
ARTICLE

Circadian lipid and hepatic protein rhythms shift
with a phase response curve different than
melatonin
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While studies suggest that light and feeding patterns can reset circadian rhythms in various

metabolites, whether these shifts follow a predictable pattern is unknown. We describe the

first phase response curves (PRC) for lipids and hepatic proteins in response to combined

light and food stimuli. The timing of plasma rhythms was assessed by constant routine before

and after exposure to a combined 6.5-hour blue light exposure and standard meal schedule,

which was systematically varied by ~20° between individuals. We find that the rhythms shift

according to a PRC, with generally greater shifts for lipids and liver proteins than for mela-

tonin. PRC timing varies relative to the stimulus, with albumin and triglyceride PRCs peaking

at a time similar to melatonin whereas the cholesterol and high-density lipoprotein PRCs are

offset by ~12 h. These data have important implications for treating circadian misalignment in

shiftworkers who consume meals and are exposed to light around the clock.
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While studies suggest that light and feeding patterns can
reset circadian rhythms in various metabolites, whe-
ther these shifts follow a predictable pattern is

unknown. Here, we describe the first phase response curves
(PRC) for lipids and hepatic proteins in response to combined
light and food stimuli. The timing of plasma rhythms was
assessed by constant routine (CR) before and after exposure to a
combined 6.5-h blue light exposure and standard meal schedule,
which was systematically varied by ~20° between individuals. The
rhythms shifted according to a PRC, with generally greater shifts
for lipids and liver proteins than for melatonin. PRC timing
varied relative to the stimulus, with albumin and triglyceride
PRCs peaking at a time similar to melatonin whereas the cho-
lesterol and high-density lipoprotein PRCs were offset by ~12 h.
These data have important implications for treating circadian
misalignment in shiftworkers who consume meals and are
exposed to light around the clock.

Circadian rhythms in physiology, metabolism and behaviour
are driven by a multioscillatory system, in which the supra-
chiasmatic nucleus (SCN) is the retinorecipient central circadian
pacemaker critical for synchronising circadian rhythms to daily
light–dark cycles. Under controlled conditions, the daily rhythms
of core-body temperature, and of melatonin and cortisol secretion
are considered robust markers of the timing of the central cir-
cadian pacemaker1. In addition, there are circadian clocks located
in peripheral organs and tissues that are thought to refine the
timing of local physiological systems in concert with the central
pacemaker and are reset by both photic and non-photic time cues
in animal models2. To date, there is limited evidence for endo-
genous peripheral clocks in humans. While significant day-
night3–6 and endogenous circadian rhythms6–11 in a range of
metabolites have been documented, it is unknown whether these
metabolic rhythms are controlled by peripheral clocks, the central
pacemaker, or both.

Light is considered the most powerful time-cue (zeitgeber) for
resetting the central circadian pacemaker in humans, as assessed
using markers such as melatonin, cortisol, and core-body
temperature12. Non-photic time cues such as exercise or meal-
times can also reset circadian rhythms of these markers in
humans, but are much weaker stimuli than light10,13–17. Inter-
estingly, in rodents, peripheral clocks can shift independently
from the light schedule, uncoupling from the SCN and aligning
with mealtime under time-restricted feeding schedules18,19.
Whether such uncoupling occurs in humans is not well
characterised20. Recent evidence suggests that timed meals play a
role in synchronising plasma glucose rhythms and core clock
gene expression in adipose tissue15 and that metabolite rhythms
can be shifted out of alignment with central circadian markers by

behavioural time cues (e.g., sleep/wake and feeding/fasting
cycles)10.

The direction and magnitude of circadian phase resetting in
response to a stimulus are described by a PRC. The degree of
phase shift in response to light is affected by the timing, intensity,
duration, and wavelength of the light stimulus. Previously, we
described the PRC for shifts in the centrally controlled melatonin
rhythm to either 6.7 h or 1 h of white light21–23, and the
respective dim light controls23, thereby isolating the effects of
light from meal timing, which was identical between conditions.
More recently, we constructed a PRC to a 6.5 h blue (480 nm)
light stimulus [the peak sensitivity of the melanopsin-containing
intrinsically photosensitive retinal ganglion cells (ipRGCs) that
primarily mediate photic circadian resetting24], using the same
protocol25, and found maximal phase resetting to be similar,
at ~3 h.

In the present analysis of the same blue light study, we
investigated the phase-resetting effects of the stimulus on per-
ipheral rhythms in circulating lipids and clinical markers of
hepatic function. As in the white light PRC studies, the stimulus
was a combination of the 6.5-h light pulse and a standard meal
schedule (three meals and a snack). Sixteen healthy participants
(18–30 years; 8F) were studied for 9–10 days in an environment
free of time cues. Endogenous circadian rhythms in these markers
were assessed under CR conditions, which included constant
wake in dim light, continuous semi-recumbent posture, and
identical isocaloric snacks and fluids every hour. This protocol
removes or evenly distributes environmental stimuli, such as
sleep-wake, rest-activity, and feeding-fasting cycles, that may
potentially mask the endogenous circadian rhythm26.

Following three inpatient baseline days (8:16 h sleep:wake),
participants underwent a 30- to 52-h CR (CR1) to assess initial
circadian phase, the combined light exposure (LE)/mealtime day
preceded and followed by an 8-h sleep episode, and then a second
32- to 55-h CR (CR2) to assess any resultant shifts in circadian
rhythms (Fig. 1). The 16-h combined light/meals exposure day
was identical between individuals except that the timing was
systematically varied to schedule the midpoint of the day 80 min
(~20°) apart between participants to collectively cover all circa-
dian phases. Breakfast, lunch, dinner, and a snack were served at
2.67, 4.42, 12.42, and 14.42 h after waking, respectively—an
11.75-h feeding window—and the 6.5-h 480 nm LE was scheduled
from 4.75 to 11.25 h after waking.

Results
Circadian rhythm assessment. First, data from CR1 and CR2
were fit separately with 24-h sinusoidal functions to establish

Fig. 1 Study protocol. The schedule for participants (A) 29K6V and (B) 29R8V, plotted in raster format. White and grey bars indicate wake episodes in
ambient light of <190 lux or <3 lux, respectively. Black bars indicate scheduled sleep in darkness (0 lux). The hatched bars indicate the 6.5-h light exposure
(LE). The open circles indicate the timing of meals and snacks (smaller circle) during the exposure day.
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endogenous circadian rhythmicity and determine the peak time
(acrophase) of the rhythms (Fig. 2 and Supplementary Fig. 1)27.
Phase shifts were calculated for each participant for each para-
meter individually as the change in acrophase clock time between
CR1 and CR2. Only significant sinusoidal fits (amplitude different
from zero, two-tailed, p < 0.1) were used to estimate acrophase
and calculate phase shifts. During CR1, among the 16 participants
studied, significant 24-h rhythms were detected in total protein
(n= 11), albumin (n= 7), globulin (n= 9), total cholesterol
(n= 9), triglycerides (n= 13), low-density lipoprotein cholesterol
(LDL-C) (n= 9), and high-density lipoprotein cholesterol (HDL-
C) (n= 9) (Table 1 and Supplementary Table 1, Supplementary
Fig. 2). During CR2, significant 24-h rhythms were detected
during CR2 in total protein (n= 14), albumin (n= 12), globulin
(n= 11), total cholesterol (n= 8), triglycerides (n= 16), LDL-C
(n= 13), and HDL-C (n= 14).

Constructing phase response curves. Next, to construct the PRCs,
the timing of the stimulus (defined as the timing of LE onset during
the exposure day) was expressed relative to the acrophase of each
parameter during CR1 (abscissa) and plotted against the phase shift
observed (ordinate) for phase advances (shifting earlier, positive
value) or phase delays (shifting later, negative value) per convention
(Fig. 3). There were statistically significant PRCs for melatonin
(inter-individual range of shifts −2.59 to 1.52-h, nonlinear regres-
sion overall fit p= 0.0001), albumin (−5.05 to 7.12-h, p= 0.016),
total cholesterol (−2.32 to 7.15-h, p= 0.0013), triglycerides (−8.32
to 2.11-h, p= 0.0004), and HDL-C (−3.73 to 4.60-h, p= 0.042).

Shifts in total protein, globulin, and LDL-C did not exhibit a PRC
(p > 0.05; Supplementary Fig. 3).

To assess whether the variance in the resetting response was
better explained when modelled relative to the phase of the
central pacemaker (rather than relative to the phase of each
respective parameter separately), PRCs were also constructed
defining circadian phase of the stimulus relative to the
melatonin rhythm, assessed by the timing of dim light
melatonin onset (DLMO), a reliable marker of the central
pacemaker. Constructing PRCs relative to DLMO also allowed
direct comparison to the PRC for shifts in melatonin25. This
approach did not improve the PRC fits in general: The r2 was
higher when PRCs were constructed using the initial circadian
phase of the stimulus to determine exposure timing for
melatonin (0.80 vs. 0.76), albumin (0.60 vs. 0.07), total
cholesterol (0.70 vs. 0.25), and triglycerides (0.50 vs. 0.50),
but not HDL-C (0.39 vs. 0.61) (Supplementary Table 2). To
assess coupling of the central and putative peripheral rhythms,
phase shifts of melatonin were compared to the phase shifts in
the lipid and hepatic markers. There were no statistically
significant correlations between phase shifts of melatonin and
the phase shifts of the other parameters (p > 0.05) (Supple-
mentary Fig. 4). There were also no significant changes in
parameter amplitude between the two CRs when using z-scored
data for albumin, total cholesterol, or HDL-C, but there was a
lower amplitude during CR2 for triglycerides (paired t-test,
p= 0.02) (Supplementary Fig. 5). The degree of phase shift was
not associated with changes in amplitude for any of the markers
(p > 0.05; Supplementary Fig. 5).

Fig. 2 Examples of rhythms in CR1 and CR2. Data collected during CR1 (black filled circles) and CR2 (grey open circles) for (A, E) albumin, (B, F) total
cholesterol, (C, G) triglycerides, and (D, H) HDL-C. The x-axis is the time each blood sample was taken and the y-axis is the clinical assay concentration.
The solid black line is the fitted cosinor regression for CR1 and the grey solid line is the fitted cosinor regression for CR2. The phase shift (Δϕ) and
participant ID for each example is noted in the bottom right corner of the plots. The exposure day schedule is represented in the bar above the plots; grey
bars indicate wake episodes in ambient light <3 lux, hatched bars indicate the 6.5-h light exposure (LE), and the open circles indicate the timing of meals
and snacks.

Table 1 Summary of endogenous rhythmicity and phase shifts.

Class Assay 24 h rhythms under
CR1 (count, %)

24 h rhythms under both
CR1 and CR2 (count, %)

Mean acrophase CR1
(decimal time ± SD)

Max
delay (h)

Max
advance (h)

Melatonin 16/16 (100) 16/16 (100) 3.41 (±1.41) −2.59 1.52

Hepatic
proteins

Total Protein 11/16 (69) 10/16 (63) 16.32 (±3.95) −5.46 7.10
Albumin 7/16 (44) 6/16 (38) 15.81 (±5.01) −5.05 7.12
Globulin 9/16 (56) 6/16 (38) 17.64 (±3.60) −1.49 7.99

Total Cholesterol 9/16 (56) 7/16 (44) 18.32 (±2.35) −2.32 7.15
Lipids Triglycerides 13/16 (81) 13/16 (81) 3.22 (±2.92) −8.32 2.11

LDL-C 9/16 (56) 8/16 (50) 16.59 (±2.20) −3.63 6.76
HDL-C 9/16 (56) 8/16 (50) 19.17 (±1.75) −3.73 4.60
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Phase response curves adjusted to relative clock time. Finally, to
enable a direct comparison of PRC timings, the PRCs were re-plotted
on the same scale, using the clock time of the group average CR1
acrophase as ‘0’ for the timing of the stimulus (i.e., 0 representing
when light onset is coincident with the acrophase for the group
during CR1, and realigned along the x-axis to the corresponding
clock time) (Supplementary Fig. 6).

Discussion
While the robust entraining effects of light on the central circa-
dian pacemaker have been clearly established, little is known
about the effects of photic and non-photic stimuli on the reg-
ulation of circadian rhythms of peripheral metabolic markers in
humans. In this study, we evaluated the effects of a combined
photic and non-photic stimulus on clinical plasma markers of
hepatic function and lipids, specifically total protein, albumin,
globulin, total cholesterol, triglycerides, LDL-C, and HDL-C.
Similar to melatonin, phase resetting of albumin, total cholesterol,
triglycerides, and HDL-C followed a type 1 PRC25, but the
magnitude and direction of shifts differed from melatonin, sug-
gesting different control and phase-resetting properties than
markers of the central circadian pacemaker.

The metabolic rhythms were less consistently rhythmic than
melatonin, although a majority of individuals exhibited sig-
nificant rhythms in total protein, globulin, total cholesterol, tri-
glycerides, LDL-C, and HDL-C when analysed using the typical
cosinor model. The CR protocol is the gold standard technique
for defining internally generated circadian rhythms and their
presence provides definitive evidence for endogenous rhythms in
these clinical markers. This finding has important clinical
implications as this natural circadian variation is not taken into
account when assessing laboratory test results, which may con-
found clinical decisions that are often based on normative data
derived from a single time point28.

The current protocol cannot conclusively determine whether
these rhythms are under the control of the central and/or per-
ipheral clock(s), or whether light or meal timing is the principal
resetting signal. The observation that liver function and lipid
rhythms do not shift in parallel with the centrally controlled
melatonin rhythm, and exhibit larger phase shifts, suggests that
they may be separately regulated. Other centrally controlled
markers, such as core-body temperature and cortisol, have the
same endogenous period and a stable phase relationship with
melatonin29,30, and shift in parallel with melatonin in response to
light21,31,32. These findings suggest that these peripheral rhythms
are not just more ‘hands’ of the central clock but represent
separately generated and regulated peripheral rhythms, as con-
firmed in in vivo and in vitro studies in animal models, including
in the liver19,33,34. We postulate that the same is true in humans.

While in rodents there is compelling evidence that peripheral
tissues can generate endogenous rhythmicity independent from
the SCN in vitro and in vivo35,36, in humans there is limited
evidence for peripheral clock rhythms functioning independently
and being shifted in a different direction, and to a different
degree, than central clock markers (e.g., melatonin). The current
data suggest such a functional separation, which we hypothesise is
driven independent of the SCN by peripheral clocks. There is
some evidence from animal studies that PRCs differ in response
to photic and non-photic stimuli37 and that peripheral clocks can
be reset according to a PRC38. Conversely, it may also be possible
that differences in PRCs could result from the interaction

Fig. 3 Phase response curves (PRCs). Raw phase shifts in (A) melatonin,
(B) albumin, (C) total cholesterol, (D) triglycerides, and (E) HDL-C plotted
as a function of circadian phase of the stimulus, defined as the onset of LE -
CR1 assay-specific acrophase. PRCs are double-plotted. The solid horizontal
black line indicates no phase shift. Black squares represent each individual
that had statistically significant cosinor regressions in the assay during both
CR1 and CR2. The solid sinusoidal black line is the fitted single-harmonic
function. The 95% confidence intervals generated from the fit single-
harmonic function are shown by the grey dotted lines.
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between the SCN clock and other damped oscillators, or even
uncoupling within the SCN clock itself.

Notwithstanding the source of the rhythmicity, the construc-
tion of type 1 PRCs from changes in phase between two CRs is
clear evidence that these rhythms are under circadian control,
and that they meet two canonical properties of a circadian
rhythm: (i) are rhythmic in the absence of external time cues
(demonstrated by CR1); and (ii) can be reset in response to a
stimulus in a predictable manner (demonstrated by the PRCs).
Furthermore, the magnitude of the Type 1 phase shifts in liver
function and lipid profile markers are much greater, up to 8 h,
compared to the ~3 h typically observed for central markers in
response to light22,25,39.

Understanding the relative timing of the PRCs is complex
given the large differences in the acrophase times between the
parameters and the multifaceted stimulus (light and meal timing).
Comparing the approximate clock time of the ‘0’ circadian phase
exposure (where light onset is coincident with the parameter
acrophase for the group during CR1), shows that the melatonin
and triglyceride PRCs have similar timing (delay shifts in the
~12 h before their early morning acrophase) whereas total cho-
lesterol and HDL-C profiles different by ~12 h (delay shifts in the
12 h before their late afternoon acrophase). Future studies that
isolate the effects of either lighting or mealtimes are needed to
determine which time cues each parameter is most sensitive.

To summarise, plasma markers of hepatic function and lipids
show endogenous circadian rhythms that shift in response to a
combined light and meal schedule. The direction and magnitude
of the shifts in albumin, total cholesterol, triglycerides, and HDL-
C can be described by conventional type 1 PRCs that are distinct
from the PRC for melatonin. Further work is needed to
demonstrate whether food or light is the main environmental
time-cue resetting each peripheral marker. Understanding the
temporal dynamics of peripheral circadian rhythms is critically
important for designing behavioural and clinical approaches
using photic and non-photic interventions to treat the circadian
misalignment associated with shiftwork, jetlag, and disease40.

Methods
Ethical approval. The study was approved by the Brigham and Women’s Hospital
through the Partners Human Research Committee, in compliance with the
Declaration of Helsinki. All participants gave written informed consent prior to
enroling in the study and were paid for their participation.

Participants. Twenty-one participants (10F, mean age ± SD: 23.10 ± 3.43 years)
were studied for 9–10 days in the Intensive Monitoring Unit (IPM) of the Center
for Clinical Investigation (CCI) at Brigham and Women’s Hospital, Boston, MA
between May and December 2009.

Experimental protocol. During the 9–10 day protocol, participants remained in an
individual time-free suite. The protocol started with three baseline days consisting
of 8 h of scheduled sleep in darkness (<0.02 lux, <0.00006W/m2) and 16 h of
scheduled wake in ambient light. Ambient light was provided by 4100 K fluorescent
lamps (Philips Lighting, The Netherlands) with digital ballasts (Lutron Electronics
Co., Inc, PA) transmitted through a UV-stable filter (Lexan 9030 with prismatic
lens, GE Plastics, MA) and light levels were ~90 lux [0.23W/m2 (~89 lux) at
137 cm in the vertical plane and 0.48W/m2 (~190 lux) in the horizontal plane at a
height of 187 cm]. Halfway through Day 3, the light intensity was dimmed to
~0.5 lux (0.001W/m2) at 137 cm from the floor in the vertical plane with a max-
imum <3 lux (0.01W/m2) at 187 cm from the floor in the horizontal plane any-
where in the room for the remainder of the study. Participants were in darkness
during scheduled sleep. At wake time on Day 4, participants began an initial
~30–52-h CR in <3 lux during which time participants remained awake in a semi-
recumbent position in bed and were provided equal isocaloric snacks at hourly
intervals while being constantly monitored by a technician to maintain wakeful-
ness. Following an 8-h sleep episode, participants were exposed to the photic
stimulus, which was monochromatic 480-nm light (11.8 μW/cm2; 2.8 × 1013 pho-
tons/cm2/s; ≤15-nm half peak bandwidth) for 6.5 h via a modified Ganzfeld
dome25 centred in the 16-h wake episode, and the non-photic stimulus, which
included meals at 2.67 h (mean % of daily calories= 27%), 4.42 h (28%), 12.42 h
(31%), and 14.42 h (13%) after waking. Following another 8-h sleep episode,

participants started a second CR (~32–55 h), followed by a 10-h recovery sleep
episode before discharge.

Blood sampling. Starting on Day 2, an indwelling, intravenous catheter was
inserted in each participant’s forearm vein and plasma samples were collected every
20–60 min. Plasma samples collected during CR1 and CR2 were previously assayed
for melatonin25, and re-assayed by a CLIA certified laboratory blind to the con-
ditions of the experiment for either a lipid panel (total cholesterol, HDL-C, LDL-C,
triglycerides, CHOL/HDL-C ratio, non HDL-C; Test code: 7600, Quest Diag-
nostics, LLC Marlborough, MA) or hepatic protein panel (total protein, albumin,
globulin, and albumin/globulin ratio) (Test code: 90843, Quest Diagnostics,
LLC Marlborough, MA), every 1–2 h such that every other sample was assayed
for the same panel. The assays measured directly were total protein, albumin,
total cholesterol, triglycerides, and HDL-C. Globulin and LDL-C were
calculated by Quest Diagnostics (LLC Marlborough, MA) using clinically accepted
standards.

Data analysis. All statistical analyses were conducted in SAS 9.4 (SAS Inc., Cary,
NC, USA) and graphical representations were produced using Prism 8.4 (Graph-
Pad Software, La Jolla CA, USA). As reported in ref. 25, three participants were
excluded for protocol compliance/errors and two additional participants were
excluded because there was insufficient data to accurately assess the phase of
melatonin. For the present study, we only analysed data from the 16 participants
(8F, mean age ± SD 24.00 ± 3.16 years) who were included in the construction of
the PRC for shifts in melatonin25.

There were a total of 1795 plasma samples assayed for lipids and hepatic
proteins (7 of which could not be assayed). The 1795 samples were the same
plasma samples previously analysed for melatonin (1 of which could not be
assayed). In total, 27 samples (1.50%) were removed prior to analysis of phase shifts
and PRC construction because of abnormal concentrations (e.g., out of the range of
detection or values being outside of normative).

Circadian rhythm analysis. Rhythms were assessed using a cosinor regression of
the form41:

y ¼ μþ A cos
2π x � ϕ

� �

24

� �� �
ð1Þ

where y is the assay result (i.e., concentration), x is the clock time of the sample, μ is
the mesor, and ϕ is the acrophase. The cutoff used for statistical significance was
p < 0.1 (two-tailed).

Phase response curve. Phase shifts were calculated as the difference between
initial phase (CR1 acrophase) and final phase (CR2 acrophase) of the rhythms. Per
convention, phase delays were plotted as negative values and phase advances as
positive values on the ordinate.

The PRC was fitted with a single-harmonic function of the form:

y ¼ μþ A
πsinðx � ϕÞ

12

� �
ð2Þ

where x is circadian phase and y is phase shift. Parameters μ, A, ϕ represent the
mean phase shift, amplitude, and phase, respectively, and pseudo-r2 and 95%
confidence intervals were computed from the resulting fitted function. Statistical
significance was determined using the overall fit of the nonlinear regression (PROC
NLIN). Additional methods are provided in the Supplementary Materials.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The minimum dataset necessary to interpret, verify and extend the research in this article
is available within the manuscript and its supplementary information. Source data are
provided with this paper. De-identified individual data for all outcomes are provided in
the Harvard Dataverse repository (https://doi.org/10.7910/DVN/YADCK8)42.
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