzed cryopreserved single cells
isolated from BAL of young rhesus macaques infected by SARS-
CoV-2# at the following time points: 7 days before infection (—7
dpi), three days post-infection (3 dpi), endpoint (14—17 dpi)
(Fig. 1A). These time points were validated to represent distinct
phases of viral dynamics in vivo covering baseline, the peak of
acute viral infection (3 dpi), and at the time that infection had
resolved (endpoint) (Fig. 1B)%

We subjected single cells isolated from BAL of the SARS-CoV-2
infected rhesus macaques to 3’ 10x Genomics based scRNAseq
processing and analysis pipeline with rigorous QC threshold
(Supplementary Fig. 1) at —7dpi (n=6), 3 dpi (n=6), and 14-17
dpi (n = 6). Sequencing yielded a total of 170078 cells ranging from
1543-16608 cells per sample. The mean number of cells per sample in
—7 dpi was 8484, 3 dpi was 9840 and 14-17 dpi was 10,021. The
majority of the cells were immunocytes (Fig. 1C) distributed across
all time points (Fig. 1D) and animals (Fig. 1C, Supplementary Fig. 2).
Consistent with the prior reports on the cellular composition of BAL
in rhesus macaques, myeloid cells were most abundant comprising
77% of the total cells whereas lymphoid cells represented 22% of cells
at all time points. The populations were homogeneously distributed
across all animals and at all time points (Supplementary Fig. 2b). We
identified 19 distinct cell clusters representing a variety of cell types
based on expression of canonical genes- T cells: cluster of
differentiation (CD) 3D; natural killer (NK) cells: killer cell lectin-
like receptor C3(KLRC3)*, Granzyme B (GZMB)*; B cells: CD19t,
CD20/membrane spanning 4-domains Al (MS4Al)", CD79AT;
macrophages: CD68F, CD1631) dendritic cells (DC): FMS-like
tyrosine kinase 3 (FLT3)*; conventional DCs (cDC): CDlct;
plasmacytoid DCs (pDC): (CD123/interleukin (IL) 3 receptor subunit
alpha (IL3RA)T, CD303/ C-type lectin domain family 4 member C
(CLEC4C) T, leukocyte immunoglobulin-like receptor A4 (LILRA4)*
and mast cells: (CD117/ KIT proto-oncogene (KIT)™, Fc fragment of
IgE receptor 1a (FCER1A)™, carboxypeptidase A3 (CPA3)™ (Fig. 1C,
E, Fig. 2A, Supplementary Fig. 3). Day 3 was distinguished by the
appearance of cell populations expressing a distinct IFN responsive
gene signature comprising of transcripts for MX dynamin-like
GTPase (MX) 1, MX2, interferon-induced protein with tetratrico-
peptide repeats (IFIT) 1, IFIT2, IFIT3, IFIT5, IFN-a inducible
protein?’ 6, IF116, IFI144, interferon-stimulated gene (ISG) 15, HECT
and RLD domain containing E3 ubiquitin protein ligase (HERC) 5,
sialic acid binding Ig like lectin (SIGLEC) 1, 2'-5'-oligoadenylate
synthetase (OAS) 1, OAS2, OAS3 (Fig. 2B, Supplementary Fig. 4).
The most prominent population (Cluster 0) appearing at 3dpi was
IFN responsive macrophages and was annotated Mac_IFN. Although
IFN-a and ACE2 transcripts were not abundantly present in the
scRNAseq dataset, confocal analysis showed strong upregulation of
IFN-a and ACE-2 in the lungs of macaques on 3dpi compared to
healthy or 14-17dpi (Fig. 2C, D). Confocal analyses also demon-
strated higher expression of IFN responsive transcripts like MX1
(Fig. 2E), MX2 (Fig. 2F), and ISG15 (Fig. 2G) in lung tissues isolated
from rhesus macaques at 3dpi when compared to 14-17dpi and
healthy macaques.

As described previously, SARS-CoV-2 vVRNA levels in BAL
were detected in 5/6 macaques at 3 dpi by RT-qPCR. Virtually no
BAL vRNA was detected at the endpoint suggesting that the
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rhesus macaques effectively cleared the virus from the BAL
compartment? vRNA in Nasal Swabs (NS) could be detected in
only four animals at day 3, while all animals recorded VRNA at
Day 9, and only 3 at the endpoints?. vRNA was detected in the
lungs of 3 macaques at necropsy (14-17 dpi) while no SARS

CoV-2 subgenomic RNA (correlate for infectious/replicating
virus) was detected in any rhesus macaque lung at endpoints%. No
VRNA was detected in any plasma samples or randomly selected
urine samples. Based on VRNA persistence in the lungs of
immunocompetent young macaques and the absence of
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Fig. 1 Immune landscape of BAL in SARS-CoV-2 infected macaques. Study outline of scRNAseq analysis of BAL cells from rhesus macaques infected with
SARS-CoV-2. BAL single-cell suspensions from 6 young rhesus macaques infected with SARS-CoV-2 from pre-infection (-7dpi), 3dpi and endpoint
(14-17dpi) were subjected to scRNAseq (A). Immunofluorescence confocal images of the lungs stained with nucleocapsid (N)-specific antibodies
(turquoise) and 4,6-diamidino-2-phenylindole (DAPI) (blue). Shown are the images at 10x, 20x, and 63x magnification from naive lungs (uninfected) as
well as lungs infected with SARS-CoV-2 at Day 3 and Day 14 post-infection (B). UMAP plots of cells from all scRNAseq samples together, colored
according to cluster classification (C) or respective timepoints (D). E UMAP plots with the expression of markers, characterizing main immune

populations. n = 6.

replicative virus in our cohort and published reports from other
independent groups?!-2>, we conclude that macaques efficiently
control SARS-CoV-2 infection over the two-week study period.
Consistent with the peak viremia at 3 dpi in BAL, the chest x-ray
scores were also found to peak around 3dpi and subsided
thereafter. However, tissue pathology was observed in the lung at
endpoints suggesting that persistent viral antigens triggered a
sustained immune/inflammatory response. Despite the absence of
replicating virus in lungs at endpoints, pathological observations
were found as shown by histological analyses*.

Our previous immunological analyses of BAL cells by flow
cytometry had revealed a massive infiltration of immunocytes
mainly comprised of T cells, interstitial macrophages, neutro-
phils, and plasmacytoid Dendritic Cells*. The appearance of these
populations also correlated strongly with the viral loads?. When
combined with the previously reported findings, our new results
using scRNA-seq based deep cellular phenotyping analysis
establish the robust influx of myeloid cells and induction of a
fully functional IFN driven innate immune response in macro-
phages against SARS-CoV-2 in the lungs of rhesus macaques. Our
scRNA-seq based deep cellular phenotyping analysis clearly
establishes the induction of a robust and targeted innate immune
response mainly driven by macrophages as opposed to dysregu-
lated immune responses against SARS-CoV-2 in the early phase
of infection.

Myeloid bronchoalveolar landscape. A total of 129280 myeloid
cells were analyzed across all time points which were distributed
into 17 distinct clusters across the 3 timepoints studied (Fig. 3A, B,
Supplementary Fig. 5A). The populations were homogeneously
distributed across all animals and time points (Supplementary
Fig. 5B). We noted a distinct cluster alignment of all myeloid
populations based on key myeloid phenotype markers (Fig. 3C, D)
that differed between different phases of disease (Fig. 3D).

As expected, due to limitation of the 10x Genomics scRNAseq
pipeline to detect neutrophils26, this population was not included
in our analysis. As reported earlier in various NHP studies®27-28,
the BAL landscape mostly comprised of macrophages, which are
distributed into alveolar (CD206%) or interstitial (CD2067)
phenotypes®28. Our prior scRNAseq analysis using the 10x
platform for single cells isolated from the lungs of rhesus
macaques with tuberculosis had identified novel macrophage
phenotypes exhibiting distinct TREM2 and IFN-responsive gene
signatures?®. Here, we found 3 distinct IFN-responsive macro-
phages populations which were predominantly present on 3dpi
(Fig. 4A, B, Supplementary Figs. 6, 7), one of which also expressed
high levels of triggering receptor expressed on myeloid cells
(TREM) 2 gene expression (Fig. 4A, Supplementary Fig. 6). For
reference, we annotated the most abundant IFN-responsive
macrophage population as Mac_IFN_1, the second IFN respon-
sive macrophage population was annotated Mac_IFN_2 and the
third IFN responsive macrophages with a TREM2 expression
module were annotated Mac_TREM2_IEN (Fig. 4A, Supplemen-
tary Fig. 6).

pDCs are considered the chief drivers and source of the Type I
IFN signature. Our prior data suggested a significant influx of

pDCs in the BAL compartment and lungs of SARS-CoV-2
infected macaques*. The pDC cluster in our current scRNAseq
data was identified by expression of classic pDC markers like
IL3RA/CD123, CLEC4C, and transcription factor (TCF) 4
(Fig. 4A, Supplementary Fig. 6). This cluster was only modestly
increased at 3dpi. However, the pDC cluster exhibited a
significant induction of the genes associated with the innate
response to viral pathogens like Toll-like receptors (TLR)7, TLR9
etc., and induction of genes involved in the type I IFN response,
e.g., interferon regulatory factor (IRF) 1, IRF3, IRF7, IRF8, IRF9,
derlin (DERL) 3, solute carrier family 15 member 4 (SLC15A4).
In addition, the expression of an IFN responsive transcriptional
signature (MX1, MX2, ISG15, ISG20, IFI6, IFI16, IFI27) was also
significantly elevated in this pDC cluster (Fig. 4C, D, Supple-
mentary Fig. 7). Multilabel confocal microscopy analysis
validated the higher expression of IFN-a by pDCs in lung tissues
isolated from infected macaques at 3dpi (Fig. 4E, Supplementary
Figs. 8, 9A) when compared to 14-17dpi and healthy macaques
(Fig. 4E, Supplementary Figs. 8, 9A).

Among macrophage subclusters, mac_IFN_1 was the most
abundant population found in 3dpi BAL samples, comprising 70
percent of the myeloid cells; this population was completely absent
in pre-infection and during resolution at endpoint. IFN-responsive
gene signature was strongly upregulated in this population and the
key genes which were most differentially upregulated in this
population were MX1, MX2, IFIT1, IFIT2, IFIT3, IFIT5, IFI6,
IFI16, 1F144, ISG15, HERCS, SIGLEC1, OAS1, OAS2, OAS3 etc.
(Figs. 3D, 4A, Supplementary Fig. 6). MX1 encodes a guanosine
triphosphate (GTP)-metabolizing protein called IFN-induced
GTP-binding protein Mx1 which is induced by Type I and Type
II IFNs, antagonizes the replication process of several RNA
and DNA viruses and participates in the cellular antiviral
responses”®~32. MX2, a paralog of MXI, is another IFN-induced
GTP-binding protein that induces innate antiviral immune
responses. IFIT genes encode IFN-induced antiviral proteins which
act as inhibitors of cellular as well as viral processes, cell migration,
proliferation, signaling, and viral replication33’34. IFI6 is one of the
earliest identified IFN induced genes encoding the IFN-a
-inducible protein 6 which has been shown to exert antiviral
activity towards viruses by inhibiting the EGFR signaling
pathway3>-38. TFI16 gene encodes the Interferon Gamma Inducible
protein 16 which is involved in the sensing of intracellular DNA
and inducing death of virus-infected cells3*-#2. TFI44 encodes the
Interferon-Induced protein 44 which is induced by Type 1 but not
Type II IFNs and is reported to suppress viral transcription*344,
IFIT genes encode for the IFIT proteins (Interferon Induced
proteins with Tetratricopeptide repeats) which confer antiviral
state in a cell by either directly binding to the viral RNA or by
binding to eukaryotic initiation factor 3 (eIF3) and preventing eIF3
from initiating viral translational processes*>-47. All four classes of
IFIT, i.e., IFIT1, IFIT2, IFIT3, and IFIT5 were upregulated in the
mac_IFN_1 population (Fig. 4A). ISG15 also called Ubiquitin-like
protein ISG15 is an early mediator of signaling induced by Type I
IFNs and elicits innate immune response to viral infections by
conjugation/ISGylation of its targets like MX and IFIT48-51. OAS
encodes IFN-induced, dsRNA-activated antiviral enzyme which
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Fig. 2 SARS-CoV-2 infection induces IFN responsive gene signature in rhesus macaques. A Bubble plot showing the fold change of genes in identified
cell clusters and the fraction of cells expressing the gene of interest. B Heatmap of key interferon responsive genes at different timepoints. Confocal images
validating in vivo expression of IFN-a (turquoise) (€), ACE2 (magenta) (D), MX1 (magenta) (E), MX2 (magenta) (F) and ISG15 (magenta) (G) with DAPI
(blue) in the lung sections of Naive rhesus macaques and SARS-CoV-2 infected lungs at 3dpi and 14-17 dpi.
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Fig. 4 Macrophages and pDCs are the dominant cells driving Type | IFN response in the lungs of SARS-CoV-2 infected macaques. A Bubble plot
showing the fold change of genes in identified myeloid cell clusters and the fraction of cells expressing the gene of interest. B Heatmap of key interferon
responsive genes at different timepoints in macrophage clusters. € Heatmap of key interferon responsive genes at different timepoints in plasmacytoid
dendritic cells sub-clusters. D GO pathways enriched in upregulated genes in pDCs. E Multilabel immunofluorescence confocal images validating in vivo
expression of IFN-a (turquoise) in pDCs marked by HLA-DR (magenta) and CD123 (yellow) in Naive Rhesus macaque lungs as well as at Day 3 and Day 14
post-infection with SARS CoV-2.
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plays a critical role in cellular innate antiviral responses®>°3.
HERCS is an E3 ligase for ISG15 conjugation which acts as a
positive regulator of innate antiviral response in cells induced by
IFNs and functions as part of the ISGylation machinery>->°.
SIGLEC1 (CD169) is an IFN-inducible gene that acts as an
endocytic receptor mediating clathrin-dependent endocytosis and
has been reported to be upregulated in circulating monocytes in
COVID-19 patients>’~0. Gene set enrichment analysis (GSEA)
analysis revealed defense response to virus, negative regulation of
viral genome replication, response to IFN-a, and innate immune
response as enriched gene ontology (GO) terms in this population
(Fig. 5A).

SARS-CoV-2 infection of CD169" macrophages has been
reported in COVID-191961, To determine whether SARS-CoV-2
infects CD169" macrophages in our study, lung tissues from
SARS-CoV-2 infected rhesus macaques and healthy controls were
stained for CD68, ACE2, SIGLECI1, MX1, MX2, ISG15, Comple-
ment component 1q (Clq) and SARS CoV-2 nucleocapsid
antibody (Fig. 5B-H, J, Supplementary Figs. 9B, C, 10-17). Lung
macrophages expressing SIGLEC1/CD169 were enriched and
expressed high levels of ACE2 at 3dpi (Fig. 5B, Supplementary
Fig. 10). Another independent study has established that human
macrophages and monocytes can be infected by SARS-CoV-2 but
the infection is abortive®?2, The macrophage population was
further studied for detecting IFN responsive elements: MXI1
(Fig. 5C, Supplementary Fig. 11), MX2 (Fig. 5E, Supplementary
Fig. 13), ISG15 (Fig. 5G, Supplementary Fig. 15) and viral
antigens (Fig. 5D, Supplementary Fig. 12; Fig. 5f, Supplementary
Figs. 14; 5H, S16) and were found to abundantly harbor SARS-
CoV-2 in vivo as shown by multicolor confocal staining for
SARS-CoV-2 Nucleocapsid (NP) protein in lung sections. MX1/
MX2/ISG15 staining with viral antigen clarified that the IFN-
responsive signature was mostly restricted to macrophages
harboring SARS-CoV-2, confirming an early IFN-driven innate
immune response in lung macrophages.

The Mac_IFN_2 cluster bore a high degree of identity to the
Mac_IFN_1 cluster, with one important difference—it expressed
a comparatively higher expression of transcripts for C-X-C
motif chemokine ligand. (CXCL) 8, IL1B and tumor necrosis
factor (TNF) associated with nuclear factor-kappa B (NFKB)
inhibitor zeta (NFKBIZ), NFKBIA, TNF-a-induced protein 3
(TNFAIP3) and activator protein (AP)1 signaling: Fos proto-
oncogene®, Jun proto-oncogene (JUN), JunB proto-oncogene
(JUNB).

We previously reported a novel cell cluster of alveolar
macrophages abundantly found in the lungs of rhesus macaques
showing an enriched expression of TREM?2, transmembrane
protein (TMEM) 176A/B and CIQ genes?°. Our current data
validated the presence of two clusters of macrophages showing
TREM2 gene signatures, one of which expressed a strong IFN-
responsive gene signature. Therefore, we annotated them as
Mac_TREM2 and Mac_TREM2_IFN respectively. Mac_ TREM2
cluster was abundantly present in the BAL from healthy
macaques and switched to an IFN-responsive phenotype on
3dpi which was then restored at the endpoint (Fig. 3D).
Mac_TREM2 cluster observed at pre-infection baseline was
replenished to normal levels at endpoint (Fig. 3D) demonstrated
enriched expression of transcripts for FOS, FosB proto-oncogene
(FOSB), activating transcription factor (ATF) 3, Regulator Of G
Protein Signaling® 1, Aryl hydrocarbon receptor (AHR),
NFKBIZ, BTG anti-proliferation factor (BTG) 2, early growth
response (EGR) 1, lamin A/C (LMNA), RasGEF domain family
member 1B (RASGEF) 1B and CD69 (Fig. 4A). The Mac_IEN_-
TREM2 cluster showed an upregulation of IFN-responsive gene
signature comprising of SIGLEC1, MX, IFIT, IFI, ISG, and OAS
genes (Fig. 4A), suggesting defense response to virus as

significantly enriched gene set (Fig. 5I). Validation in lung
sections of macaques confirmed the abundance of TREM2
macrophages with IFN-responsive phenotype on 3dpi (Fig. 5],
Supplementary Fig. 17).

Mac_FOS cluster was abundant in BAL at baseline and
constituted ~40-50% of myeloid cells. However, this cluster was
depleted at 3dpi and was not restored at the endpoint. Mac_FOS
expressed higher transcripts for CXCL8 expression along with
FOS, FOSB, NFKBIA, NFKBIZ AHR, lysozyme (LYZ), and CD69.
GSEA revealed that this subset expressed an inflammatory and
neutrophil chemotactic signature (Supplementary Fig. 18A), even
in absence of infection in healthy macaques.

Mac_S100A8 cluster constituted 10% of the myeloid cells at
pre-infection baseline, but was absent on 3dpi and abundantly
present at the endpoint suggesting a potential role for these cells
in post-acute COVID-19 pathology (Fig. 3D). The key transcripts
upregulated in this cluster were S100 calcium binding protein
(S100) A4, S100A6, S100A8, S1I00A9, cathelicidin antimicrobial
peptide (CAMP), carboxypeptidase vitellogenic like (CPVL)
(Fig. 4A) which represent innate inflammatory immune
responses, neutrophil aggregation, and chemotaxis pathways
(Supplementary Fig. 18B). Mac_S100A8 cluster has four genes
significantly upregulated from the S100 family of genes that
involve low molecular-weight proteins considered as potent
damage-associated molecular pattern molecules (DAMPs).
DAMPs are also called danger signals or alarmins as they serve
as a warning sign for the innate immune system to alert ambient
damage or infection. S100A8 protein also called calgranulin A
forms a heterodimer with SI00A9 protein called calgranulin B, to
form a heterodimer called Calprotectin which stimulates
T-lymphocyte chemotaxis by acting as a chemoattractant
complex with peptidoglycan recognition protein 1 (PGLYRPI)
that promotes lymphocyte migration via C-C chemokine receptor
(CCR) 5/ C-X-C motif chemokine receptor (CXCR) 3
receptors®>%0; neutrophil recruitment along with TLR4 and/or
receptor for advanced glycation end products®’ -mediated
multiple inflammatory pathways®®%°. Intracellular functions of
S100A6 include regulation of several cellular functions, such as
proliferation, apoptosis, cytoskeleton dynamics, response to
different stress factors etc. When secreted into extracellular
milieu it also induces RAGE (receptor for advanced glycation
end-products) and integrin Pl mediated inflammatory
responses’’. SI00A4 synergizes with vascular endothelial growth
factor (VEGF) in a RAGE-dependent manner to promote
endothelial cell migration by increasing KDR (kinase insert
domain receptor)/vascular endothelial growth factor receptor 2
(VEGFR2) expression and MMP-9 activity’!. S100A4 also plays a
major role in high-density collagen deposition’2,

Three other populations of macrophages lacking IFN signature
(annotated Mac, Mac_2 & Mac_3) were present in healthy
macaques at pre-infection timepoint. These populations were
non-existent at 3dpi but replenished at the endpoints (Figs. 3D,
4A).

To further understand the influence of macrophages during
SARS-CoV-2 on other immunocytes, we analyzed the ligand-
receptor interactions between the most abundant macrophage
population and other immunocytes based on cell-specific
transcripts expressed at different timepoints. The ligand-
receptor interactions between Mac_IFN_1 and other immuno-
cytes present at 3 dpi depicted as Circos plot (Fig. 6A) shows a
prominent co-stimulatory potential of Mac_IFN_1 population on
mast cells via adrenoceptor beta (ADRB) 2, SIGLECIO,
cholinergic receptor muscarinic (CHRM) 3; ¢DCs via LDL
receptor related protein (LRP) 2, TNF receptor superfamily
member (TNFRSF) 11B, and pDCs via nerve growth factor
receptor (NGFR), CD28. Mac_FOS showed prominent
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interaction with ¢cDCs (Fig. 6B) and the Mac_S100A8 cluster with
Mast cells, ¢cDCs, pDCs in addition to Mac_TREM2_IFN
(Fig. 6C).

Lymphoid bronchoalveolar landscape. A total of 38160 lym-
phoid cells were analyzed across all timepoints which

distributed into 13 distinct clusters (Fig. 7A, Supplementary
Fig. 19a, b). The populations were homogenously distributed
across all animals at each timepoint (Supplementary Fig. 19c).
We noted distinctive cluster alignment of all lymphoid popu-
lations based on key lymphocyte phenotype markers (Fig. 7A, B)
that differed between different phases of disease (Fig. 7C, D,
Supplementary Fig. 20). The only distinct lymphocyte cluster
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Fig. 5 IFN induced viral defense response in lung macrophages of SARS-CoV-2 infected macaques. A GO pathways enriched in upregulated genes in
Mac_IFN_1 subcluster. Multilabel immunofluorescence confocal images validating in vivo expression of (B) ACE2 (yellow) and SIGLECT (turquoise), and
(€) MX1 (yellow) and SIGLECT (turquoise) in macrophages (magenta), (D) CD68 (magenta) and SIGLEC1 (yellow) positive macrophages harboring SARS
CoV-2 (turquoise), (E) Macrophages (magenta) expressing MX2 (yellow) and SIGLEC1 (turquoise), (F) MX1 (yellow) positive macrophages (magenta)
with SARS CoV-2 (turquoise), (G) Macrophages (magenta) expressing ISG15 (yellow) and SIGLECT (turquoise), (H) SARS CoV-2 (turquoise) harbored in
ISG15 (yellow) expressing macrophages (magenta) in lungs of Naive and 3 and 14 days post-infection of SARS CoV-2 infected macaques. Nuclei stained
with DAPI are shown in blue. White arrows represent macrophages expressing ACE2 and SIGLECT in (B); MX1 and SIGLECT in (€); MX2 and SIGLEC1 in
(E); ISG15 and SIGLECT in (G). In (D), (F), and (H), white arrows mark the presence of SARS CoV-2 in macrophages expressing SIGLEC1, MX1, and ISG15
respectively; whereas, orange arrows are used to mark SIGLEC1, MX1, and ISG15 expressing macrophages with no SARS CoV-2.1 GO pathways enriched in
upregulated genes in Mac_TREMZ2_IFN subcluster. J Multilabel confocal immunofluorescence images validating in vivo expression of MX1, MX2, and ISG15
(shown in yellow) in TREM2 macrophages in lungs of SARS-CoV-2 infected macaques at 3dpi.

found to be upregulated at 3dpi was a T cell cluster with IFN
responsive gene signature spanning MX1, MX2, ISG15, ISG20,
IF127, IF144, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, HERC5
HERC6 genes and was annotated T_IFN (Fig. 7D, E, Supple-
mentary Figs. 20-21). Confocal analysis in lung sections vali-
dated the abundance of IFN responsive T cells at 3dpi in
macaque lungs (Fig. 7F, Supplementary Figs. 9D, 22).

Regulatory T cells (Tgeg) constituted <3% of the lymphoid
population and expressing negative checkpoint regulators (NCR)
like inducible costimulator (ICOS), lymphocyte activating (LAG)
3, T cell immunoreceptor with Ig and ITIM domains (TIGIT) etc.
along with forkhead box P3 (FOXP3). When compared to pre-
infection baseline Tgegs showed a slight decline at 3 dpi but were
replenished at the endpoints. IFN-a can drive contraction of Tregs
while ISG15 can rescue Tgreg from Type I IFN induced
contraction’3. We observed high IFN-a concentrations at day 3,
and relatively lower expression of ISG15. These results could
explain the contraction of Tgeg, at 3 dpi.

Discussion

A thorough understanding of the host inflammatory responses
during SARS-CoV-2 infection is needed both the identification of
correlates of protection versus pathology. Such information is also
critical in order to identify pathways that can be precisely
modulated to limit inflammation without affecting protective
mechanisms. During the acute phase of SARS-CoV-2 infection,
macrophages were the most abundant immunocyte population
that harbored vRNA in african green monkey lung cells®. Simi-
larly, infected ferrets exhibited infiltration of monocyte-derived
macrophages and induction of inflammatory responses in the
bronchoalveolar lavage!®. Similar induction of early innate
defense responses in acute phase of COVID-19 at 3 dpi with
resolution by 7 dpi in the lungs of rhesus macaques, has recently
been reported!!. Recognition of viral infections by innate
immune sensors activates both the Type I and Type III IFN
responses. Accumulating evidence has established that SARS-
CoV-2 elicits weaker induction of type 1 IFNs when compared to
other respiratory viruses’4 and is marked by comparatively less
responsive IL-1 and NLRP3 inflammasome pathways in early or
non-severe COVID-19 patients’>. Elevated levels of IFNs have
been reported to correlate with and contribute to severe COVID-
19776-84 1t is possible that severe infection drives an uncon-
trolled expression of the Type I IFN response leading to pathol-
ogy instead of viral containment. However, inborn errors of Type
I IFN in COVID-19 patients have been associated with life-
threatening conditions’37°. Similar life-threatening manifestation
of COVID-19 has also been attributed to patients having auto-
antibodies against type I IFNs84. Tt is possible that delayed or
inadequate IFN responses lead to inflammation-mediated damage
during later phases of disease. Increased induction of early Type I
IFN signaling pathways in SARS-CoV-2 infected macaques sug-
gests a role for IFN signaling in protection rather than disease

progression?. This is further supported by the increased induction
of Type I IFN signaling in the cohort of young relative to geriatric
macaques’, suggesting that IFN induction may be compromised
in older or immunocompromised hosts”-8>. Thus, it is not fully
clear if Type I IFNs are protective or pathological in COVID-
198>, This is an important paradox to resolve, as it could lead to
better therapeutic approaches for COVID-19 as well as for long-
term persistent COVID-19 sequelae. Elegant approaches are
available to modulate the signaling of this pathway in
macaques®®. Our studies lay the foundation of Type I IFN
depletion studies in this model to better understand the role of
this pathway in the early control of SARS-CoV-2 infection and in
limiting inflammation. Further testing the protective versus
pathological roles of IFNs in different phases of COVID-19 in the
macaque model with the availability of IFNAR blocking reagents
should further clarify the specific role of IFN pathways in
COVID-19.

Our results unequivocally show that in protected, immuno-
competent hosts, SARS-CoV-2 infection is characterized by an
acute inflammatory response leading to a myeloid cell influx into
the lung compartment®. A key characteristic of this inflammatory
response is a strong Type I IFN response’. Using state-of-the-art
scRNAseq approach in longitudinal BAL samples, we now
demonstrate that the robust Type I IFN response and related
cytokine expression, observed in the airways of infected macaques
is primarily mediated by myeloid cell subpopulations that are
alveolar (206+) rather than interstitial (206—) in nature. In
particular, macrophage subpopulations Mac IFN_1 (206+),
Mac_IFN_2 (206+) and Mac_TREM2_IFN (206—) subpopula-
tions expressed high levels of IFN downstream genes both in
magnitude and frequency (Fig. 2). Our results clearly show that
induction of a robust IFN response in macrophages strongly
correlates with viremia (Supplementary Fig. 23A, B) and sub-
sequent clearance of SARS-CoV-2 from the airways of macaques
(Supplementary Fig. 23C, D).

Methods

Macaques. No live Indian-origin rhesus macaques were used in this study. Sam-
ples obtained from young Rhesus macaques (Macaca mulatta) infected with

1.05 x 10° pfu SARS-CoV-2 isolate USA-WA1/2020 (BEI Resources, NR-52281,
Manassas, VA) using multiple routes (ocular, intranasal and intratracheal) enrolled
in a previously described study* were used for further analysis (Table S1). All
procedures were approved by the Biohazard and Safety Committee and Institu-
tional Animal Care and Use Committee of the Texas Biomedical Research Institute.
The exposure stock was confirmed to be SARS-CoV-2 using deep sequencing and
was identical to the published sequence (GenBank: MN985325) strain USA-WA1/
2020 (BEI Resources, NR-52281).

Isolation of BAL single cells from macaques. Single-cell suspensions from BAL
obtained at different time points were collected as described earlier*%” and cryo-
preserved in Cryostor-CS10 (Biolife Solutions, USA) at —70 °C and then used for
downstream processing of scRNAseq.
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Fig. 6 Macrophage interactome model in SARS-CoV-2 infected lungs. Macrophage-Immunocytes interactome. Circos plots showing the ligand-receptor
interactions between the most abundant macrophage populations and different immune cells in the three conditions studies. A Circos plot depicting the
interaction of Mac_IFN_1 with ambient immunocytes based on ligand-receptor transcript reads at 3 dpi. B Circos plot depicting the interaction of

Mac_S100A8 with ambient immunocytes based on ligand-receptor transcript reads at 14-17 dpi. € Circos plot depicting the interaction of Mac_FOS with

ambient immunocytes based on ligand-receptor transcript reads at —7 dpi.

Single-cell RNA: library generation and sequencing. scRNAseq was done laboratory as per manufacturer’s instructions (10x Genomics). Briefly, cell sus-
according to the manufacturer’s instructions (10x genomics) and as previously pensions were loaded at 1000 cells/uL with the aim to capture 10,000 cells/lane. The
described®S. Briefly, after quickly thawing the frozen BAL single-cell suspension in ~ 10x Chromium Controller generated GEM droplets, where each cell was labeled
water bath, 2 x 10 cells were taken for downstream processing. BAL single-cell with a specific barcode, and each transcript labeled with a unique molecular
suspensions were subjected to droplet-based massively parallel single-cell RNA identifier8® during reverse transcription. The barcoded cDNA was isolated and
sequencing using Chromium Single Cell 3’ (v3.1) Reagent Kit in the BSL-3 removed from the BSL-3 space for library generation. The cDNA underwent 11
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cycles of amplification, followed by fragmentation, end repair, A-tailing, adapter assembly/GCF _003339765.1/), with the addition of Ensembl mmul8 mitochon-

ligation, and sample index PCR as per the manufacturer’s instructions. Libraries drial genes for GTF file with cellranger count. For each sample, the recovered-cells
were sequenced on a NovaSeq S4 (200 cycles) flow cell, targeting 30,000 read pairs/ ~ parameter was set to 10,000 cells that we expected to recover for each individual
cell. library.

We used R package Seurat 3°0 for downstream analysis of count matrixes that
we got as output from cellranger count®3. We filtered cells that (1) had more than
10% of mitochondrial gene content and®! had <363 detected genes. Data was log-
normalized with a scale factor of 10%. The most variable genes were detected by the

Single-cell RNAseq: data processing. The Cell Ranger Single-Cell Software 3.0
available at 10x website was used to perform sample demultiplexing. We aligned
resulting fastq files on mmull0 genome (Genebank, https://www.ncbi.nlm.nih.gov/
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Fig. 7 Lymphoid single-cell landscape in SARS-CoV-2 infected macaques. BAL lymphoid cell dynamics in macaques infected with SARS-CoV-2 by
scRNA-seq demonstrate the presence of IFN responsive T cells. A UMAP plot of lymphoid cells from all scRNA-seq samples together, colored according to
cluster classification. B UMAP plots with the expression of markers, characterizing main lymphoid populations in macaques. € Cell proportion of each
cluster per condition. n =6 macaques. Data are presented as mean + standard error of the mean (SEM). Source data are provided as a source data file.
D Bubble plot showing the fold change of genes in identified lymphoid cell clusters and the fraction of cells expressing the gene of interest. E Heatmap of
key interferon responsive genes at different timepoints in lymphoid sub-clusters. F Multilabel immunofluorescence confocal images validating in vivo
expression of MX1 (yellow) in T-cells marked by CD3 (magenta) and nuclei (blue) in Naive as well as SARS CoV-2 infected lungs at 3 dpi and 14-17 dpi.

White arrows represent T cells expressing MX1.

FindVariableFeatures function and used for subsequent analysis. Latent variables
(number of UMT’s and mitochondrial content) were regressed out using a negative
binomial model (function ScaleData). Principle component analysis®* was
performed with RunPCA function. A UMAP dimensionality reduction was
performed on the scaled matrix (with most variable genes only) using the first 20
PCA components to obtain a two-dimensional representation of the cell states. For
clustering, we used the functions FindNeighbors (20 PCA) and FindClusters
(resolution 0.5). Identified clusters were split into 2 cell groups: myeloid and
lymphoid—and ran through re-clustering pipelines individually. For both cell
subsets reclustering we performed clustering on the first 20 PCA components. We
used clustering resolution 0.35 for myeloid and lymphoid cells reclustering. To
identify marker genes, we used FindAllMarkers to compare clusters against all
other clusters, and FindMarkers to compare selected clusters. For each cluster, only
genes that were expressed in more than 15% of cells with at least 0.15-fold
difference were considered. Heatmap representations were generated as described
earlier with Phantasus software (https://artyomovlab.wustl.edu/phantasus/)®,
using the mean expression of markers inside each cluster for each sample was used.

Circos plots. Circos plots depicting possible cell interactions were created using
SingleCellSignalR2.

Immunohistochemistry and Confocal Imaging. To validate the findings of BAL
single-cell sequencing, multilabel immuno-histochemistry was performed on Naive
(four randomly selected lung lobes from four macaques) and SARS CoV-2 infected
Rhesus macaque lungs at Day 3 (four randomly selected lung lobes from two
macaques) and Day 14-17 (four randomly selected lung lobes from four macaques)
post-infection as described®. The lung sections were stained for macrophages with
anti-CD68 antibody, SIGLECI with anti-CD169 antibody, Mac_IFN_1 signature
markers with anti-MX1, MX2, and ISG15 antibodies; Mac-TREM2 with anti-Clq-
FITC conjugated antibody and pDCs with anti-HLA-DR and anti-CD123 anti-
bodies to validate the in vivo expression of these markers in SARS CoV-2 infected
lung tissue (Table S2). SARS CoV-2 nucleocapsid antibody was used to detect
SARS CoV-2 and ACE-2 expression was confirmed using human anti-ACE2
antibody. DAPI was used for nuclear staining. Images were captured on Ziess LSM-
800 confocal microscope using Olympus cellSens Entry Imaging Software Version
1.18 and ZEN Imaging software version 2.1 (blue edition).

Quantification of various cellular phenotypes in FFPE sections was done using
the ‘Indica labs- HighPlex FL v4.1.3” algorithm in HALO v3.3 (Indica labs). Briefly,
for each staining set, we started with inputting the number and name of dyes as
well as the number of phenotypes required for output. Thereafter, nuclear
parameters including size, roundness, segmentation, nuclear dyes, minimum and
maximum intensity were entered. Similarly, cellular parameters, namely cytoplasm
radius, membrane segmentation, cell size were set. For entraining the algorithm,
the minimum and maximum fluorescence intensities were selected for each
individual dye used in the staining. Finally, the required phenotypes together with
their respective criteria (channels and filters) were added. The entire slide scanned
using Axio Scan Z1 (Zeiss) were then analyzed using the trained algorithm to
obtain the output as per the above selected phenotypes. The number of cells for
each phenotype per unit area were then plotted using GraphPad Prism v8.4.3
(EDF5).

Statistics and reproducibility. Graphs were prepared and statistical comparisons
were applied using GraphPad Prism v8.4.3. Statistical comparisons were performed
as outlined in respective methods. One-way repeated measure ANOVA with
Geisser Greenhouse correction for sphericity and Tukey post hoc correction for
multiple testing (GraphPad Prism v8.4.3) was applied for statistical comparison of
population clusters across timepoints as described in the figure legends. For cor-
relation analysis, Spearman’s rank tests were applied. Statistical differences between
groups were reported to be significant when the P-value was <0.05. Data are
presented as mean * standard error of the mean (SEM). scRNAseq was performed
on longitudinal BAL cells from six young macaques across all timepoints and no
samples were excluded. For validation of scRNAseq dataset, immuno-
histochemistry was performed on Naive (four randomly selected lung lobes from
four macaques) and SARS CoV-2 infected Rhesus macaque lungs at Day 3 (four
randomly selected lung lobes from two macaques) and Day 14-17 (four randomly

selected lung lobes from four macaques) post-infection. three random fields were
acquired for each section analyzed.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Source data are provided with this paper. All data supporting the findings of this study are
available within this manuscript and its Supplementary Information. Any additional data
can be requested from the corresponding authors upon reasonable request. The scRNAseq
raw data generated in this study have been deposited to the Gene Expression Omnibus-
GEO (NCBI) under accession number GSE190659 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?zacc=GSE190659). The IHC data generated in this study have been
deposited in the Figshare database and can be accessed at this link https://doi.org/10.6084/
m9.figshare.17197925.
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