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ABSTRACT
Background  We present a computational approach 
(ArcTIL) for quantitative characterization of the architecture 
of tumor-infiltrating lymphocytes (TILs) and their interplay 
with cancer cells from digitized H&E-stained histology 
whole slide images and evaluate its prognostic role in 
three different gynecological cancer (GC) types and across 
three different treatment types (platinum, radiation and 
immunotherapy).
Methods  In this retrospective study, we included 926 
patients with GC diagnosed with ovarian cancer (OC), 
cervical cancer, and endometrial cancer with available 
digitized diagnostic histology slides and survival outcome 
information. ArcTIL features quantifying architecture and 
spatial interplay between immune cells and the rest of 
nucleated cells (mostly comprised cancer cells) were 
extracted from the cell cluster graphs of nuclei within the 
tumor epithelial nests, surrounding stroma and invasive 
tumor front compartments on H&E-stained slides. A Cox 
proportional hazards model, incorporating ArcTIL features 
was fit on the OC training cohort (N=51), yielding an ArcTIL 
signature. A unique threshold learned from the training set 
stratified the patients into a low and high-risk group.
Results  The seven feature ArcTIL classifier was 
found to significantly correlate with overall survival in 
chemotherapy and radiotherapy-treated validation cohorts 
and progression-free survival in an immunotherapy-
treated validation cohort. ArcTIL features relating to 
increased density of TILs in the epithelium and invasive 
tumor front were found to be associated with better 
survival outcomes when compared with those patients 
with an increased TIL density in the stroma. A statistically 
significant association was found between the ArcTIL 
signature and signaling pathways for blood vessel 
morphogenesis, vasculature development, regulation of 
cell differentiation, cell-substrate adhesion, biological 
adhesion, regulation of vasculature development, and 
angiogenesis.
Conclusions  This study reveals that computationally-
derived features from the spatial architecture of TILs 
and tumor cells are prognostic in GCs treated with 
chemotherapy, radiotherapy, and checkpoint blockade and 

are closely associated with central biological processes 
that impact tumor progression. These findings could aid in 
identifying therapy-refractory patients and further enable 
personalized treatment decision-making.

BACKGROUND
After breast cancers, gynecological malignan-
cies are the most common cancer in women, 
with 114,000 cases occurring annually in the 
USA, and are the third leading cause of cancer-
associated deaths, with 33,600 reported annu-
ally.1 Three types of cancers account for the 
vast majority of the female genital malignan-
cies: cervical cancer (CC), ovarian cancer 
(OC), and endometrial cancer (EC). Collec-
tively, the 5-year overall survival (OS) rate of 
gynecological cancer is less than 60%, with 
epithelial OC having a 5-year OS rate of less 
than 40%.2 3

The standard of care for advanced-stage 
metastatic OC and EC consists of either 
cancer-directed debulking surgery, followed 
by adjuvant platinum–taxane chemotherapy 
or neoadjuvant chemotherapy (NACT), 
followed by interval cytoreductive surgery.4–6 
Chemotherapy with weekly cisplatin is widely 
used concurrently with radiotherapy in 
locally advanced CC.7 Additionally, immuno-
therapy with immune checkpoint inhibition 
(ICI) is an increasingly popular treatment 
given its durable effect and lower toxicity and 
is currently under extensive investigation in 
cancers of the female genital tract.8

Although the majority of ECs are curable 
by surgery with or without radiotherapy, a 
small fraction with advanced metastatic or 
recurrent disease still exhibit poor prognosis, 
lower response to therapy and poor survival.9 
Platinum-based combination chemotherapy 
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is the standard chemotherapy regimen in these settings. 
In OC, despite initial responsiveness to platinum chemo-
therapy, more than 50% of patients with advanced meta-
static disease experience disease recurrence.10 Patients 
with OC whose cancers recur within 6 months of platinum-
based chemotherapy are considered to have platinum-
resistant OC (PROC). The response rate of any further 
chemotherapy in PROC is less than 10%–15%, and the 
median OS is less than 12 months.10 The efficacy of other 
treatments, such as immunotherapy and radiotherapy, 
varies across patients.11 It is therefore critical to identify 
high-risk patients who are likely to recur after platinum-
based chemotherapy and those with platinum-resistant 
disease. Further, immunotherapy with ICI is a promising 
option with durable response and low toxicity. However, 
only small fraction of patients with gynecological cancers 
(GC) apparently benefits from it. Consequently there is a 
need for better biomarkers to identify those patients who 
are likely to benefit from prolonged therapy, like main-
tenance therapy with bevacizumab or poly adenosine 
diphosphate-ribose polymerase inhibitors and/or person-
alized targeted therapy to lower risk of recurrence and 
disease progression as also those patients who will receive 
durable benefit from ICI agents.12

Tumor microenvironment (TME) is the whole environ-
mental components around the tumor mass containing 
heterogeneous cells from epithelial and stromal compart-
ment.13–15 Different attributes of TME have been 
reported as prognostic markers in GC.9 16 17 Tissue-based 
transcriptome data have confirmed that tumor-associated 
cells, specifically tumor-infiltrating lymphocytes (TILs) 
density and immune cells in stroma, are prognostic TME-
associated markers in various cancer types.18–20 However, 
due to the inter/intra-observer variability in interpreting 
TME characteristics,19 there are no clearly-defined 
standardized methods for assessing spatial interaction 
of cells within TME, limiting the ability to use them as 
clinical biomarkers.21 22 Interestingly, some computa-
tional methods have investigated the geospatial patterns 
of TILs, these geospatial TIL patterns from H&E slides 
characterize the overall immune profile of a tumor have 
been associated with prognosis in different cancer types 
including lung cancer and breast cancer but not yet for 
GC.23–25

This work presents a new computational pathology 
approach, called ArcTIL, to quantitatively characterize 
and evaluate spatial patterns relating to the architectural 
interplay and arrangement of TILs and cancer cells in 
different tumor tissue compartments, namely (1) epithe-
lial nests, (2) surrounding stroma, and (3) epithelial and 
stromal compartments at the invasive tumor front. Our 
approach differs from previous related approaches,23 24 
in that we introduce a novel set of geospatial features 
relating to patterns of immune cell in stroma, epithe-
lium and invasive tumor front. Further, considering the 
similarities in etiologic factors, rate of coincidence,26 and 
morphologic patterns of OC, CC, and EC, we evaluated 
our novel ArcTIL patterns across all three diseases. The 

ArcTIL features were evaluated on 926 patients from 
multiple sites and cancer types (OC, CC, and GC) in 
terms of clinical benefit and survival following adjuvant 
platinum-based chemotherapy or radiotherapy and ICIs.

METHODS
Data set description
A total of 926 GC cases (whole slide H&E-stained resected 
neoplasms) were acquired from The Cancer Genome 
Atlas (TCGA) (n=877) and Cleveland Clinic Foundation 
(CCF) (n=49) (figure 1). Five hundred and four patients 
from the TCGA cohort were treated with chemotherapy. 
One hundred and three patients with OC who under-
went surgery followed by chemotherapy were randomly 
divided between a training cohort (D0, N=51) and a 
testing cohort (D1, N=52) and are designated cohorts D0 
and D1 (for OC). The other patients from this data set 
who were treated with chemotherapy after surgery, were 
divided into cohorts D2 (for CC) and D4 (for EC). Three 
hundred and seventy-three patients with CC and EC from 
the TCGA cohort were treated with radiotherapy after 
surgery and formed cohorts D3 and D5, respectively. There 
were no patients who received both chemotherapy and 
radiotherapy. The Cleveland Clinic Foundation cohort 
included 49 patients treated with immunotherapy agents 
including pembrolizumab, nivolumab±ipilimumab, and 
avelumab, all in the recurrent setting (D6 for OC, D7 for 
CC, and D8 for EC. We pulled all the cases admitted to 
CCF, with diagnosis of OCs, CCs or ECs who underwent 
surgical intervention at CCF between 2004 and 2019 
treated with ICI. Scanning of CCF sections was performed 
specifically for this study and in consensus with their 
treating physician. As for the outcome, patients were 
assessed with at least two cycles of interval CT imaging. 
Using the comparison of two imaging assessments, the 
patients were labeled as responders, if they had evidence 
of decreased radiologic tumor burden with a partial or 
complete response by (Response Evaluation Criteria in 
Solid Tumours) RECIST V.1.1.

For the TCGA cases, resected tumor tissues underwent 
the following analysis steps including (1) formalin-fixing 
and paraffin-embedding, (2) staining with H&E and (3) 
digitizing as whole slide images (WSI) at 40× magnifi-
cation (0.2527 microns per pixel resolution) using an 
Aperio ScanScope. The output was saved in the SVS file, 
which is a digital slide image file and contains a series 
of TIFF images, as well as its image description tag. The 
scanner information was collected from the SVS file meta-
data and staining process details were obtained from the 
available TCGA documentation (information available at 
(https://www.cancer.gov/about-nci/organization/ccg/​
research/structural-genomics/tcga).

For the slides pulled from CCF, the exact same staining 
procedure was employed. Also, scanning and compres-
sion of WSIs were performed under similar conditions 
and scanner settings. For the CCF patients, only one 
representative slide image was considered per patient. 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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However, for the TCGA, some patients had multiple 
tissue slides and thereby multiple SVS files. For those 
cases with tumor masses spanning multiple WSIs, patches 
were extracted from all tumor regions across all slides 
and used for downstream analysis. As the progression-
free survival (PFS) was missing for most of the TCGA 
cases, the endpoint of interest for D0–D8 was OS. For CCF 
studies, the PFS data were used to evaluate the prognostic 
ability of the model.

D0 was employed for feature discovery and training the 
ArcTIL model for prognosticating OS. D1–D8 were used 
for independently evaluating the prognostic ability of the 
model. Prior to analysis, WSIs underwent a quality control 
(QC) process27 to eliminate poor quality images inap-
propriate for the study due to the presence of artifacts, 
cracked tissue, or blurriness. No slides were eliminated 
on account of the QC procedure; however, some regions 
with imperfect quality in otherwise acceptable slides, 
including improperly-stained or tissue-devoid regions, 
were identified by the QC process and excluded. As for 
the histo-genomic analysis, we gathered all the histo-
genomic data available for the TCGA patients, which 
included a total of 84 patients with OC, 267 patients with 
CC, and 261 patients with EC.

Tissue compartment segmentation
To segment the tissue compartments, WSIs at 10× 
magnification were processed by a computational 

segmentation model that was previously trained on 
estrogen receptor positive breast cancer tissue image 
patches.28 This model assigned a value to each pixel, 
reflecting the likelihood that the pixel is part of the 
epithelium. This probabilistic epithelial mask was then 
converted to a binary mask by a likelihood threshold 
(0.8) and then processed by morphological operations 
(by removing connected components smaller than 2000 
pixels (125 square microns)) (figure  2D). The perfor-
mance of the method was qualitatively evaluated by a 
pathologist (P1) to ensure adequate identification of 
epithelial components. Threshold selection and post-
processing steps were chosen to maximize the qualita-
tive agreement between the binary masks and the P1’s 
assessment. 3000×3000-pixel patches were then catego-
rized by the ratio of epithelial tissue to stromal tissue 
into three types of compartments: (1) epithelium (ratio 
of epithelium to stroma >3) (2) stroma (ratio of stroma 
to epithelium >3), and (3) invasive tumor front (ratio of 
epithelial region to stroma between 1/3 and 3). A repre-
sentative image patch from tumor edge with its corre-
sponding binary masks is shown in figure 2B,D. Given 
that the paraffin-embedded blocks were selected for the 
largest quantity and the highest quality of tumor, the 
selected blocks are unlikely to contain significant compo-
nents of benign epithelium. Thus, we did not design a 
systematic way to exclude non-neoplastic non-invasive 

Figure 1  Patient selection diagram for the cohorts included in this study. CC, cervical cancer; CCF, Cleveland Clinic 
Foundation; EC, endometrial cancer; GC, gynecological cancer; mRNA seq, messenger RNA sequencing; TCGP, The Cancer 
Genome Atlas.
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Figure 2  Overall pipeline of this study. Box 1, preprocessing and ArcTIL feature extraction: (A) Creating 3000×3000 pixel tiles 
from whole slide images at 40× magnification; (B) a representative patch; (C) epithelial-stromal compartment segmentation 
(epithelium: purple patches, stromal: hot pink patches, tumor edge: orange, regions with artifact and blank spaces: dull pink); 
(D) tissue compartments in the representative patch; (E) identification of nuclei types; (F) constructing proximity clusters for 
each nuclei type (green: epithelial TILs, orange: epithelial non-lymphocyte nuclei, cyan: stromal TILs, dark blue: stromal non-
lymphocyte nuclei). Box 2, survival analysis: (G) constructing a prognostic model using a Cox proportional hazards regression 
model with the least shrinkage and selection operato; (H) risk stratification and unsupervised clustering; (I) Kaplan-Meier 
curves and HR calculation; (J) violin plots of the distribution of each discriminative ArcTIL feature across both risk groups; (K) 
prognostic ArcTIL features are fed into an unsupervised clustering algorithm to assess the resilience of the ArcTIL signature. 
Box 3, histo-genomic analysis; (L) gene set enrichment analysis; (M) identifying differentially expressed genes between ArcTIL 
risk groups; (N) investigating the association between prognostic ArcTIL features from H&E images and biological signaling 
pathways. DEGs, differentially expressed genes; TIL, tumor-infiltrating lymphocyte.
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regions of epithelium and made the implicit assump-
tion when dividing sections into epithelial and stromal 
components that the epithelium contains a high enough 
proportion of invasive carcinoma such that rare benign 
epithelial elements would not impact our model.

Nuclear segmentation and TIL classification
First, all the nuclei were automatically segmented using 
the method of Veta et al specifically tuned for nuclei 
segmentation of H&E images.29 This method applies the 
radial symmetric transform to find the controlled markers 
and then uses the watershed method at different scales. 
Then, the method of Corredor et al30 was used to classify 
each segmented nucleus as either a TIL or non-TIL. This 
classifier is a support vector machine with a linear kernel 
that utilizes image-derived features of each segmented 
nucleus related to texture, shape, and color. Finally, four 
types of nuclei were defined depending on the compart-
ment they were in: (1) epithelial TILs, (2) epithelial non-
TILs, (3) stromal TILs (S-TILs), and (4) stromal non-TIL 
(figure 2E).

Quantitative immune profile of TILs
Spatial graph construction
The spatial arrangement and density of TILs were char-
acterized by using the method introduced by Corredor 
et al.30 First, cell proximity clusters of each nuclei class 
were constructed using specified vertices and edges,31 
where the vertices were built on individual nuclei within 
a cell class. For constructing the edges, a connection 
rule based on Euclidean distance was defined between 
two given vertices. This rule favors connectivity between 
proximal cell nuclei and defies connectivity between 
distal cell nuclei, yielding colonies of proximal nuclei 
that are closer than 20 microns. This threshold was tuned 
to match the distance needed to form the immune cell 
cytotoxic synapse which induces immunologic memory 
and triggers the death domains.32 33 Four classes of prox-
imity graphs are depicted in one representative patch 
(figure 2F).

For each patch within the individual tissue compart-
ments, features relating to the geospatial architecture 
and interplay of TILs and cancer nuclei were extracted. 
The features described either the spatial arrangement of 
each cell class alone (eg, the area of epithelial TIL foci), 
or the relationship between at least two classes of cell 
types (eg, interplay between TILs and cancer nuclei, the 
ratio of cluster nuclear density between neighboring TIL 
and non-TIL clusters in stroma, or the variance between 
the number of connections (edges) of all four cell 
groups, or the ratio between the number of TILs and the 
total number of nuclei). To convert patch-level features 
to patient-level features, six statistics (mean, median, 
minimum, maximum, range, and variance) were calcu-
lated on the total number of epithelial patches, stromal 
patches, and tumor edge patches in the WSIs available for 
a given patient yielding 21,096 features per patient.

Survival analysis
OS was measured from the date of diagnosis to the date 
of death and was censored at the date of last follow-up 
for survivors. PFS was measured from the date of diag-
nosis to the date of progression of the disease or the date 
of death, whichever occurred earlier, and was censored 
for those alive without disease progression at the date of 
last follow-up. D0 was employed for feature discovery and 
training a regression model for prognosticating OS. D1–
D8 were used for independently validating the prognostic 
ability of ArcTIL. Using the ‘glmnet’ R package V.3.6.3, 
the whole array of features were fed to the least shrinkage 
and selection operator (LASSO) method to select the 
most prognostic ArcTIL features for inclusion in a Cox 
regression model.34 LASSO imposes a penalty constraint 
on the sum of the absolute values of the model regres-
sion contributions, causing coefficients of most of the 
variables to iteratively shrink down to zero. All features 
were first standardized to have a mean of zero and the 
SD of one relative to the training cohort, so that HR and 
feature weights would be comparable across features. 
The model was fitted on D0 to yield the multivariable 
ArcTIL signature. Using a 10-fold cross validation scheme 
and corresponding to the lowest partial likelihood devi-
ance, the penalty term λ was tuned. The variables corre-
sponding to the non-zero coefficients were included 
in the Cox regression model, in turn constituting the 
ArcTIL risk score (linear combination of the features and 
their corresponding coefficients). The ArcTIL risk score 
for each patient reflects an estimated risk for OS or PFS. 
A threshold on training patients’ ArcTIL risk scores was 
chosen to maximize the HR between the two risk strata in 
D0. Also, additional risk stratification experiments were 
performed to categorize an individual patient into one 
of three risk levels. Risk thresholds to distinguish the 
three levels (ultra-low, intermediate and ultra-high) were 
obtained by dividing the risk scores in D0 into tertiles. 
ArcTIL was subsequently validated on D1–D5 for prognos-
ticating OS and D6–D8 for prognosticating PFS. Kaplan-
Meier survival analysis with the log-rank test was used 
to examine the differences of time-to-event data (PFS/
OS) between patient groups categorized by the ArcTIL 
risk classifier. The model performance was summarized 
by relative HRs, their 95% CIs using the Wald test, the 
log-rank rank test, and Harrell’s concordance indices 
(C-indices) on cohort D1–D8 (using survfit and coxph 
functions in R). C-index is defined as the proportion of 
concordant pairs divided by the total number of possible 
evaluation pairs of validation data. P values were two-
sided, and all values ≤0.05 were considered statistically 
significant.

RESULTS
Clinicopathologic factors of cohorts in the study
Clinical and pathological data characteristics of all 
patients including histology, treatment strategy, and 
demographics are summarized in table 1.
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Prognostic value of the ArcTIL signature
The Cox regression model trained on D0 comprised 
seven ArcTIL features that were prognostic of OS. Two 
features were from the epithelial compartment, two from 
the stroma, and three from the tumor edge. Details of 
the selected ArcTIL features and their HRs are listed in 
table  2. The binary ArcTIL signature was prognostic of 
OS in all chemotherapy and radiotherapy-treated patients 
(chemotherapy OC (D1, p=0.04, HR=1.96, 95% CI=(1.02 
to 3.76), C-index=0.69), chemotherapy CC (D2, p=4e−5, 
HR=6.70, 95% CI=(2.70 to 16.60), C-index=0.88), radio-
therapy CC (D3, p=0.005, HR=3.08, 95% CI=(1.40 to 
6.79), C-index=0.78), chemotherapy EC (D4, p=0.002, 
HR=3.31, 95% CI=(1.57 to 6.96), C-index=0.79), radio-
therapy EC (D5, p=2e−7, HR=6.99, 95% CI=(3.35 to 
14.60)), C-index=0.85, figure 3). Also, in the ICI-treated 
cohorts (D6–D8), ArcTIL identified high-risk patients had 
significantly worse PFS than low-risk patients p=0.009, 

HR=2.98, 95% CI=(1.31 to 6.78), C-index=0.62 (figure 3). 
As illustrated in online supplemental figure 1, the p value 
suggests statistically significant separation of survival 
curves in all validation cohorts, except D1. The separa-
tion of three risk levels was statistically significant in D2–
D8. Also, as can be appreciated from online supplemental 
figure 1, the ultra-high versus ultra-low risk cases were 
statistically significantly different in terms of OS/PFS in 
all validation cohorts (D1–D8). In the immunotherapy-
treated cohort, referring to D6–D8 (panel E), the survival 
curves of intermediate and ultra-high seems overlapped 
in most of the time with HR=1.26, 95% CI=(0.51 to 
3.13), suggesting that ultra-low risk cases are clearly sepa-
rable against the rest of the cohort. The patterns of cell 
arrangements were consistently different between long 
and short OS/PFS patients across all three cancer types 
and all three treatment choices, see figure 4 and online 
supplemental figure 2.

Table 2  Features contributing to ArcTIL model. A HR >1 implies that feature has a positive correlation with risk of having 
event (death), while a HR <1 implies the opposite

Feature 
index Compartment Feature description

HR (per unit 
increase)

1 Epithelial Ratio of non-TILs density to the surrounding* TIL one in the epithelium. 1.84

2 Number of epithelial TIL clusters surrounding* a non-TIL cluster. 0.84

3 Stromal Presence percentage† of stromal non-TIL clusters being around another non-TIL 
cluster.

1.34

4 Range of density of TIL clusters to the surrounding* non-TIL ones in stroma. 0.76

5 Tumor edge Intersected area of clusters of epithelial TILs and non-TILs. 0.69

6 Minimum area of S-TILs clusters. 1.49

7 Range of area of epithelial non-TIL clusters. 1.31

*Surrounding means being at the 20 microns proximity.
†Presence percentage means the ratio of the present clusters to the total number of clusters.
S-TIL, stromal TIL; TIL, tumor-infiltrating lymphocyte.

Table 1  Summary of clinical and pathological features for the patients in the whole data set

Cohort 
name 
(N) Therapy Cancer

# slides 
per 
patient† Histology (Stage I, II, III, IV, missing)

#Alive (# 
dead)

Mean 
age±std Site

D0* (51) Chemotherapy Ovarian 1–2 HGSOC (2, 4, 73, 23, 1) 32 (71) 61.41±11.2 TCGA

D1 (52) Chemotherapy

D2 (140) Chemotherapy Cervical 1–4 Adenocarcinomas, squamous cell 
carcinoma (140, 61, 42, 20, 6)

204 (65) 48.17±13.3

D3 (129) Radiotherapy

D4 (261) Chemotherapy Endometrial 1–8 Endometrioid carcinomas, serous 
cystadenocarcinoma, clear cell, and 
undifferentiated (319, 48, 110, 28, 0)

424 (81) 63.85±11.1

D5 (244) Radiotherapy

D6 (14) Immunotherapy Ovarian 1 HGSOC, clear cell (1, 2, 5, 5,1) 19 (30) 63.3±13.1 CCF

D7 (8) Immunotherapy Cervical 1 Squamous cell carcinoma (0, 0, 4, 3,1) 63.10±13.7

D8 (27) Immunotherapy Endometrial 1 Endometrioid, serous, clear cell (12, 0, 8, 
5,2)

71.3±9.1

*The range is shown, and the median number of slides in all groups is 1.
†Indicate training cohort.
CCF, Cleveland Clinic Foundation; HGSOC, high-grade serous ovarian cancer ; TCGA, The Cancer Genome Atlas .

https://dx.doi.org/10.1136/jitc-2021-003833
https://dx.doi.org/10.1136/jitc-2021-003833
https://dx.doi.org/10.1136/jitc-2021-003833
https://dx.doi.org/10.1136/jitc-2021-003833
https://dx.doi.org/10.1136/jitc-2021-003833
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Relative to ArcTIL-defined high-risk patients, low-risk 
patients had more TILs in the epithelium and invasive 
tumor front (feature 2 and 5), fewer TILs in the stroma 
(feature 6) and less mixing of stromal cells and TILs 
(feature 3). In ArcTIL-defined high-risk patients, epithe-
lial TILs were scarce (features 1 and 2), non-TIL stromal 
cells that are located within 20 microns of another non-
TIL stromal cell cluster were elevated (feature 3), and 
S-TIL to stromal non-TIL population decreased (feature 
4). Both preceding features (feature 3 and 4) resemble 
immune-desert characteristics in ArcTIL-defined high-
risk strata. Additionally, in ArcTIL-identified high-risk 
cases, the presence of large swaths of tumor cells unin-
terrupted by TILs produced a large variation in the size 
of non-TIL cell clusters (feature 7), unlike in low-risk 
cases where more uniform TIL dispersion produced 
more homogenous non-TIL cluster sizes (feature 7). 
Three prognostic features relating to dispersion of TILs 
throughout the tumor (indices 2, 3, 5) are illustrated in 
figure 4.

DISCUSSION
Our results suggest that for all three GCs and regardless 
of the choice of therapy, a consistent pattern of geospatial 
immune profile were found to be prognostic of survival 
and progression of disease. This quantitative pattern, 
referred to as ArcTIL, comprised the area of S-TIL clus-
ters at the tumor invasive front, and SD of the area of 
epithelial tumor cells. Both these features were observed 
to be elevated in patients who had shorter OS, or PFS 
time. Conversely, in patients with GC with longer survival 
times, the S-TILs were relatively scarce while epithelial 
TILs were abundant. In a previous study,35 this feature 
characterizes an attribute referred to as motility of S-TILs 
of TME in the literature, which was quantified by elonga-
tion of specific TIL populations, and has been shown to 
be associated with prolonged PFS. Also, clusters of cancer 
cells in low-risk patients were smaller as they were more 
frequently interrupted by TILs while high-risk patients 
had fewer fragmented cancer cell clusters. In summary, 
low-risk patients had abundant lymphocytes in close 

Figure 3  Kaplan-Meier curves and C-indices on validation cohorts using ArcTIL model comprizing for predicting OS (A–E, 
G–J) and PFS (F), (A) chemotherapy ovarian cohort (D1), (B) chemotherapy cervical cohort (D2), (C) radiotherapy cervical cohort 
(D3), (D) chemotherapy endometrial cohort (D4), (E) radiotherapy endometrial cohort (D5), (F) immunotherapy cohorts (D6, D8), (G) 
CC (D2, D3), (H) EC (D4, D5), (I) chemotherapy cohorts (D1, D2, D4) (J) radiotherapy validation cohorts (D3, D5). CC, ovarian cancer; 
EC, endometrial cancer; OS, overall survival; PFS, progression-free survival.
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proximity to cancer cells in the epithelium, while in high-
risk patients the lymphocytes were confined to the stroma.

The prognostic ability of this set of features in GC is 
in line with multiple other studies correlating spatial 

immune signature with cancer outcome23–25 36 and the 
differential morphologic pattern between good and 
poor prognostic outcomes was observed irrespective of 
therapy, histology, and cancer site. Prognostic value of 

Figure 4  Illustration of ArcTIL feature maps. Tissue slide images with a low-risk (top) and high-risk (bottom) patient. 
Arrangement of cell families (cyan: S-TILs, blue: stromal non-lymphocyte cells, green: epithelial TILs, orange: cancer cells) 
appeared significantly different between short-term and long-term survivors. (A and I) tiled WSI at 40× magnification, (B and J) 
representative patches from epithelial nests (zoomed area 1 of WSI), (C and K) representative patches from surrounding stroma 
(zoomed area 2 of WSI), (D and L) representative patches from invasive tumor front (zoomed area 3 of WSI), (E and M) ArcTIL 
color-coded WSI using features described in row 2, 3, and 5 of table 2, respectively, with shades of purple, pink and orange, 
(F–H), and (N–P) nuclei cell clusters of representative patches shown in (B–D) and (J–L), In high-risk patients, the epithelial TILs 
are scarce. Stromal compartment near the tumor edge contains groups of S-TILs (cyan). However, in ArcTIL identified low-risk 
cases, the invasive tumor front had very scarce S-TILs, while abundant epithelial TILs. In ArcTIL identified low-risk cases, the 
presence of epithelial TILs dispersed among cancer cells caused highly fragmented connections. Generally speaking, there 
are more evenly-distributed, smaller clusters in ArcTIL-defined low-risk vs high-risk patients. S-TIL, stromal TIL; TIL, tumor-
infiltrating lymphocyte; WSI, whole slide images.
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ArcTIL even outperformed the stage variable, which is 
the current standard for gynecologic oncology.37 These 
findings also highlight a need for future strategies to 
enhance infiltration of TILs to the epithelium and coun-
teract the immune exclusion likely induced by stroma.

Prior studies13 14 have reported a positive association 
of TIL architecture and OS, metastasis, and progres-
sion, specifically in patients with high-grade serous OC 
(HGSOC). Additionally, the prognostic ability of immune 
cell subtypes, particularly T and B cells, has been explored 
in clinical outcome and treatment response assess-
ment using immunohistochemistry or immunofluores-
cence.36 38 These studies are all in line with the prognostic 
role of TILs that we established in this study. A prognostic 
benefit for patients with high intratumoral CD8 +TIL in 
HGSOC undergoing NACT was reported.39 Increased 
cytolytic T cell gene signatures have been reported in 
patients who responded well to NACT.40 While we did not 
explicitly explore the individual immune cell populations 
in this study, our findings indicate that the spatial loca-
tion of immune cells (without distinguishing them as B or 
T cells) and their relation to cancer cells identified in the 
H&E slides were prognostic of outcome in GC. Further-
more, though the ArcTIL features that were identified 
as prognostic of survival were initially discovered from a 
high mortality cohort (OC, with short OS), the relevant 
features were also found to be prognostic in other cohorts 
with low mortality (EC and CC).

In the context of EC, prior studies have reported that 
treatment failure is mainly triggered by the interactions 
between the primary tumor mass and the surrounding 
stroma.9 In HGSOC, prior studies have reported that 
disease progression and metastasis is positively correlated 
with immune architecture within the TME.13–15 For CC, 
the majority of tumors are initiated by human papillo-
mavirus infection, so the immune system defects play a 
significant role in cancer progression.16 Also, gene alter-
ations related to T cell activation are shown to impact the 
CC survival rates.17 While we did not explicitly explore 
the specific TIL subpopulations that were implicated in 
response (since the study focused solely on H&E images), 
these previous studies appear to validate the prognostic 
ability of the spatial immune signature developed in our 
study.

Recently, a number of deep learning approaches have 
been presented for prognosticating outcome from WSI 
without the need to mine specific image characteris-
tics.41 While in general, deep learning (DL) models 
can be employed to automatically interrogate large 
data sets without the need for domain-specific knowl-
edge of the problem, the opacity of resulting features is 
often an impediment to interpreting model outcome.42 
Conversely, an approach that relies on hand-crafted, 
engineered features does not need a large training 
cohort. A hand-crafted approach seeks to identify 
specific predefined patterns in the images, hence, it is 
typically not entirely dependent on the quantity within 
the learning sets.

As previously stated, since our machine learning 
approach involves a predefined engineered feature, 
increasing the sample set size has minimal improvement 
in model accuracy beyond a certain sample set size. 
Therefore, increasing the training set size does not result 
in a significant improvement in model accuracy or perfor-
mance. Also, given the aforementioned issues with respect 
to model opacity as it concerns DL approaches, especially 
in the context of high stakes decisions like choice of treat-
ment, a hand-crafted based approach might be more 
amenable for clinical adoption and guiding therapeutic 
management.43

The prognostic role of spatial architecture of TILs has 
been explored in other solid tumors including but not 
limited to lung, breast, rectum and their clinical rele-
vance has been investigated via similar but not identical 
approaches to ArcTIL.23 24 Corredor et al24 have trained 
an automatic scheme for TIL quantification and reported 
a prognostic computational signature on non-small cell 
lung cancer tumors, but their scheme does not differen-
tiate between geographical regions of the tumor. Saltz et 
al23 showed that a convolutional neural network identi-
fied spatial TIL maps as correlated with prognosis across 
tumor subtypes, and molecular immune profiles and 
survival in 11 cancer types, including cervical and endo-
metrial. Our study is novel in that the cell arrangements 
are extracted from geographically different regions of 
tissue (stroma, epithelial nests and invasive tumor front), 
additionally this is the first study we are aware of evalu-
ating the association with clinically meaningful endpoints 
in the context of different types of GC and across different 
treatment modalities.

The spatial hand-crafted TIL features presented in this 
study may explain the previously controversial results44–55 
about the prognostic role of TIL density. Since T cells 
must form a direct cytotoxic immunological synapse with 
tumor cells to be able to target cell death receptors and 
induce immunologic memory against tumor antigens,33 
TILs which are not adjacent to tumor cells may have a 
more limited effect on tumor growth. This might there-
fore explain why a more sophisticated biomarker based 
on localization of TILs, rather than solely density, could 
better predict patient outcomes in GC.33 This might also 
explain why the TIL density assessment of a subset of 
slides by three pathologists was not found to be prognostic 
of outcome. Further, the robustness of the ArcTIL model 
was confirmed by uniform manifold approximation and 
projection analysis showing no difference in the ArcTIL 
signature between different cancer types, treatment regi-
mens, and populations (see online supplemental figure 
4).

Currently, state of the art molecular approaches that 
relate to prognostic biomarkers in GC include a few 
immuno-oncology biomarkers, for example, programmed 
death-ligand 1 and tumor mutational burden (TMB).56 
However, due to their poor predictive value and the fact 
that the majority of GC tend to have low TMB, these 
markers are not clinically relevant.57 In addition, we 

https://dx.doi.org/10.1136/jitc-2021-003833
https://dx.doi.org/10.1136/jitc-2021-003833
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identified biological associations between ArcTIL and 
genomic pathways related to cancer progression, specif-
ically cell–cell adhesion, and pathways that are impli-
cated in triggering a cytotoxic synapse of TILs.32 33 Some 
of these pathways are involved in regulating immune 
response and carcinogenesis, and they could trigger the 
underlying mechanism responsible for ArcTIL-defined 
risk phenotypes.

We acknowledge that our study did have some limita-
tions. The use of only retrospective cohorts somehow 
restrains a decisive finding. The ICI-treated patients 
particularly were from a single site and contained very 
few patients from each cancer type; clearly these find-
ings will have to be validated in larger multi-institutional 
cohorts. Additionally, the patients with OC in this study 
had a median age 61 which could confound OS. A future 
study may use disease-specific survival, which was not 
available for these patients, to reduce the influence of this 
covariate. Finally, our data revealed the prognostic utility 
of our risk model. While we have not yet explicitly investi-
gated the role of our model as a predictive biomarker, in 
our immunotherapy cohort of patients with GC, there was 
evidence that supported the potential role of this model 
to predict benefit from immunotherapy with ICI.

In spite of the aforementioned limitations, our data 
demonstrated that ArcTIL reliably identified high risk 
patients with GC likely to have recurrence and short-term 
survival after treatment with chemotherapy, radiotherapy, 
or immunotherapy. The ArcTIL approach is a completely 
tissue non-destructive digital assay that could potentially 
offer prognostic and predictive information for multiple 
different treatment regimens at a significantly lower cost 
compared with extant molecular assays, given that it 
only involves computational image analysis of a digitized 
H&E slide. Future work will involve validating ArcTIL in 
its ability to identify patients who will benefit from more 
intensive follow-up or therapy intensification.

SUPPLEMENTARY MATERIALS AND METHODS
Training size sensitivity and disease type sensitivity analysis 
of the model performance
To ensure that the results are consistently irrespective 
of training set size and histology, we formulated four 
different experiments; for each, we trained a machine-
learning model based off entirely different training 
cohorts:

	► E1: training cohort includes only a random split of 
OC (training size=51).

	► E2: training cohort includes only a random split of CC 
(training size=134).

	► E3: training cohort includes only a random split of 
OC (training size=252).

	► E4: training cohort includes all three types of cancers; 
a random split of all TCGA (training size=292, 
including (34 OC, 90 CC, and 168 EC)).

E1 is the primary model described in the paper and 
one which was trained on only one specific cancer type 

(ovarian). In these supplementary experiments, we 
performed additional experiments (E2, E3, and E4) and 
compared the C-index values across all validation sets.

Experiments E2 and E3 are disease-specific (trained 
on cervical and endometrial cases, respectively), and E4 
comprises a combination of all GCs which were consid-
ered for learning and discovery. Therefore, in each 
experiment, both the population of the learning set and 
the histology of the diseased organ was different.

Inter-reviewer variability of human TIL grading
As a comparative strategy, we assessed the prognostic 
ability of TIL counts determined by human experts against 
the prognostic ability of ArcTIL model. Three patholo-
gists (P1, P2, and P3) blinded to outcome assessed each 
WSI of D6–D8 and scored an immune infiltration profile 
by counting TILs in the same three 475 by 228 micron 
fields of view (FOV) selected by P2 from tumor content. 
Experience among the pathologists varied; P1 practiced 
as a general pathologist for 1 year, P3 as a general patholo-
gist for >20 years, and the P2 as a subspecialty gynecologic 
pathologist for 3 years. To split the patients based on each 
pathologist’s opinion into high-TIL versus low-TIL count, 
the average TIL count over the three FOV was catego-
rized into three quantiles, with the highest one consid-
ered high-TIL-infiltration and the other two considered 
low-TIL cases. This strategy was based on approaches 
previously described in.19 58 The prognostic ability of the 
model based on pathologist quantification was analyzed 
by survival analysis on D6–D8 and was compared with 
ArcTIL. The agreement among pathologists on the TIL-
grading task was measured via the one-way intraclass 
correlation coefficient (ICC), which is widely used to 
evaluate agreement among a set of experts making non-
categorical judgments.59

Investigating the ArcTIL features and biological pathways
We investigated the relationship between the ArcTIL 
features and the corresponding genotype in OC, CC, 
and EC separately. For OC, CC, EC TCGA cohort (D0–
D1, D2–D3, and D4–D5), messenger RNA sequencing gene 
expression data using robust multichip average were 
available for N=84, 267, and 261 patients, respectively. 
The gene expression data (Level 3-Affymetrix HT HG 
U133A) were obtained from the Broad Institute public 
repository.60 An empirical analysis using the Wilcoxon 
rank-sum test (WRST) of the 12,042 annotated genes 
across the high-risk and low-risk patients, corrected by the 
Benjamini and Hochberg method61 for controlling false 
discovery rate, yielded a set of differentially expressed 
genes (DEGs). Utilizing these DEGs, Gene Ontology 
analysis was performed to elucidate underlying biological 
processes,62 63 which structures and classifies genes based 
on the known molecular and cellular biological processes 
and provides the relationship between those processes. 
These pathways were chosen on the basis of their biolog-
ical significance in regulating immune response, cell 
adhesion, and carcinogenesis. Furthermore, single sample 
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gene set enrichment analysis (ssGSEA) was employed 
to determine how often members of a set of genes in a 
pathway reflected differences between two risk strata.64 
The lists of genes involved in each pathway were obtained 
from the Molecular Signatures Database.65 Then, using 
the gene expression levels and pathways of interest, we 
obtained pathway enrichment scores for each patient. 
Ultimately, a pairwise WRST on enrichment scores was 
performed across high-ArcTIL and low-ArcTIL feature 
groups to capture the strength of association between the 
pathway enrichment score and the feature values.

Evaluating resilience of ArcTIL features
Uniform manifold approximation and projection 
(UMAP) embedding66 was performed separately on 
each of D1–D8 to assess that the ArcTIL signature worked 
resiliently on all three diseases and each of the therapy 
regimens. This also assessed the innate variation between 
different populations and source site of images, which 
reflects if scanner parameters, staining, and other batch 
effects can potentially alter this imaging signature. UMAP 
reduced the feature space from 21,096 to two-dimensions 
(2D). If distinct clusters emerged in the 2D space, and 
those clusters corresponded to a specific population, 
disease, treatment, or institute, this would suggest those 
attributes affected the ArcTIL model. Whereas, a resil-
ient imaging signature that consisted of a robust set of 
features would produce a homogeneous distribution of 
labels in the 2D space.

Investigating prognostic ability of clinicopathology features
By fitting the multivariable Cox proportional hazards 
model with the combination of ArcTIL and age, race, 
stage, we investigated the independent prognostic ability 
of ArcTIL for OS and PFS after accounting for these 
clinical factors. The univariate analyses were further 
performed using each one of the aforementioned factors 
at a time. The independent discriminative value of ArcTIL 
on OS and PFS was measured comparing the two models.

SUPPLEMENTARY RESULTS
Training size sensitivity and disease type sensitivity analysis 
of the model performance
Additional experiments performed (E2, E3, and E4) 
included more patient cases compared with E1 for learning 
and discovery. As may be appreciated from online supple-
mental table 1, while the model validation performance 
metrics (including C-indices, HR, p) did indeed change 
for each experiment, these changes were minimal. Also, 
most importantly, in each instance, the combination 
of selected features included at least one feature from 
each compartment (namely stroma (S), epithelium (E), 
and tumor invasive front (T)). In summary, varying the 
number of patients in our training set does not result in 
significant changes in model performance.

Comparing the prognostic ability of ArcTIL versus human
ICC between counts from each pair of readers (P1–P2, 
P2–P3, and P1–P3) were, respectively, 0.0339, 0.1884, 

and 0.6955. TIL counts provided by each pathologist 
were used to split D6–D8 into high-TIL and low-TIL count 
groups. No pathologist-based model was prognostic of 
PFS (HR_P1=1.34, 95% CI=(0.71 to 2.51), p=0.4; HR_
P2=1.26, 95% CI=(0.67 to 2.36), p=0.5; and HR_P3=1.29, 
95% CI=(0.69 to 2.41), p=0.4) (online supplemental 
figure 3). In contrast, the ArcTIL signature was prog-
nostic (HR=2.98, 95% CI=(1.31 to 6.78), p=0.009). Raw 
average TIL counts at online supplemental table 2.

Histo-genomic analysis of ArcTIL features and biological 
pathways
The analysis of the 12,042 annotated genes across the 
chemotherapy patients with OC (n=84, subset of D0 
and D1) resulted in 368 DEGs between the two ArcTIL 
risk strata (the list of all DEGs is presented in online 
supplemental table 3. Gene Ontology analysis structured 
these DEGs and identified 22 central biological path-
ways that were significantly correlated with ArcTIL risk 
score (online supplemental table 4). Additional results 
incorporating the data for OC, CC, and EC describe the 
biological process, cellular components, molecular func-
tions, and molecular pathways sorted according to their 
enrichment scores (online supplemental figure 4). For 
the OC cohort, gene set annotations for the 22 biolog-
ical processes that were extracted by Gene Ontology anal-
ysis were used to calculate ssGSEA scores for each of the 
seven prognostic ArcTIL features (online supplemental 
figure 5). The correlation between each ArcTIL feature 
and biological pathway is shown in online supplemental 
figure 5 (and online supplemental table 6) and suggests 
that gene sets corresponding to blood vessel morphogen-
esis, vasculature development, regulation of cell differ-
entiation, cell-substrate adhesion, biological adhesion, 
regulation of vasculature development, and angiogenesis 
were strongly associated with at least one of the epithe-
lium specific ArcTIL features.

Analyzing batch effect
UMAP (online supplemental figure 6). However, the 
patients did not cluster based on the organ of malignancy, 
therapy regimen, race, or tissue source sites, suggesting 
that the ArcTIL signature was resilient to these factors. 
Despite the variations in ArcTIL values and clinical and 
pathological features, univariate and multivariable anal-
yses illustrated a consistently prognostic value for OS and 
PFS (online supplemental tables 7,8). It can be inferred 
that the prognostic value of none of the clinical variables 
(even the stage variable, which is the current standard 
for gynecologic oncology37) is consistently prognostic 
in every validation cohort. Also, in online supplemental 
table 7, we investigated the association of each ArcTIL 
feature with regard to the clinical endpoints (OS in D1–D5 
and PFS in D6–D8) in all cohorts, using univariate models. 
Even though the individual features are not always signifi-
cantly associated with clinical outcome, the combined 
ArcTIL score is.
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