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Automated recognition 
of the cricket batting backlift 
technique in video footage using 
deep learning architectures
Tevin Moodley1, Dustin van der Haar1* & Habib Noorbhai2

There have been limited studies demonstrating the validation of batting techniques in cricket using 
machine learning. This study demonstrates how the batting backlift technique in cricket can be 
automatically recognised in video footage and compares the performance of popular deep learning 
architectures, namely, AlexNet, Inception V3, Inception Resnet V2, and Xception. A dataset is created 
containing the lateral and straight backlift classes and assessed according to standard machine 
learning metrics. The architectures had similar performance with one false positive in the lateral 
class and a precision score of 100%, along with a recall score of 95%, and an f1-score of 98% for each 
architecture, respectively. The AlexNet architecture performed the worst out of the four architectures 
as it incorrectly classified four images that were supposed to be in the straight class. The architecture 
that is best suited for the problem domain is the Xception architecture with a loss of 0.03 and 98.2.5% 
accuracy, thus demonstrating its capability in differentiating between lateral and straight backlifts. 
This study provides a way forward in the automatic recognition of player patterns and motion capture, 
making it less challenging for sports scientists, biomechanists and video analysts working in the field.

Cricket batting has evolved considerably in recent years, with an added emphasis on the shorter formats of the 
game1. There has been a growing need to maximise performance and success at the highest level, as well as to 
understand particular playing patterns through sophisticated analysis and machine learning2.

The increased use of technology, combined with science and medicine, has been labelled as a game-changer 
within the sporting domain, with an emphasis on analysis3. The technological growth has seen significant break-
throughs within sports video content analysis, particularly through the advances in artificial intelligence, deep 
learning and multimedia technologies. Sports video analysis is domain dependant with unique challenges, which 
identifies several areas of research that require further investigation4,5. Several studies have exploited the use 
of technology where one particular study attempts to measure the vertical jump performance reliably using an 
iPhone application called My Jump6. Several other mobile applications have been developed to assist in player 
performance and provide feedback from a biomechanics perspective7–9. In the cricketing domain, mobile applica-
tions have been developed to analyse team performance, player injury, and match prediction3,10–12. While these 
applications have made several improvements within the cricketing domain, there is a lack of research dedicated 
toward the enhancement and improvement of cricket batting13.

The cricket batting technique is intricate that involves a series of complex gestures needed to perform a stroke, 
one of these gestures performed by the batsman is referred to as the batting backlift technique (BBT)14. Previous 
research has indicated that the BBT can be seen as a contributing factor to successful batsmanship13,15,16. There 
are two backlifts investigated in this study, namely the lateral batting backlift technique (LBBT), and the straight 
batting backlift technique (SBBT). The LBBT is a technique present where the toe and face of the bat are lifted 
laterally in the direction of second slip. The SBBT is represented whenever the toe and face of the bat are pointed 
toward the stumps and ground13.

Related works.  Conventionally, many video analysts would record footage using video cameras and link 
these to their parent analysis software to identify player performances, patterns, as well as kinetic and kinematic 
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analyses. However, at times, such processes can be a tedious task. In the age of the fourth industrial revolution 
where automation and deep learning can be utilised to enhance real-time analysis and various identifications of 
match play, this provided impetus for further studies to document such validations.

There have been limited studies conducted demonstrating the validation of batting techniques in cricket either 
through mobile applications, platforms, machine learning or artificial intelligence. There has been an increase 
in applying computer vision techniques within the context of cricket. One example17 propose a cricket stroke 
recognition model, which demonstrates how various cricket strokes such as block cut, drive and glance in cricket 
can be automatically recognised in video footage using different traditional and deep learning architectures.

A study conducted by18 propose a model that uses a deep CNN to recognise cricket batting shots. The pro-
posed method is based on 2D convolution followed by a recurrent neural network for processing sequence of 
video frames and a 3D convolution network for capturing spatial and temporal features simultaneously18. The 
dataset used comprised of 800 batting shot clips consisting of the drive, pull, hook, cut, sweep and flick strokes. 
The model is able to recognise the different strokes being performed with 90% accuracy. The high model accu-
racy noted the implications of modern deep learning in applications for detecting various cricket activities and 
for decision making.

A cricket shot detection model is presented by19, which proposes a novel scheme to recognise various cricket-
ing strokes. The proposed model uses a deep convolutional neural network that relies on saliency and optical flow 
to highlight static and dynamic cues. The study proposes an entirely new dataset consisting of 429 video clips of 
the different types of drive strokes performed by a batsman19. The proposed framework achieves an accuracy of 
97.69% for a left-handed batsman and 93.18% for a right-handed batsman. The authors noted that future work 
would focus on extending the incorporation of native features for every defined stroke.

In each of the studies highlighted, there has been an attempt to recognise different cricketing strokes using 
deep learning methods on entirely different datasets. These studies highlight the success of deep learning within 
the problem domain and further motivate the use of deep learning within the cricketing context. While deep 
learning has successfully recognised different cricket strokes, there are limited studies and no datasets that address 
the cricketing backlift, which is a key aspect of the batting technique. By applying deep learning methods to the 
backlift recognition task, this research is able to achieve automated recognition of the cricket batting backlift 
technique in video footage, which is novel within the cricketing environment. Additionally, the dataset created 
in this study can be used upon request, which will benchmark future works.

The contributions of the article can be noted as follows; producing a model to achieve an end to end backlift 
recognition, the use of transfer learning and how it improves performance in the context even in the presence of 
little data, the Xception architecture is the best performing architecture for the backlift recognition task, which 
in itself is a largely unexplored area, and finally, the dataset produced the firsts of its kind, which will allow future 
works to be implemented using a baseline dataset.

The outline of this study begins with section “Methods”, which unpacks the terminology, the dataset used and 
the different types of architectures implemented in this study. Section “Results” discusses the results obtained 
in the study, which is further unpacked in section “Discussion”. Finally, the contributions and future works are 
outlined in section “Conclusion”.

Methods
Traditionally, types of backlift (lateral or straight) are categorised manually using an expert and analysing specific 
pose and alignment attributes. In this study, we attempt to automate this process by following deep learning-based 
methods instead of using a hand-crafted feature engineered based approach. It uses representational learning 
that implicitly constructs its own features to differentiate between the types of backlift by training on known 
cases of each backlift class.

We start by first creating a dataset of images that contains two types of backifts, along with annotations 
specifying which type of backlift each image depicts. We then select, create and train deep learning architectures 
using the created dataset and benchmark against common machine learning metrics to determine its efficacy.

Dataset creation.  There are specific requirements that must be considered during the construction of the 
dataset. The process began through a comprehensive YouTube search of First-Class International Cricket Test 
Match highlights, where the match’s environment has fewer variations to consider. The investigation was to 
select various batsmen who performed the lateral and straight backlifts, ten batsmen that exhibited the straight 
backlift and ten batsmen that demonstrated the lateral backlift. The batsman selected for the straight backlift; 
Babar Azam, Themba Bavuma, Rahul Dravid, JP Duminy, Dean Elgar, Mahela Jayawardene, Ajinkya Rahane, Joe 
Root, Rory Burns, Ben Stokes, and David Warner. The batsmen selected for the lateral backlift; AB de Villiers, 
Hashim Amla, Quintin de Kock, Faf du Plessis, Kevin Pieterson, Kumar Sangakara, Brian Lara, Ricky Ponting, 
Steve Smith, and Virat Koli. Using the Labelbox editor, each object within the scene is labelled, allowing for 
easier isolation and extraction of the batsman in each frame. The frame used for constructing the dataset was 
when the bowler is about to release the ball towards the batsman. The frame is identified as the ideal time period 
for the position of the batsman at the instant of delivery20. Using an 80:20 data split, the training class had 160 
images, and the testing class had 40 images, resulting in a total of 200 images, which will serve as a baseline to 
draw comparisons of the proposed architectures. The image aspect ratio chosen through testing and validation 
is 128× 128 , which is chosen to avoid distorting the original image.

Model for implementation.  The models proposed for this research paper is the AlexNet, Inception V3, 
Inception Resnet V2, and Xception architecture21. As of late, deep learning has gathered tremendous success 
in various domains22,23. The AlexNet architecture, which is relatively older, belongs to the deep Convolutional 
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Neural Network (CNN) structure proposed by Krizhevsky and subsequently won the ImageNet object recogni-
tion challenge in 201224.

AlexNet managed to achieve recognition accuracy that was better than most traditional machine learning 
approaches of the time22. The significant breakthrough in machine learning and computer vision-related tasks 
has seen the AlexNet architecture widely used across various domains25. Figure 1, depicts the structure of the 
AlexNet architecture. Local Response Normalisation (LRN) is performed at the first layer using 96 receptive 
filter22, where LRN is responsible for connecting the layers using an organised spatial pattern. Max pooling allows 
for dimensionality reduction in which assumptions are subsequently derived concerning the features contained 
within the sub-regions and is performed using 3× 3 filters with a size of 2. Each layer has a number of kernels 
with a specific size. The second ( 5× 5× 48 ) layer has 256, the third ( 3× 3× 256 ) and fourth ( 3× 3× 192 ) 
have 384, and the fifth ( 3× 3× 192 ) has 256 kernels23. Layer six and seven is the fully-connected layers made 
up of 4096 neurons each. Finally, the softmax fully-connected layer represents the number of labelled classes.

In 2014, Szegedy et al., introduced a newer network known as GoogleLeNet, otherwise known as Inception 
V1. The Inception V1 architecture was then refined over the years and subsequently referred to as Inception V2, 
Inception V3, and Inception Resnet26. The Inception V3 model was proposed that consisted of 48 layers. Unlike 
the AlexNet architecture, the Inception V3 architecture performs some of its calculations simultaneously27. 
Szegedy et al. describe the Inception V3 architecture28. The traditional 7× 7 convolution is factorised into three 
3× 3 convolutions. The inception part of the network has three traditional modules at the 35× 35 convolution 
with 288 filters each, which is reduced to a 17× 17 grid with 7968 filters28. The inception modules are then fol-
lowed by five instances of factorised inception modules, which is reduced to an 8× 8× 1280 grid using the grid 
reduction technique.

Using the Inception architecture and residual connections, the Inception Resnet V2 architecture was formed29. 
Inception Resnet V2 is a convolutional neural network that implements concatenation in each multi-branch 
architecture. Residual models are well known for training very deep architectures29. Figure 2 represents the overall 
schema and the detailed composition of the Inception Resnet V2 architecture, where the inception blocks can 
be seen30. Using the filter expansion layer and residual modules after each inception block, the dimensionality 
of the filter bank is scaled up to compensate for the dimensionality reduction induced by the inception block30.

According to Chollet, the architecture dubbed as Xception is said to slightly outperform the Inception V3 
architecture on the ImageNet dataset26. The Xception architecture is made up of 36 convolution layers and is able 
to decouple the mapping between cross-channel correlations and spatial correlations. Each layer is structured 
into 14 modules, where each module has a linear residual connection around it26. Figure 3 represents the Xcep-
tion architecture that undergoes an entry flow, middle flow, and exit flow.

Transfer learning allows for the transfer of knowledge from one task to another, which has been used in highly 
specialised disciplines, where the availability of large scale quality data proves challenging31. Generally, a neural 
network requires a large dataset to train from scratch, unfortunately, these large datasets are not always available, 
which is why transfer learning is beneficial in this study, where the dataset is noted for being smaller in size. 
Transfer learning draws a starting point in which a good machine learning model can be built with comparatively 
little training data since the model is already pre-trained. Pre-trained models are seen as the efficient optimisation 
procedure, which also supports the improvement of classification problems31. In order to justify the architecture 
of choice, Table 1 is added that compares the top-1 and top-5 accuracy of the chosen architectures in the study. 
Using the top-1 and top-5 accuracy scores, the Inception V3, Inception Resnet V2, and Xception architectures 
have been compared on the ImageNet dataset, highlighting a performance comparison for each architecture. 
Top-1 accuracy refers to the conventional accuracy, where the model’s result must match the expected output 
exactly. Top-5 specifies any of the top 5 probabilities which must match the expected output. Table 1 illustrates a 
comparison of the various architectures on the ImageNet dataset. As seen in Table 1, the Xception architecture 
yields the best performance when applied to ImageNet with a top-1 accuracy of 80.3%, which serves as further 
evidence as to why the Xception architecture is the most suitable architecture for this study, further motivations 
will be unpacked in the results section.

While transfer learning offers many advantages related to time, computational complexity, accuracy, and 
smaller datasets, there are some limitations to its use32. One of the major challenges related to transfer learning is 
to produce positive transfer between tasks while avoiding negative transfer, which is a decrease in performance. 

Figure 1.   The AlexNet architecture depicting the different layers used for classification22.
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Figure 2.   The left side represents the overall schema for the pure Inception Resnet V2, where the right side 
illustrates the detailed composition of the stem30.

Figure 3.   A figure representing the Xception architecture26.
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Negative transfer occurs as there is no specific standard that defines the manner in which tasks are related from 
both domain and algorithmic perspectives, which makes it challenging to find solutions32. A more well-studied 
limitation surrounding transfer learning is overfitting that is apparent when a new model learns details and 
noises from training data that negatively impacts its output32. Fortunately, these limitations were not noted in 
this study. Overfitting was not encountered, and therefore, there was no need to reduce the network’s capacity, 
apply regularisation or add dropout layers.

During implementation, the following parameters were altered to ensure the Inception V3, Inception Resnet 
V2, and Xception architectures were fairly compared against the AlexNet architecture. Each architecture made 
use of transfer learning. For each architecture, the fully connected layer at the top of the network was set to False, 
which was done as the input shape of the images were changed to 128× 128 pixels. A global average pooling 
layer was added as a substitute fully connected layer. A dense output layer with activation softmax was added 
to match the number of classes in the study. The image weights were set to none. Again this is to ensure that the 
architectures are compared fairly to AlexNet. Finally, the input tensor is set to none, and the input size is set to 
128× 128 pixels. No other parameters were altered.

Data augmentation techniques were applied to each architecture: shear range of 0.2, image rescaling of 
1./255, horizontal flip set to true, and a zoom range of 0.2. Various parameters were selected through testing and 
validation; the activation parameter used is the rectified linear unit (ReLu), which manages to converge faster 
and more reliably in this study33. The softmax activation function is used at the output layer in order to predict 
a multinominal probability distribution. Using the Adam optimiser, the model manages the sparse gradients of 
noisy data. Using the various architectures defined in this study offers a novel approach to the problem domain, 
where metrics can determine the success of applying deep learning methods within the cricketing field. The 
results section will further unpack the findings of the proposed model and form a comparison on the different 
architectures to identify different areas of focus in future works. The source code may be found on the github 
repository, and the dataset may be used upon request.

Data analysis.  Each architecture’s performance is evaluated using the accuracy, confusion matrix, preci-
sion, recall, and f1-score metrics. To understand each metric the True Positives (TP), True Negatives (TN), False 
Positives (FP), and False Negatives (FN) values are defined. TP occurs when the proposed model manages to 
correctly predict positive observations, and TN occurs when the model correctly predicts negative observations. 
FP is apparent when the model incorrectly predicts positive observations, and the FN occurs when the model 
incorrectly predicts false observations. The model accuracy will formulate a comprehensive understanding of 
the architecture’s performance34. In order to testify to the effectiveness and efficiency of the results, multiple runs 
are carried out for each architecture. The results obtained in Table 2 is a result of running the data against each 
architecture ten times and computing the averages for each metric. Completing multiple runs ensures that the 
data is behaving correctly and the the results obtained are consistent verifiable across the respective architectures 
used in this study.

Table 1.   The Inception V3, Inception Resnet V2, and Xception architectures pre-trained and bench-marked 
on the ImageNet dataset to illustrate each architectures performance on a generalised dataset and to justify the 
selection of architectures in the study.

Network Top-1 Accuracy Top-5 Accuracy

Alexnet22 0.6330 0.8460

Inception V328 0.790 0.945

Inception Resnet V230 0.779 0.937

Xception26 0.803 0.953

Table 2.   The confusion matrix representing each of the architectures across ten runs, where the false and true 
positive predictions for each class are represented.

Architecture Class Lateral Straight Accuracy (%) Loss (%)

AlexNet
Lateral 19 1

82.45 34.17
Straight 4 16

Inception V3
Lateral 19 1

93.75 0.13
Straight 0 20

Inception Resnet V2
Lateral 19 1

96.1 0.12
Straight 0 20

Xception
Lateral 19 1

98.2 0.03
Straight 0 20
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We can expect the model to successfully draw distinctions between the respective classes from the proposed 
architecture, thereby automatically recognising different backlifts in video footage, supported in the results 
section.

Results
The metrics illustrated in Table 2 represents the confusion matrix for each architecture. The number of TP, FP, 
TN, and FN are highlighted. The AlexNet architecture struggles to correctly predict for the straight class, as it 
incorrectly predicts four images as a lateral backlift, where in fact, the images represent a straight backlift. The 
remaining architectures, Inception V3, Inception Resnet V2, and Xception, all have the same amount of misclas-
sifications, each incorrectly predicting a single image as a straight backlift that represents a lateral backlift. The 
architectures accuracy and loss scores are illustrated in Table 2. The noteworthy observation is the loss score of 
the Xception architecture of 0.03%, which will be discussed in section 4.

The metrics are shown in Table 3, which illustrates each architecture’s precision, recall, and f1-score for the 
respective classes. For each class (with a support of 20), the number of false positives is computed as shown in 
Table 2. Similarly to Table 2 the Inception V3, Inception Resnet V2, and Xception architectures all exhibit the 
same scores, the lateral class had a precision score of 100%, a recall score of 95%, and an f1-score of 97%. For 
the straight class, the three architectures had precision scores of 95%, recall scores of 100%, and f1-scores of 
98%. The AlexNet architecture scores differed. The lateral class had a precision score of 83%, a recall score of 
95%, and an f1-score of 88%. Finally, the straight class had a precision score of 90%, a recall score of 80%, and 
an f1-score of 86% as seen in Table 3.

Discussion
This research paper looks to recognise different cricket backlifts using the AlexNet, Inception V3, Inception 
Resnet V2, and Xception architectures, which is successfully achieved as demonstrated by the results. The mis-
classifications highlighted in Table 2 for the Inception V3, Inception Resnet V2, and Xception architectures are 
inspected to determine if the misprediction is the same image across the board. The image shown in Fig. 4 is an 
example of an image that was misclassified for all three architectures, thus suggesting the image represents a high 
number of features that stem from a straight backlift. Further analysis of the respective image also highlights 
the difficulty to recognise the positioning of the bat. Due to the bat being one of the key determining factors of 
distinguishing between a lateral and straight backlift, it could be the reason for the misclassification. Reasons 
as to why the architectures make these false-positive predictions may be due to the bat being blurred, making it 
hard to determine the angle at which the bat is faced. However, the batsman involved is Quinton de Kock, who 
is known to have a lateral backlift.

The Inception V3, Inception Resnet V2 and Xception architectures have similar results making it difficult to 
determine which architecture would be best suited for the problem domain. At the same time, additional data 
in the future may provide a more concise and deeper knowledge. Each architecture within this study has been 
trailed and tested in a generalised context as seen in Table 1. These architectures have proven to be successful 
in various domains, contributing to advancements in computer vision. Traditionally the Xception architecture 
is said to yield better performance, which is largely due to its Top-1 accuracy26. The Top-1 accuracy measures 
the proportion of examples for which the predicted label matches the single target. The loss score of 0.05% for 
the Xception architecture further highlights the architectures ability to predict on a single image. It yielded the 
lowest lost score from all architectures coupled with the past performance Top-1 accuracy scores26, and it can be 
concluded that the Xception architecture is best suited for the problem domain. The performance of the Xcep-
tion architecture further highlights the added benefit of transfer learning, the architecture both in a generalised 
context, as seen on the ImageNet dataset, and specialised context, as seen in this study, has outperformed the 
Inception V2 and Inception Resnet V2 architectures, thus highlighting its efficiency within the problem domain.

One study by18 identified and categorised various cricket batting shots from various videos. The approach 
and methods undertaken were based on deep convolutional neural networks. The first approach uses 2D CNN’s 
with recurrent neural networks for processing video footage. The second approach implements a 3D CNN to 
capture spatial and temporal features simultaneously. Using a dataset with approximately 800 batting shot clips, 
the proposed model achieved a 90% accuracy18. The high accuracy obtained in the study indicates the high 

Table 3.   The average precision, recall, and f1-scores across ten runs for the lateral and straight backlifts for 
each architecture.

Architecture Class Precision (%) Recall (%) F1-Score (%)

AlexNet
Lateral 83 95 88

Straight 94 80 86

Inception V3
Lateral 100 95 97

Straight 95 100 98

Inception Resnet V2
Lateral 100 95 97

Straight 95 100 98

Xception
Lateral 100 95 97

Straight 95 100 98
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implications of modern artificial intelligence and deep learning in applications for detecting various cricket 
activities and decision-making purposes. Similarly, in our study, the high accuracy was revealed to be 98.2%, 
further validating their argument.

A previous study by13 analysed the batting backlift technique using hand crafted features in the Open Com-
puter Vision (CV) library, Android, and JavaScript. The system comprised of three main components; frontal 
view interface, lateral view interface, and a back-end system. The system was able to detect the type of backlift 
presented by the batsman by analysing and tracking the positional placement of batsman and the bat. The system 
was novel and provided and means to gather real-time data, which could be used for analysis. The improvements 
that deep learning has made within current research suggests that applications such as the one presented by13 
can be improved drastically and requires further investigation.

Cust et al.5 postulated that “future work should look to adopt, adapt and expand on current models associ-
ated with a specific sports movement to work towards flexible models for mainstream analysis implementation. 
Investigation of deep learning methods in comparison to conventional machine learning algorithms will be of 
particular interest to evaluate if the trend of superior performances is beneficial for sport-specific movement 
recognition.” The approach demonstrated in this paper attempted to fill this void in which automation and auto-
mated recognition (coupled with deep learning methods) are key for player performance analysis in real-time.

Conclusion
This research article was able to achieve an end to end backlift recognition, highlight the advantages of transfer 
learning, and identify the Xception architecture as the best performing architecture for the backlift recognition 
task, which is a largely unexplored area, and create a new dataset within the domain. The AlexNet architecture 
was noted for its significant breakthrough in machine learning and computer vision-related tasks. Since then, 
newer architectures have been introduced, such as Inception V3, Inception Resnet V3, Xception, and more. The 
objective of this research study was to make distinctions between the different types of backlift techniques in 
cricket. Having discussed the results proposed by each architecture, the aim of this approach has been achieved. 
With the Xception architecture performing optimally, it would be useful further to investigate other biome-
chanical networks in future sports science research. This study also provides a way forward in the automatic 
recognition of player patterns and motion capture, making it less challenging for sports scientists, biomechanists, 
and video analysts working in the field. Future improvements can be made by investigating more finer grade 
movements by looking at segmenting specific objects using semantic segmentation methods36,37 and factoring 
more temporal aspects such as finer grain gestures38. Further investigation is required to determine how a model 
should be trained to maximise the benefit for both coaches and athletes for all sports. Furthermore, future work 
should evaluate the generalisation ability of similar models in a match situation and analyse players of varied 
demographics, including age, gender, skill level and format type. The models could provide better correlations 
to batting backlift technique as well as cricket batting performance.

Received: 26 August 2021; Accepted: 11 January 2022

Figure 4.   The image that is mispredicted by the Inception V3, Inception Resnet V2, and Xception architectures 
as a straight backlift, where the image represents a lateral backlift35.
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