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Abstract

Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, 

but the host response at the lung tissue level is poorly understood. Here we performed single-

nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who 

died with COVID-19 and underwent rapid autopsy and seven control individuals. Integrated 

analyses identified substantial alterations in cellular composition, transcriptional cell states, and 

cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs 

from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly 

activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell 

responses. Monocyte/macrophage-derived interleukin-1β and epithelial cell-derived interleukin-6 

were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of 

pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell 

state and failed to undergo full transition into alveolar type 1 cells resulting in impaired lung 

regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological 

fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein 

activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious 

circuits. This atlas enables dissection of lethal COVID-19, may inform our understanding of long-

term complications of COVID-19 survivors, and provides an important resource for therapeutic 

development.

Globally, the pandemic of COVID-19, which results from infection with SARS-CoV-2, has 

led to more than 145 million cases (32 million in the US) and 3.1 million deaths (570,000 

in the US) to date (26th April 2021)1. Approximately 15% of infected individuals develop 

severe disease, which can manifest as acute respiratory distress syndrome (ARDS) and is 

associated with substantial morbidity and mortality2,4.

Previously, single-cell RNA sequencing (scRNA-seq) analyses of healthy individuals have 

revealed the tissue distribution of host receptors that are required for SARS-CoV-2 entry5–7, 

and examination of bronchoalveolar lavage fluid and blood from patients with COVID-19 of 

varying severity has identified the effects of SARS-CoV-2 infection on immune responses 

and cytokine dysregulation8–12. However, owing to the practical limitations of accessing 

patient tissues, the effects of SARS-CoV-2 at the level of the lung tissue remain unclear. 

A series of autopsy studies that examined formalin-fixed, paraffin-embedded (FFPE) tissue 

sections from individuals who died of COVID-19 extended our understanding of virus 

organotropism, but these studies were limited in their discovery potential by low-plex assays 

(for example, immunohistochemistry) and/or prolonged post-mortem intervals (PMIs), 

which adversely affect RNA quality13–15.

We established a rapid autopsy program and, under Institutional Review Board approved 

protocols, collected snap-frozen organ specimens from individuals with COVID-19 within 
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hours of death. We performed single-nucleus RNA-seq (snRNA-seq) on lung samples from 

individuals who died from COVID-19 and control individuals to build an atlas that provides 

insight into the pathophysiology of COVID-19 and provides a key resource for further 

investigation.

The lung cellular landscape in COVID-19

The COVID-19 cohort consisted of 19 patients (12 males and 7 females) who died at a 

median age of 72 years (range, 58 to more than 89) (Supplementary Table 1, Extended Data 

Fig. 1a) and underwent rapid autopsy with a median post-mortem interval (PMI) of 4 h 

(range, 2–9 h). All had underlying co-morbidities that are associated with increased risk of 

severe COVID-1916 (Supplementary Table 1). The control cohort comprised 7 individuals (4 

males and 3 females) with a median age of 70 years (range, 67 to 79 years) who underwent 

lung resection or biopsy in the pre-COVID-19 era (Supplementary Table 1).

Using snRNA-seq17 and an integrated quality control pipeline (see Methods), we generated 

a lung atlas that profiled 116,314 nuclei, including 79,636 from COVID-19-infected lungs 

and 36,678 from control lungs (Fig. 1a). We used a three-pronged approach for cell type 

identification: unbiased identification of cluster markers, discovery of cell types using 

signatures from reported atlases, and manual curation to sub-stratify cell populations and 

cell states using expert knowledge (see Methods). We report cell type assignment with 

three levels of granularity: major cell types, intermediate granularity, and fine granularity 

(Supplementary Table 2). We visualized data with dimensionality reduction using uniform 

manifold approximation and projection (UMAP) (Fig. 1b, c, Extended Data Fig. 1b–d). 

We identified nine major cell types: epithelial cells (n = 30,070 cells), myeloid cells (n = 

29,632), fibroblasts (n = 22,909), endothelial cells (n = 5,386), T and natural killer (NK) 

lymphocytes (n = 16,751), B lymphocytes and plasma cells (n = 7,236), neuronal cells (n = 

2,017), mast cells (n = 1,464), and antigen-presenting cells (APCs; primarily dendritic cells) 

(n = 849). At the most granular level, we identified 41 different cell types (Supplementary 

Table 2).

We found significant differences in cell fractions between COVID-19 and control lungs both 

globally (Fig. 1d) and within the immune and non-immune compartments (Extended Data 

Fig. 2a–c). There was a reduction in the epithelial cell compartment, due to loss of both 

alveolar type II (AT2) and type I (AT1) cells, and an increase in monocytes/macrophages, 

fibroblasts, and neuronal cells; these observations were independent of donor sex (Extended 

Data Fig. 3a, b).

We found no major differences in the expression of ACE2, CD147 (also known as BSG), 

NPR1, TMPRSS2, FURIN or CTSL between COVID-19 and control lungs (Extended 

Data Fig. 3c–f). This indicates that changes in cell-type proportions were unrelated to the 

expression of receptors or putative proteases that are important for viral entry, although 

we cannot exclude the possibility that virus-mediated cell death selectively depletes cells 

with high expression of these genes. We detected SARS-CoV-2 reads in two patients 

(Supplementary Table 3), one of whom had HIV/AIDS (CD4+ T cell count 29 per mm3 
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on hospital admission; 662 unique molecular identifiers detected in 28 cells), which suggests 

that viral reads can, in principle, be captured.

Aberrant activation of myeloid cells

Myeloid cells represented a major cellular constituent in COVID-19 lungs and were more 

prevalent there than in control lungs (Fig. 1d, Extended Data Figs. 2a, c, 4a). We identified 

monocytes (n = 3,176), monocyte-derived macrophages (MDMs; n = 9,534), transitioning 

MDMs (n = 4,203), and resident alveolar macrophages (AMs; n = 12,511), which were 

recovered as distinct trajectories in diffusion component (DC) analysis and were more 

frequent in COVID-19 lungs (Fig. 2a–c, Extended Data Fig. 4b–i, Supplementary Tables 2, 

4, 5). Myeloid cells from individuals with COVID-19 were highly and aberrantly activated. 

For example, MDMs in COVID-19 lungs differentially expressed genes of activation (for 

example, CTSB, CTSD, CTSZ, PSAP) and two long non-coding RNAs, NEAT1 and 

MALAT1, that are associated with aberrant macrophage activation and impaired T cell 

immunity18 (Extended Data Fig. 5a, Supplementary Table 5). AMs, which arise from fetal 

monocytes and can self-renew19, were enriched and highly activated in COVID-19 lungs 

(Fig. 2c, Extended Data Fig. 5a). Notably, COVID-19 AMs showed strongly decreased 

mRNA and protein expression of the tumour-associated macrophage receptor AXL (Fig. 

2d, Extended Data Fig. 5b, c), a receptor tyrosine kinase that is important for coordinated 

clearance of apoptotic cells (efferocytosis) and subsequent anti-inflammatory regulation 

during tissue regeneration20. These data suggest that myeloid cells are a major source of 

dysregulated inflammation in COVID-19.

Plasma and T cell responses

To gain insights into humoral immunity against SARS-CoV-2 infection in the lung, we 

identified plasma cells (Extended Data Fig. 6a–c) and reconstructed immunoglobulins by 

determining mRNA co-expression of the variable heavy (IGHV) and light (IGLV) chains 

and isotypes on a per cell basis (see Methods; Extended Data Fig. 6d–k, Supplementary 

Table 6). IGHV1-18–IGLV3-20, which gives rise to a neutralizing antibody (S309)21 

against the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, was among 

the commonly identified IGHV–IGLV combinations, which suggests that a coordinated 

antibody response occurred (Fig. 2e, f, Extended Data Fig. 6l, m). In the T/NK cell 

compartment (Fig. 2g), we distinguished CD8+ T cells (n = 3,561), T regulatory (Treg) 

cells (n = 649), other CD4+ T cells (n = 7,586), and NK cells (n = 2,141). We found no 

significant increase in T cell abundances in COVID-19 lungs, and only modest upregulation 

of cytokines and programs associated with activation and tissue residency of T cells (Fig. 

2g–i, Extended Data Fig. 7a–i). Although immune response patterns were highly variable 

(Extended Data Fig. 7j, k), these data suggest that an impaired T cell response might 

contribute to lethal outcomes in COVID-19 in the context of a principally preserved humoral 

immune response.
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Impaired alveolar epithelial regeneration

Within the epithelial compartment, we identified alveolar epithelial cells (AT1 and AT2 

cells; n = 20,949), airway epithelial cells (basal, ciliated, club, goblet, and mucous cells; n 
= 7,223), a cluster characterized by the expression of inflammatory and cell cycle genes, 

including IRF8, B2M, MKI67 and TOP2A (‘cycling epithelium’; n = 609), and a cluster 

showing high expression of the extracellular matrix (ECM) components COL6A3, COL1A2, 

and COL3A1 (‘ECMhigh epithelium’; n = 1,179) (Fig. 3a, b, Extended Data Fig. 8a–c, 

Supplementary Tables 2, 7).

AT2 cells serve as progenitors for AT1 cells during lung regeneration22. AT2 and AT1 

cells in control lungs formed distinct clusters (Fig. 3a,b) and demonstrated the expected 

changes in differential gene expression (DGE) analysis, including expression of the lineage 

markers SFTPC and SFTPB in AT2 cells, and CLIC5 and AGER in AT1 cells (Fig. 3c, 

Supplementary Table 7). By contrast, clustering of AT2 and AT1 cells in COVID-19 lungs 

was less discrete, with a substantial portion of cells not overlapping with their control 

counterparts (Fig. 3b). Both AT2 and AT1 cells from COVID-19 lungs showed decreased 

overall expression of defining markers (Fig. 3c). COVID-19 AT2 cells displayed decreased 

expression of ETV5 (Fig. 3d), a transcription factor that is required for maintaining AT2 cell 

identity. Decreased ETV5 expression is associated with differentiation towards AT1 cells23, 

indicating that AT2 cells had initiated a regeneration program (Fig. 3d, Extended Data Fig. 

8d). CAV1, a marker of late AT1 maturation24, was expressed at significantly lower levels in 

AT1 cells from COVID-19 lungs (Fig. 3e). Overall, these data suggest incomplete transition 

of AT2 to AT1 cells in COVID-19 lungs.

Recent studies have shown that inflammation can induce a cell state that is characterized 

by failure to fully transition to AT1 cells; this has been termed ‘damage-associated transient 

progenitors’ (DATPs), ‘alveolar differentiation intermediate’ (ADI), or ‘pre-AT1 transitional 

cell state’ (PATS)25–27 (hereafter referred to as DATPs). We used expression of the DATP 

marker genes (KRT8, CLDN4 and CDKN1A)25 to develop a DATP signature (see Methods; 

Extended Data Fig. 8e–h, Supplementary Table 8) and found that alveolar epithelial cells 

from COVID-19 lungs scored significantly higher for expression of this signature than 

those from control lungs (Fig. 3f, g, Extended Data Fig. 8i). DC analysis separated a main 

trajectory from AT2 to AT1 cells, while DATPs were primarily localized between AT2 and 

AT1 cells (Fig. 3h, Extended Data Fig. 8j–n). Gene set enrichment analysis (GSEA) of 

DATPs compared to differentiated AT2 or AT1 cells showed enrichment for TNFα and p53 

signalling, and for the hypoxia response via HIF-1α (Extended Data Fig. 8o), consistent 

with pathways that have been implicated in DATP in mouse models27. Consistent with 

overrepresentation of p53 signalling, the majority of DATPs did not undergo cell division 

(Extended Data Fig. 8p), suggesting that they arrest in the DATP cell state.

DATPs were more frequent in COVID-19 than control lungs (Fig. 3i). Immunofluorescence 

staining of corresponding tissues showed that the frequency of KRT8+ and CLDN4+ DATPs 

was higher in COVID-19 lungs (Fig. 3j, Extended Data Fig. 8r, s), and we observed 

progressive loss of AT1 cell abundance with increasing time from symptom onset to death 

(Extended Data Fig. 8t). Overall, these data suggest that, in addition to direct destruction 
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of the alveolar epithelium by viral infection, lung-regenerative processes are impaired in 

individuals with COVID-19.

We next determined the sources of inflammation that contribute to the DATP cell state, 

and more generally, to the hyperinflammatory environment in COVID-19 lungs. Capture 

of the inflammatory cytokine interleukin (IL)-1β (and others) at an mRNA level may be 

limited, as the bioactive form of IL-1β, which has a major role in triggering DATPs25, is 

generated by cleavage from pro-IL-1β upon inflammasome activation; thus, protein-level 

assessment provides complementary information. For this purpose, we leveraged a recently 

released high-plex imaging mass-cytometry dataset that profiled 237 tissue regions from 

23 individuals, including healthy controls; patients with influenza pneumonia, bacterial 

pneumonia, or ARDS; and ten patients who died from COVID-1928. IL-1β was more 

strongly expressed in monocytes and macrophages from individuals with COVID-19 than 

from healthy individuals or patients in the other disease groups (Fig. 3k, Extended Data 

Fig. 9a–c). IL-6, another key inflammatory cytokine invoked in the pathophysiology of 

COVID-19, was more abundant in epithelial cells from patients with COVID-19, but was 

not differentially expressed in macrophages from these patients compared to healthy control 

individuals and patients in other disease groups (Fig. 3l, Extended Data Fig. 9d–f). Finally, 

we found that the expression of type I interferons and interferon response genes in various 

cell types, including AT2 cells, monocytes, and macrophages, was stronger in patients with 

COVID-19 than in control donors (Extended Data Fig. 9g, h). Together, these data suggest 

that myeloid-derived IL-1β might be a distinguishing feature of COVID-19 compared to 

other viral or bacterial pneumonias and may contribute to the induction and maintenance of 

the DATP cell state.

Ectopic tuft-like cells in COVID-19

Among captured airway epithelial cells, we recovered four distinct trajectories: 

KRT5+TP63+ basal (n = 534), club (n = 1,232), and goblet cells (n = 1,757), and one 

trajectory with fewer cells (n = 110) that was primarily found in COVID-19 lungs, which 

we identify as putative tuft-like cells (Extended Data Fig. 10a–e). Tuft cells are involved in 

airway inflammation and intestinal tissue regeneration29, but their role in viral pneumonia 

remains unclear. The numbers of tuft cells (CHAT+ or POU2F3+) were increased threefold 

in the upper airways of individuals with COVID-19, and they were ectopically present 

in the lung parenchyma of COVID-19 but not control lungs (Extended Data Fig. 10f–k). 

To begin to elucidate a putative role of tuft cells in viral pneumonia, we infected both 

wild-type and Pou2f3−/− mice, which lack tuft cells, with PR8, a laboratory-adapted strain 

of H1N1 influenza virus (see Methods). Compared to controls, the lungs of Pou2f3−/− mice 

showed decreased infiltration of macrophages and decreased expression of chemotaxis genes 

(including Ccl3 and Ccl8) that are also involved in the recruitment of myeloid cells to the 

lungs of individuals who died with COVID-19 (Extended Data Figs. 9g, h, 11a–l). Although 

their role needs to be further examined, these ectopic tuft-like cells may contribute to the 

pathophysiology of COVID-19.
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Pathological fibroblasts and lung fibrosis

There were significantly more fibroblasts in COVID-19 lungs than in control lungs (Fig. 

1d); immunohistochemistry staining for α-smooth muscle actin (α-SMA) validated this 

finding (Extended Data Fig. 12a–d). The degree of fibrosis (determined by a Sirius red 

fibrosis score, see Methods) was correlated with disease duration (Fig. 4a), indicating that 

lung fibrosis increases over time in COVID-19. We identified five fibroblast subtypes: 

alveolar (n = 4,670), adventitial (n = 3,773), pathological (n = 2,322), intermediate 

pathological (n = 8,779), and other (n = 1,099) (Fig. 4b, Extended Data Fig. 12e). The main 

driver of differences in the fibroblast cluster was the increased frequency of pathological 

or intermediate pathological fibroblasts (henceforth collectively referred to as pFBs) in 

COVID-19 lungs compared to control lungs (Fig. 4c, Extended Data Fig. 12f). pFBs 

strongly expressed CTHRC1, a recently described hallmark gene that defines these cells, 

and genes of pathological ECM3, including COL1A1 and COL3A1 (Extended Data Fig. 

12e, Supplementary Table 9). pFBs are key drivers of lung fibrosis in mouse models and in 

patients with idiopathic pulmonary fibrosis (IPF) or scleroderma3. Their increased frequency 

suggests that pFBs promote rapidly evolving lung fibrosis in individuals with COVID-19.

Given the importance of fibroblasts in remodelling of the lung ecosystem, we next 

investigated ligand–receptor interactions across all major cell types, including fibroblasts 

(see Methods). Among the enriched inferred ligand–receptor interactions across all 

cells were TGFβ1–TGFβ receptor 2 and BMP6–ACVR1 (Extended Data Fig. 12g–i, 

Supplementary Table 10), which belong to the TGFβ family and superfamily, respectively. 

TGFβ signalling has an important role in promoting lung fibrosis and has been implicated 

in fibroblast-mediated maintenance of the ADI27, which is closely related to the DATP 

cell state. To investigate potential therapeutic strategies directed against pFBs, we inferred 

protein activity from single-nucleus transcriptomes followed by comparison of pFBs with 

other fibroblasts. This analysis predicted that pFBs would show increased activity of JunB 

and JunD (Extended Data Fig. 12j, Supplementary Table 11), which induce lung fibrosis in 

mouse models via enhanced TGFβ and STAT3 signalling and are associated with increased 

production of IL-1β30. Finally, we inferred druggable targets in pFBs (see Methods) and 

identified MMP14 and STAT3 as potential targets to abrogate detrimental programs in pFBs 

(Extended Data Fig. 12j, Supplementary Table 11).

Discussion

We generated a single-cell transcriptome lung atlas of COVID-19 using short-PMI autopsy 

specimens and control lung samples. Our analysis provides a broad census of the cellular 

landscape, cell programs, and cell circuits of lethal COVID-19. The additional inference of 

protein activity and cell-to-cell interactions, and analysis of inflammatory cytokines across 

various cell types using imaging mass cytometry data, provide a granular perspective of the 

detrimental consequences of SARS-CoV-2 infection in the lung.

Our analyses suggest interactions among aberrantly activated monocytes/macrophages that 

produce IL-1β, inflammation-induced impairment of alveolar epithelial regeneration, and 

expansion of pathological fibroblasts that promote fibrosis and may impair regeneration 
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(Extended Data Fig. 12f, k, Supplementary Discussion). In addition to these deleterious 

events, our data suggest that despite a potentially sufficient humoral immune response 

(Supplementary Discussion), there was an inadequate T cell response in the lungs of 

individuals who died with COVID-19. A recent study showed that impaired B cell function 

in patients with cancer who contracted COVID-19 was not associated with increased 

mortality31, but that lack of an adequate CD8+ T cell response (even in the presence 

of adequate humoral immunity) was associated with worse viral control and increased 

mortality31. Although our COVID-19 cohort did not include patients with cancer, these data 

suggest that whereas humoral immunity may be dispensable in the context of adequate T 

cell immunity against SARS-CoV-2, a lack of appropriate T cell responses in our patients is 

likely to have contributed to fatal outcomes.

Although our study provides insight into host responses to lethal SARS-CoV-2 infection, 

it is limited by a small sample size. However, through coordinated efforts, our work will 

contribute to a collection of studies, including the companion paper by Delorey et al.32, 

with streamlined protocols and harmonized metadata to enable integration and combined 

analyses, and will help to account for important co-variables. Furthermore, because our 

analysis is focused on lung tissue from patients who died of COVID-19, we have examined 

only a subset of potential disease phenotypes. Nonetheless, several observations, such as 

the rapid development of pulmonary fibrosis (Supplementary Discussion), are likely to be 

relevant for patients who survive severe COVID-19, and may inform our understanding of 

the long-term complications seen in these individuals33.

In conclusion, we have generated a molecular single-cell lung atlas from short-PMI tissue 

specimens and identified pathological circuits of lethal COVID-19. This atlas establishes 

an important resource for investigating host responses to SARS-CoV-2 and understanding 

potential long-term pulmonary sequelae resulting from COVID-19, and provides a basis for 

therapeutic development for severe disease.

METHODS

Tissue collection

All tissue specimens from individuals with lethal COVID-19 (with SARS-CoV-2 infection 

confirmed by reverse transcription polymerase chain reaction (RT–PCR)) and control 

individuals were collected at New York Presbyterian Hospital or Columbia University 

Medical Center under IRB approved protocols (AAAB2667, AAAT0785, AAAS7370). 

Appropriate consent was obtained from patients or their next of kin. All procedures 

performed on patient samples were in accordance with the ethical standards of the IRB 

and the Helsinki Declaration and its later amendments. Samples were selected on the basis 

of pathological review of corresponding haematoxylin and eosin (H&E)-stained FFPE tissue 

slides showing pathological involvement of the selected biopsy region from donors with 

a post-mortem incision time of less than 10 h. The donor age was 59 to more than 89 

years. Tissue samples of ~1 cm3 were snap-frozen embedded in Tissue-Tek optimal cutting 

temperature (OCT) compound (Sakura Finetek USA Inc., Torrance, CA) and stored at −80 

°C until processing. For all decedents included in this study, affected lung tissues were 

removed, and additionally, for a subset of individuals, matching tissues from kidney and 
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heart were collected32. Seven control lung samples were collected from patients without 

COVID-19. The dataset analysed and presented here focuses on lung specimens from 

19 individuals who died with COVID-19 (profiled in 20 experiments) and 7 control (non-

COVID-19) individuals.

Sample processing and preparation of single-nucleus suspensions

All samples were processed in a biosafety cabinet equipped to comply with Columbia 

University safety measures established for working with COVID-19 specimens. Samples 

were processed as described previously17 with the following specifications and 

modifications. For tissue dissociation we used Tween with salts and Tris (TST) buffer. 

For all wash steps we used salt and Tris (ST) buffer, and all buffers were supplemented 

with 40 U/ml RNase inhibitor (Thermo Fisher Scientific, Waltham, MA). All buffers were 

pre-chilled on ice and samples were kept on ice throughout the process to further prevent 

RNA degradation. In brief, a fraction of the OCT-embedded snap-frozen tissue was broken 

off and put into a pre-cooled 50-ml tube (Corning, NY) in a large volume of ice-cold 

phosphate buffered saline (PBS) and inverted until the OCT was fully dissolve. Tissue was 

then collected by centrifuging at 300g for 2 min at 4 °C. PBS was decanted, and the tissue 

was resuspended in 2 ml cold TST buffer, mechanically dissociated using fine scissors 

and pipettes with decreasing orifice size, and incubated on ice for 5–10 min. The TST 

was quenched with 8 ml ST buffer, and the suspension was filtered through a 70-μm cell 

strainer. The tissue/nucleus suspension was pelleted by centrifuging at 500g for 5 min at 

4 °C. The supernatant was decanted, and the nuclei were resuspended in 200–1,000 μl ST 

buffer, filtered through a 40-μm cell strainer attached to a fluorescence-activated cell sorting 

(FACS) tube (Corning, NY), counted, and immediately processed for single-nucleus RNA 

sequencing.

Single-nucleus RNA library preparation and sequencing

Single-nucleus suspensions were counted using disposable counting chambers (Bulldog Bio, 

Portsmouth, NH) on a Leica DMi 1 microscope by a second investigator not involved in 

tissue processing. A total of 15,000–20,000 nuclei were loaded per channel on a Chromium 

controller using Chromium Next GEM Single Cell 3ʹ v3.1 reagents (10X Genomics, 

Pleasanton, CA) placed inside the bio-safety cabinet, and single-nucleus RNA-seq libraries 

were prepared per the manufacturer’s instructions (increasing the recommended initial 

cDNA amplification cycles by one to account for lower amounts of RNA from nuclei 

compared to whole cells). Single-nucleus RNA libraries were analysed and quantified 

using TapeStation D1000 screening tapes (Agilent, Santa Clara, CA) and Qubit HS 

DNA quantification kit (Thermo Fisher Scientific). Libraries were pooled equimolarly and 

quantified using quantitative PCR. Libraries were sequenced on a NovaSeq 6000 with S4 

flow cell (Illumina, San Diego, CA) using paired-end, single-index sequencing with 28 

cycles for read 1, 8 cycles for i7 index, and 91 cycles for read 2.

Generating single-nucleus gene expression matrices

Raw 3′ snRNA-seq data were demultiplexed using Cell Ranger (v5.0) ‘mkfastq’ followed 

by ‘count’ to align the sequencing reads and generate a counts matrix. Transcripts were 

aligned to the human GRCh38 reference genome, which was appended with the entire 
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SARS-CoV-2 genome (severe acute respiratory syndrome coronavirus 2 isolate Wuhan-

Hu-1, complete genome, GenBank MN908947.3) as an additional chromosome to the 

human reference genome. Subsequently, the customized ‘GRCh38_SARSCoV2’ reference 

genome was indexed using ‘cellranger_mkref’.

Removal of background noise in gene expression matrices

We used the ‘remove-background’ function of CellBender (v.0.2.0) to remove technical 

ambient RNA counts and empty droplets from the gene expression matrices34. Cell Ranger-

generated ‘raw_feature_bc_matrix.h5’ files served as input for CellBender. The parameter 

‘expected-cells’ was obtained from the Cell Ranger metric ‘Estimated Number of Cells’, 

while the parameter ‘total-droplets-included’ was set to a value between 18,000 and 24,000 

to represent a point within the plateau of the barcode rank plot in all samples.

Quality control and filtering

The resulting expression matrices were processed individually in R (v.4.0.2) using Seurat 

(v.3.2.3)35. Filters were applied to keep nuclei with 200–7,500 genes, 400–40,000 unique 

molecular identifiers (UMIs), and less than 10% mitochondrial reads. In addition, Scrublet 

was applied to identify and remove doublets with an expected doublet rate ranging from 4 to 

9.6% based on the loading rate36. Samples containing fewer than 1,000 nuclei after filtering 

were excluded from further analyses. Filtered gene–barcode matrices were normalized with 

the ‘NormalizeData’ function using ‘LogNormalize’ and the top 2,000 variable genes were 

identified using the ‘vst’ method in ‘FindVariableFeatures’. Gene expression matrices were 

scaled and centred using the ‘ScaleData’ function. Next, we performed principal component 

analysis (PCA) as well as UMAP using the first 30 principal components. UMAPs of 

individual samples were inspected before integration.

Integration of individual samples

Individual samples were integrated in Seurat using the reciprocal PCA (RPCA) pipeline to 

remove batch effects in large datasets. The ‘SelectIntegrationFeatures’ function was applied 

to choose the features ranked by the number of datasets they were detected in. Next, 

the ‘FindIntegrationAnchors’ function selected a set of anchors between different samples 

using the top 50 dimensions from the RPCA to specify the neighbour search space. Six 

samples were specified as a reference, including three controls (C51ctr, C52ctr, C53ctr) and 

three COVID-19 (L01cov, L12cov, L16cov) samples. ‘IntegrateData’ was then applied to 

integrate the datasets using the pre-computed anchors and the integrated dataset was scaled 

using ‘ScaleData’. PCA and UMAP dimension reduction based on the top 30 principal 

components were performed. Nearest-neighbour graphs using the top 30 dimensions of 

the PCA reduction were calculated and clustering was applied with a resolution of 0.8. 

Harmony37 was run on the PCA matrix above using default parameters with patient ID as 

the batch key and 10 iterations.

Cell-type identification

The main cell types were identified by manual annotation of differential gene expression 

(DGE) between clusters. The ‘FindAllMarkers’ function identified positive markers for each 
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cluster with a minimal fraction of 25% and a log-fold change threshold of 0.25. This 

initial labelling resulted in the identification of epithelial, endothelial, fibroblast, neuronal, 

myeloid, APC, mast, T/NK and B/plasma cell populations as well as one low-quality cluster, 

which we removed. Next, we split the Seurat object into subsets of the main labels and reran 

scaling, PCA, UMAP dimension reduction, clustering and DGE analysis on each subset. 

The resulting clusters were annotated manually or by using cell-type-specific single-cell 

signatures from respective cell atlases, and labels were added to the main object. In addition, 

cell cycle phases were scored in the subsets using the ‘CellCycleScoring’ function, adjusted 

for individual cut-offs and added to the main object. Within the myeloid subpopulation, 

two low-quality clusters (characterized by higher expression of mitochondrial reads) were 

observed and removed, leaving a total of 116,314 cells for downstream analyses (of 119,535 

initial cells after QC). Signatures and canonical markers (Supplementary Table 4) to identify 

airway basal, club, ciliated, goblet, mucous, AT1, and AT2 cells were obtained from 

Travaglini et al.38. Alveolar macrophages were scored using a signature based on DGE 

obtained from Travaglini et al.38 and identified as AMs39 with a module score >0.15. A 

tuft-cell signature was obtained from Deprez et al.40. To further characterize the fibroblast 

population, fibroblast cells were selected using Seurat’s ‘subset’ function and reanalysed 

to identify the different fibroblast subtypes. The reanalysis included the standard Seurat 

workflow with ‘RunPCA,’ ‘FindNeighbours,’ ‘FindClusters,’ and ‘RunUMAP’ performed 

on the ‘integrated’ assay. The number of PCA dimensions used was 15, with a resolution 

parameter of 0.5. After the fibroblast cell clusters had been obtained, the DGE in each 

cluster was computed with ‘FindAllMarkers’ on ‘RNA’ assay (Supplementary Table 9). 

The fibroblast subtypes were identified by manually curating the cluster DGE with the 

reported literature, such as the single-cell lung atlas38, lung fibroblast atlas3, single-cell 

database PanglaoDB41, and Human Protein Atlas42–44. However, these resources were based 

on scRNA-seq or bulk studies. Therefore, the few reported fibroblast subtype markers were 

usually not specific or had low expression in snRNA-seq data. Therefore, we compared our 

subcluster DGE with the literature reported subtype DGE with shared high expression in 

snRNA-seq or scRNA-seq data. These manually curated lists of fibroblast-subtype-specific 

marker genes were used to identify fibroblast subtypes in our dataset (Supplementary Table 

4). This procedure was used to identify alveolar fibroblasts, adventitial fibroblasts, pericytes, 

airway smooth muscle, vascular smooth muscle, and mesothelial fibroblasts. Cell clusters 

with high expression of COL1A1 and CTHRC1 were annotated as ‘pathological fibroblasts’ 

because they have been reported to contribute to the leading edge of fibrosis3. Clusters 

with lower expression of COL1A1 and CTHRC1 compared to pathological fibroblasts, 

but without any markers for other fibroblast subtypes in their DGE, were annotated as 

‘intermediate pathological fibroblasts’. One cell cluster without distinct DGE was annotated 

as ‘other fibroblasts’. For visualization purposes, expression scores were plotted in UMAP 

embeddings or violin plots as log-normalized values (natural logarithm ln(1 + x)), and in dot 

plots as log-normalized values (natural logarithm ln(1 + x)) that were furthermore centred on 

0 with a variance of 1 (scaled).
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Cell-type frequency comparison

Unless otherwise noted, we calculated frequencies of cell types in each sample from 

COVID-19 and control lungs, and compared the medians of the two groups to identify 

differences in frequency. Significance was assessed using a Wilcoxon rank-sum test.

Module scores for feature expression

The ‘AddModuleScore’ function was applied to calculate the average expression levels 

of gene signatures on a single-cell level. Mouse-based signatures to identify DATPs and 

primed and cycling AT2 cells were obtained from Choi et al.25 and converted to human 

homologue genes. Three genes (CLDN4, KRT8, CDKN1A) comprised the initial DATP 

signature thus derived. AT1 and AT2 cells were subset from the main Seurat object and 

reintegrated using the Seurat standard integration with 30 dimensions and a k-neighbours 

filter of 60 in the ‘FindIntegrationAnchors’ function. First, all AT1 and AT2 cells were 

scored for the three-gene signature and cells with a module score >0.7 were preliminarily 

labelled as DATPs. Next, we used DGE to identify additional markers that define the DATP 

program. We then scored our resulting DATP signature, including 163 genes, to the AT1 and 

AT2 cells and labelled all cells with a module score of >0.4 as DATPs. T cell scores were 

obtained by using the Seurat implementation of gene set scoring with 50 bins and a control 

size equal to the number of genes in the set. Upregulation and downregulation programs 

(TRM, Tact, Tmem Texh), defined by K.S.P. Devi et al. (under revision), were used to infer 

T cell phenotypes. The upregulation and downregulation signatures were scored separately, 

and the downregulation score was subtracted cell-wise from the upregulation score to obtain 

the composite score. Effect size was calculated using Cohen’s D (that is, the difference of 

means divided by the pooled standard deviation).

Diffusion component analysis

We applied diffusion maps as a nonlinear dimensionality reduction technique to examine 

the major components of variation across subsets of cells. We computed DCs using the 

‘DiffusionMap’ function of the Destiny R-package (v3.3.0) with the top 30 principal 

components used in the k-nearest neighbours algorithm (k-NN)45. The epithelial subset 

consisting of airway basal, club, and goblet cells was reintegrated for the DC analysis 

using the Seurat standard integration with 30 dimensions and a k-neighbours filter of 

50 in the ‘FindIntegrationAnchors’ function. Samples with <50 cells were excluded from 

reintegration, which removed a total of 10 samples (one control sample and nine COVID-19 

samples). Tuft-like cells were identified as cells with DC1 values >0.015 based on an 

overlap with the tuft-cell signature in the diffusion trajectory that dominated the first DC.

Differential gene expression

DGE was identified by using the Seurat function ‘FindMarkers’ on normalized count data 

to identify positive (overexpressed) markers in each population. The Wilcoxon rank-sum test 

(two-sided) was used to identify differentially expressed genes between two groups of cells 

and the log-fold change was set to 0.25. The parameter ‘min.pct’ was set to 0.25 to assure 

that genes were detected at a minimum fraction of 25% of cells in either of the populations. 

P values were adjusted using Bonferroni correction unless otherwise stated. Differentially 
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expressed genes were plotted in violin plots using log-normalized expression values (natural 

logarithm ln(1 + x)). For heatmaps and dot plots, expression values were log-normalized 

(natural logarithm ln(1 + x)) and furthermore centred on 0 with a variance of 1 (scaled).

Differential expression of signature scores

To test differential expression of three immune pathway signatures (type I interferon 

abbreviated, inflammasome receptors, and chemotaxis, Supplementary Table 4), we obtained 

log-normalized expression values (ln(1 + x)) for each gene in the signatures, and summed 

them for each signature. We then used a two-sided Wilcoxon test to test for differential 

expression of signatures in each cell type, and calculated log2(fold-change).

Geneset enrichment

Geneset enrichment analyses were performed using the hypeR R-package46. The 

background population of genes was set to all detected genes. Geneset over-representation 

was determined by hypergeometric test.

B cell chain analysis

To analyse the distribution of heavy and light chains in B cells, the dataset was subset to 

include only B cells. For the identification of variable chain regions, we selected the highest 

expressed heavy and light chain gene of each cell that expressed both heavy (starting with 

IGHV) and light (starting with IGLV or IGKV) chain-encoding genes. Next, we identified 

the highest expressed constant chain region among expressed genes following the pattern 

‘IGH[G, M, A, or E][number]’. The resulting pairs of heavy and light chains were visualized 

as a heatmap using average linkage for hierarchical clustering analysis and cross-referenced 

with previously described recurrently observed combinations47.

Master regulator analysis and drug target identification

The fibroblast regulatory network in this study was reverse-engineered from snRNA-seq 

data using the ARACNe-AP48,49 algorithm. We generated networks for each sub-cluster and 

integrated the networks by taking a union of the predictions of all networks. P values of 

Master regulator (MR)–target interactions predicted by the networks were integrated using 

Fisher’s method. The final fibroblast network contained predictions for 1,341 transcription 

factors regulating 9,770 target genes through 295,546 interactions. The relative activity 

of each transcription factor represented in the fibroblast network was inferred using the 

VIPER50,51 algorithm, available as a package through Bioconductor. Conceptually, the 

VIPER algorithm is similar to the master regulator inference algorithm (MARINA)49,52, 

which uses the MR targets inferred by the ARACNe48,49 algorithm to predict drivers 

of changes in cellular phenotypes. In addition to calculating the enrichment of ARACNe-

predicted targets in the signature of interest, VIPER also considers the regulator mode of 

action, regulator–target gene interaction confidence, and the pleiotropic nature of each target 

gene’s regulation. Statistical significance, including P value and normalized enrichment 

score (NES), was estimated by comparison to a null model generated by permuting the 

samples uniformly at random 1,000 times. Druggable proteins with VIPER-predicted50,51,53 

aberrant increases in activity were ranked by their −log10(Bonferroni adjusted P value).
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Ligand–receptor interaction inference in individual samples

CellPhoneDB54 is a curated repository of ligand–receptor interactions along with their 

subunit architectures, integrated in a statistical framework to infer cell-type-enriched ligand–

receptor interactions between cell types in single-cell or single-nucleus transcriptomics 

data. We used CellPhoneDB to identify ligand–receptor interactions between cell types in 

each individual control (n = 7) and COVID-19 (n = 19) snRNA-seq dataset. The ligand–

receptor interactions were inferred in each patient separately, as by definition cell-to-cell 

interactions are biologically meaningful only within an individual. Moreover, separate 

inference also prevents spurious interactions from being inferred between patients with 

heterogeneous disease or health statuses. After identifying and annotating different cell types 

in our snRNA-seq datasets, we followed the recommended procedures for the preparation 

of input files for local implementation of CellPhoneDB v.2.0.054. In brief, for each 

individual sample, QC-filtered raw counts matrices were normalized to counts per 10,000 

and metadata files were obtained from the respective cell type annotations. CellPhoneDB 

analysis was performed with the ‘cellphonedb method statistical_analysis’ command with 

default parameters.

Cell–cell interaction differences between COVID-19 and control samples

CellPhoneDB analysis of each sample identified the number of ligand–receptor interactions 

between all nine major cell-types in that sample. We analysed these cell–cell interaction 

counts between control donors (n = 7) and individuals with COVID-19 (19 individuals, 20 

samples) to identify the differences in cellular cross-talk between COVID-19 and control 

lungs. The median cell–cell interaction values from all the control samples formed the 

overall control lung cell–cell interaction counts. Similarly, the overall COVID-19 lung 

cell–cell interaction counts were the median from all the COVID-19 samples. The overall 

control and COVID-19 lung interaction counts were visualized as an interactome using the 

‘igraph’ R package with circle layout, where the edge width between two cell types was 

proportional to the number of interactions between them and the size of a cell-type circle 

was proportional to its frequency in the snRNA-seq.

Differential enrichment of ligand–receptor interactions between COVID-19 and control 
samples

CellPhoneDB analysis of each sample identified the significantly enriched ligand–receptor 

interactions in that sample by computing a mean of the ligand and receptor gene expression 

for each ligand–receptor interaction together with a corresponding P value. To find 

ligand–receptor interactions that were differentially regulated between COVID and control 

conditions, we first identified the common interactions across all samples. In brief, we 

consolidated ligand–receptor expression for controls and COVID-19 separately by taking 

the median of ligand–receptor mean expressions from 7 control samples or 20 COVID-19 

samples (from 19 donors). The minimum value of consolidated ligand–receptor expression 

in COVID-19 and control samples was set to 0.001 to prevent noise in low expression 

values from affecting the log(fold-change) calculations. log2(control median expression) 

was subtracted from log2(COVID-19 median expression) to obtain the log2(fold-change) of 

ligand–receptor expression in COVID-19. To compute the P value of the log2(fold-change) 
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for each interaction, we used an unpaired two-sided Wilcoxon rank-sum test for each 

interaction between COVID-19 and control samples. Adjusted P values were obtained using 

th eBenjamini–Hochberg procedure. Interactions with log2(fold-change) ≥ |2| and FDR P < 

0.1 were reported as the top differentially enriched interactions in COVID-19.

Tissue preparation and processing for imaging

Lung tissues (human and mouse) were fixed with 4% paraformaldehyde (PFA) at 4 °C 

overnight with rotation. For paraffin sections, tissues were dehydrated through a 70–100% 

ethanol gradient and then embedded in paraffin. For cryosections, tissues were sequentially 

incubated with 20% and 30% sucrose and subsequently embedded in OCT compound. We 

obtaind 8–10-μm-thick cryosections using a cryostat.

Microscopic imaging and quantification

Paraffin sections were dewaxed and rehydrated. Antigen retrieval was performed by high-

pressure heating with a commercial antigen unmasking retrieval solution followed by 

blocking with 5% normal donkey serum. For immunofluorescence staining, the sections 

were then incubated with the primary antibodies listed in Supplementary Table 12 at 4 °C 

overnight. Cryosections were washed twice with PBS, and blocked with 5% normal donkey 

serum, followed by incubation with primary antibodies shown in Supplementary Table 12 

at 4 °C overnight. Conjugated secondary antibodies (1:500) were added to the sections and 

incubated for 2 h at room temperature. Nucleus were stained with DAPI, and images were 

captured with a Zeiss LSM T-PMT confocal laser-scanning microscope (Carl Zeiss) and Zen 

2012 SP1 (black edition) software (Zeiss). Immunohistochemistry for C4d was performed 

on a Leica Bond 3 automated staining platform. In brief, paraffin sections including both 

healthy control lung and COVID-19 lung tissues were treated with BOND Epitope Retrieval 

Solution 2 (Leica) for 20 min and they were incubated with a C4d antibody for 30 min. 

Immunohistochemistry signals were developed with the Bone Polymer Refine Detection 

kit (Leica) with treatment with post primary polymer for 20 min and DAB chromogen 

for 10 min. For quantification, cells were counted by a blinded investigator using tiled 

stitched 20× images from more than five sections per mouse and included at least three 

individual lobes or were from representative areas of at least three human control lungs 

and COVID-19 lungs. Images were processed and analysed using ZEN blue 2.3 (Zeiss) 

and Adobe Photoshop Creative Suite 6 (Adobe) software in a blinded fashion. DATPs were 

detected with co-immunostaining for pro-SPC and KRT8 or HTII-280 and CLDN4. DATP 

percentages were determined by counting KTR8hi pro-SPC+ cells over pro-SPC+ cells or 

CLDN4+ cells over HTII-280+ cells. Macrophages were quantified by counting the total 

number of CD45+CD64+ cells over CD45+ cells. CHAT+ tuft cells were quantified by 

counting the total number of CHAT+ cells over DAPI+ airway nuclei (for airway tuft cells) 

or per mm2 of lung parenchyma.

Multiplexed immunofluorescence

Multiplexed immunofluorescence staining of lung tissue from patients who died with 

COVID-19 and control individuals was performed using CD4, CD8, CD19, CD103, 

CD163 and granzyme B (GZMB) antibodies (Supplementary Table 12) with the Opal 

7-colour IHC kit (Akoya Bioscience) on a Leica Bond RX automated stainer (Leica 
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Biosystems). FFPE tissue sections (5 μm) were baked for 2 h at 60 °C, followed by 

automatic deparaffinization, rehydration, and antigen retrieval in BOND Epitope Retrieval 

Solution 2, pH 9 (Leica Biosystems) for 30 min at 95 °C. Immunofluorescence staining 

with Opal and tyramide signal amplification (TSA) were performed in six cycles. 

In each cycle, the tissue was incubated sequentially with a primary antibody for 30 

min at room temperature, the secondary antibody conjugated to polymeric horseradish 

peroxidase (HRP), an Opal fluorophore in TSA buffer, and BOND Epitope Retrieval 

Solution 1, pH 6 (Leica Biosystems) for 20 min at 95 °C to strip the tissue-bound 

primary–secondary antibody complexes before the next staining cycle. After nuclear 

counterstaining with DAPI, slides were coverslipped with Vectrashield HardSet Antifade 

mounting medium (Vector Laboratories) and 12–15 areas per slide were imaged using 

the Vectra 3 automated multispectral microscope (Akoya/PerkinElmer) with Vectra 3.0.5 

software. Regions of interest were chosen by the pathologist for multispectral imaging 

(MSI) at 20× magnification and spectral unmixing using the InForm v2.4.6 software 

(Akoya). Demultiplexed images were exported as 32-bit TIFF files for further analysis.

Multiplexed Image analysis

All images were analysed and visualized using QuPath55. We used the highest 

resolution for all described steps. The QuPath project files and additional scripts 

are available at https://github.com/IzarLab/CUIMC-NYP_COVID_autopsy_lung/tree/main/

code/Vectra_image_analysis. First, images were loaded, renamed and segmented using 

‘WatershedCellDetection’ based on DAPI intensity with a cell expansion of 4 μm. Further 

parameter settings for these steps can be found in the ‘Load_and_segmentation.groovy’ 

script. Next, we created classes and the corresponding classifiers for each of the six markers 

of interest: CD4, CD19, GZMB, CD103, CD8 and CD163. The thresholds for the individual 

classifiers (‘ClassifyByMeasurementFunction’) were automatically calculated and adjusted 

for each patient on the basis of visual inspection of the mean marker expression. If no 

patient-specific classifier was created, the classifier with the ending ‘_04_A6.json’ was used. 

All classifiers can be found in the object classifiers folder as json files. Once performed for 

all images, the individual assignments for each single cell were exported to a CSV file for 

downstream analysis and boxplot visualization.

Imaging mass cytometry

Imaging mass cytometry data from post-mortem lung tissue of patients with lung infections 

and otherwise healthy donors was used28. The dataset comprised 237 images from 23 

donors, containing 664,006 single cells for which cell-type identities were derived from the 

intensity of 36 markers. All analyses were conducted in Python v3.8.2 with the following 

programs: numpy v1.18.5, scipy v1.4.1, Tifffile 2020.6.3, Networkx v2.5, Scikit-image 

v0.17.2, Pingouin v0.3.7, and Scanpy v1.6.0. Single cells were labelled as positive for IL-6 

or IL-1β based on their z-score of intensity using Gaussian mixture models (scikit-learn56, 

version 0.23.0) using model selection based on the Davies–Bouldin index57. The number 

of cells positive for a marker in each ablated region of interest (ROI) was normalized by 

its area, and mean values per disease group and cell type across all ROIs were visualized 

as bar charts. To assess the significance of changes across both disease groups and cell 

types, we used a two-sided Mann–Whitney test and adjusted P values with the Benjamini–
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Hochberg FDR adjustment using the pingouin package (version 0.3.9)58. Representative 

regions within the ROIs were displayed as false-colour images by normalizing the signal 

intensity to the unit scale after clipping the signal below and above the 3rd and 98th 

percentiles, respectively. Finally, a Gaussian filter with sigma of one pixel (one micrometre) 

was applied to the images.

Sirius red staining and fibrosis scoring

Paraffin-embedded lung sections were dewaxed, rehydrated and stained for 1.5 h with 

a picrosirius red solution (1.3% picric acid, 1% fast red and 1% fast green). Four or 

five fields at 4× magnification were taken using a polarized light filter on an Olympus 

IX71S1F-3 microscope with QCapture Suite Plus (v3.1.3.10) software. Images were 

quantified (percentage of Sirius red area/total area) using Adobe Photoshop (v 11.0). 

Pearson correlations between fibrosis score and days from symptom onset to death were 

calculated for 16 of 19 patients with COVID-19 for whom samples were available and time 

from symptom onset to death was reported.

αSMA immunohistochemistry

Antigen retrieval of dewaxed and rehydrated paraffin-embedded lung sections was 

performed with citrate pH 6, blocked with 3% BSA and incubated with anti-αSMA-FITC 

(Sigma, F3777) overnight at 4 °C. After incubation with a biotin-anti-FITC antibody 

(Abcam, ab6655), detection was performed using the Vectastatin Elite ABC-HRP kit 

(Vector Laboratories, SP-2001) with the DAB Peroxidase Substrate kit (Vector Laboratories, 

SK-4100), followed by counterstaining with haematoxylin. All reagents and dilutions 

are listed in Supplementary Table 12. All 7 control slides and 17 available slides from 

COVID-19 lungs were included in the analysis. Slides were scanned using a Leica 

SCN400 slide scanner with Leica Scanner Console software (v102.0.7.5) and quantified 

using the Leica Aperio ImageScope software (v12.4.3.5008) on at least five fields at 10× 

magnification.

Mice

Mouse studies were approved by the Columbia University Medical Center (CUMC) 

Institutional Animal Care and Use Committees (IACUC). The Pou2f3−/− mouse strain 

was described previously59. All mice were maintained on a C57BL/6 and 129SvEv 

mixed background and housed in the mouse facility at Columbia University according 

to institutional guidelines. The facility provides a 12-h light–dark cycle, 18–23 °C room 

temperature and 40–60% humidity. All animal studies used a minimum of three mice per 

group and sample size was based on pilot experiments and previous experience. Mice were 

randomized to experiments and 8–12-week-old animals of both sexes were used in equal 

proportions. The investigators were not blinded to allocation during experiments.

Influenza infection mouse model

A total of 260 plaque forming units (pfu) of influenza A/Puerto Rico/8/1934 H1N1 (PR8) 

virus (a gift from Dr. Jie Sun at Mayo Clinics, Cleveland) dissolved in 40 μl RPMI medium 

was pipetted onto the nostrils of anaesthetized mice, whereupon mice aspirated the fluid 
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directly into their lungs. For all procedures, administration of the same volumes of vehicle 

(RPMI medium) was used as control.

Flow cytometry analysis

Fourteen days after infection, mice were euthanized and transcardially perfused with 10 ml 

cold PBS. The lungs were then perfused with 1 ml PBS with 2 mg/ml Dispase I and 0.5 

mg/ml DNase I and incubated in 5 ml of the above buffer for digestion with gentle shaking 

for 60 min at room temperature. Lung lobes were removed and physically dissociated, 

followed by filtering through a 40-μm cell strainer. Cells were pelleted and resuspended in 1 

ml lyse RBC buffer followed by incubation on ice for 5 min to remove red blood cells. After 

washing with FACS buffer (5% FBS, 0.2 mM EDTA in PBS), single cells were collected and 

immunostained with Fc blocking antibody (5 μg/ml) and a live/dead cell stain kit at room 

temperature for 10 min. Cells were then washed and incubated with the following antibodies 

for one hour: PE/cyanine7 anti-mouse CD45 (1:100), FITC anti-mouse CD64 (1:100), and 

APC anti-mouse F4/80 (1:100). Samples were analysed on LSR II (BD, Biosciences) with 

four lasers (405 nm, 488 nm, 561 nm, and 635 nm). Data were analysed using FlowJo 

software (Treestar).

Quantitative RT–PCR (qRT–PCR)

To quantitively measure the indicated cytokines, human lung tissue samples (three donors 

for both healthy and COVID-19 samples) or mouse lungs (a minimum of three mice per 

genotype) were individually homogenized in Trizol and total RNA was extracted using 

an RNeasy Plus Mini Kit (Qiagen) following the manufacturer’s instructions. cDNA was 

synthesized using the Superscript-IV First-Strand Synthesis System (Invitrogen) and the 

gene-specific primers were mixed with cDNA templates and iTaq Universal SYBRR Green 

supermix (Bio-Rad). qPCR was carried out on a CFX Connect real-time PCR detection 

system (Bio-Rad) in a total volume of 20 μl. Three technical and biological replicates were 

performed. Relative fold change was determined by normalizing to Actb mRNA for mouse 

or to GAPDH mRNA for human. The primers for qPCR are listed in Supplementary Table 

13.

Statistical analysis of imaging and qRT–PCR data

Imaging and qPCR data are presented as means with s.d. of measurements unless stated 

otherwise. Individual values are plotted and represent independent biological samples unless 

stated otherwise. Statistical differences between samples were assessed with unpaired 

Student’s t-test using GraphPad Prism 9.0 (GraphPad Software Inc., San Diego, CA). P 
values below 0.05 are considered significant.

For multiplexed immunofluorescent images, cell fractions (percentage of total or percentage 

of parental population) were computed for each field of view individually using Excel 16.45 

(Microsoft). After calculating the mean on a per sample basis, we plotted values using 

GraphPad Prism 9.0 (GraphPad Inc. San Diego, CA) and presented them as means with 

s.d. of measurements. Statistical differences between samples were assessed with unpaired 

Student’s t-test using GraphPad Prism 9.0 (GraphPad Software Inc., San Diego, CA). P 
values below 0.05 are considered significant.
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Extended Data

Extended Data Fig. 1 |. Patient information and alternative batch correction.
a, Basic demographics of patients with COVID-19 and control donors. *Decedents with 

concurrently profiled heart and/or kidney tissue in companion study32. †Decedent with 

two independent lung specimens profiled. b, Effect of PMI on clustering. c, Cell-type 

labels overlaid on UMAP embedding resulting from the batch-corrected PCA matrix using 
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Harmony (see Methods). d, Same embedding as in c with annotation of COVID-19 and 

control groups.

Extended Data Fig. 2 |. Changes in celluar composition.
a, Fraction of cell types in COVID-19 and control lungs across all cells (intermediate 

granularity). b, Fraction of cell types in COVID-19 and control lungs among non-immune 

cells only. c, Fraction of cell types in COVID-19 and control lungs among immune cells 

only. Control, n = 7 donors; COVID-19, n = 19 donors examined over 20 experiments. 

Middle line, median; box edges, 25th and 75th percentiles; whiskers, most extreme points 

that do not exceed ±1.5 × IQR. Wilcoxon rank-sum test.
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Extended Data Fig. 3 |. Effect of sex on cellular composition and host receptor expression.
a, b, Cell fractions in female and male individuals for control (a; n = 7 donors) and 

COVID-19 lungs (b; n = 19 donors examined over 20 experiments). Middle line, median; 

box edges, 25th and 75th percentiles; whiskers, most extreme points that do not exceed ±1.5 

× IQR. Wilcoxon rank-sum test. c, d, Log-normalized and scaled expression (see Methods) 

of selected receptors or putative receptors and proteases or putative proteases involved in 

SARS-CoV-2 entry in different cell types in control samples from female and male donors. 
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Dot size indicates fraction of cells and colour indicates expression level. e, f, As in c, d for 

from COVID-19 lungs.

Extended Data Fig. 4 |. Global changes in myeloid cells.
a, Quantification of cells with CD163+ staining as percentage of all cells in a subset of 

control and COVID-19 samples (n = 4 donors per group). Mean ± s.d., t-test. b, c, UMAP 

embedding with myeloid cell type assignment (b) and group assignment (c). d–f, Expression 

scores (log-normalized) for monocyte, macrophage and alveolar macrophage signatures 
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in same UMAP embedding as b, c. g, First three DCs with annotation of control and 

COVID-19 lung samples. h, First three DCs with expression of the alveolar macrophage 

signature. i, Heatmap of top differentially regulated genes among indicated myeloid sub-

populations. Left bar indicates genes that were differentially regulated in the respective cell 

types. Top lanes indicate cell type and group. Rows indicate log-normalized and scaled 

expression of genes (see Methods).

Extended Data Fig. 5 |. Differential gene expression in alveolar macrophages.
a, Heatmap of top differentially regulated genes (log-normalized and centred, see Methods) 

among indicated alveolar macrophages in COVID-19 and control samples. Top lane 

indicates cell type and group. Rows indicate expression of genes. b, Violin plot of AXL 

Melms et al. Page 24

Nature. Author manuscript; available in PMC 2022 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression (log-normalized) in alveolar macrophages from controls and COVID-19 tissues. 

Wilcoxon rank-sum test with Bonferroni adjusted P value indicated on top. c, Expression of 

AXL (log-normalized) among major cell types. Expression of this gene was nearly exclusive 

to fibroblasts and myeloid and epithelial cells.

Extended Data Fig. 6 |. Inferred immunoglobulins in plasma cells
a, b, UMAP embedding of cells within the B/plasma cell cluster (a) and corresponding 

group assignment (b). c, Selected genes that define cells within the B/plasma cell 
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cluster. Dot size indicates fraction of cells and colour indicates log-normalized and 

scaled expression level (see Methods). d, Heatmap illustrating the number of cells with 

combinations of variable heavy (x-axis) and light (y-axis) chains recovered in plasma cells 

across all patients. Average linkage was used for hierarchical clustering analysis. The colour 

of each square indicates the number of cells detected for each specific pair (colour key). 

e, As in d, but indicating the number of control samples with each combination detected 

(Supplementary Table 6). f, As in e, but indicating isotype usage in control donors alone 

(Supplementary Table 6). g, As in e, but demonstrating isotype usage in patients with 

COVID-19 (corresponding to Fig. 3e, f; shown are the top 20 commbinations; complete 

list in Supplementary Table 6). h, Frequency (y-axis) of variable heavy chains (x-axis) 

in COVID-19 and control samples. i, As in h, but for variable light chain usage. j, 
Frequency (y-axis) of variable heavy chains (x-axis) on a per-donor basis. k, As in j, but 

for variable light chain usage. l, Exemplary H&E-stained image (n = 19 donors evaluated) 

with coloured outlines indicating different immune cell types. Scale bar, 100 μm. m, C4d 

immunohistochemistry in representative control (left) and COVID-19 (right) samples (n = 6 

donors per group). Scale bar, 100 μm.
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Extended Data Fig. 7 |. Activation, residency and dysfunction cell states in T cells.
a, Expression of selected genes in cells of the T/NK cell compartment. Dot size indicates 

fraction of cells and colour indicates expression level. b, Quantification of cells with CD4+ 

staining as percentage of all cells (y-axis) in control and COVID-19 lungs (n = 4 donors 

per group). c, As in b, but for CD8+ T cells. Mean ± s.d., t-test. d–g, Expression of 

different program scores (tissue residency memory program, activation score, memory score 

and exhaustion score, all from K.S.P. Devi et al., see Methods) in CD4+ T cells (left) and 

CD8+ T cells (right) among control donors and individuals with COVID-19. Middle line, 

median; box edges, 25th and 75th percentiles; whiskers, most extreme points that do not 

exceed ±1.5 × IQR. Wilcoxon rank-sum test. Cohen’s D is indicated between the whiskers 

for each comparison (COVID-19 versus control). h, Quantification of CD4+GZMB+ T cells 

as percentage of CD4+ T cells (y-axis) in control and COVID-19 lungs (n = 4 donors per 

group). i, As in h, but for CD8+ T cells. Mean ± s.d., t-test. j, k, Representative multiplexed 
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immunofluorescence of lung tissue from a patient with COVID-19 with a pure myeloid 

infiltrate (j) or with a mixed myeloid and lymphoid infiltrate (k; n = 4 donors per group). 

Scale bars, 200 μm.

Extended Data Fig. 8 |. DATPs and lung regeneration.
a, Expression of selected, previously established cell-type-specific signatures (y-axis) in cell 

types defined in this study (x-axis). Dot size indicates fraction of cells and colour indicates 

expression level. b, c, Expression of selected genes (y-axis) in different cell types (x-axis), 
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highlighting high expression of B2M in cycling epithelial cells (b) and collagen genes in 

ECMhigh epithelial cells (c). d, Fraction of KI67+ cells among pro-SPC+ cells in structurally 

preserved versus damaged areas (n = 3 distinct areas each) from a COVID-19 lung. Mean 

± s.d., t-test. e–g, UMAP embedding of alveolar epithelium and expression of selected 

genes that define the DATP signature. h, Composite expression of the three-gene DATP 

signature. i, Expression of the refined DATP signature (see Methods). j–n, First three DCs 

showing group assignment (j), cell or cell-state assignment (k), expression of AT2 signature 

(l), AT1 signature (m; log-normalized, see Methods), and effect of PMI (n). o, Gene set 

enrichment analysis in DATPs (compared to AT1 and AT2 cells). Rows indicate pathways 

in descending order of enrichment or significance (see key); x-axis indicates FDR. p, 

Inference of G2/M and S phase of individual DATPs (dots) (see Methods). q, Representative 

immunofluorescence staining (DATP marker CLDN4 and AT2 cell marker HTII-280) in 

control and COVID-19 lung tissue sections. Dashed boxes indicate areas highlighted to the 

right of each image. Scale bar, 50 μm. r, s, Quantification of KRT8+ (r) and CLDN4+ (s) 

cells in a subset of tissue sections from control and COVID-19 lungs. Mean ± s.d., t-test. 

q–s, Control, n = 3 donors; COVID-19, n = 4 donors. t, Coefficient of determination (R2) 

of days from symptom onset to death and AT2/AT1 ratio. Error bands, 95% standard error 

interval on the Pearson correlation (n = 18 donors).
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Extended Data Fig. 9 |. Cellular sources of inflammatory cytokines.
a, Average frequency of cell types expressing IL-1β across healthy and disease conditions. 

b, Quantification of IL-1β across cell types in healthy and disease conditions. Each dot 

represents a single region of interest (ROI). c, Quantification of IL-1β across healthy and 

disease conditions and cell types, including separation of patients with early death (within 

14 days of onset of COVID-19 symptoms) and late death (within 30 days of onset of 

COVID-19 symptoms). d, Average frequency of cell types expressing IL-6 across healthy 

and disease conditions. e, Quantification of IL-6 across cell types in healthy and disease 
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conditions. Each dot represents a single region of interest (ROI). f, Quantification of IL-6 

across across healthy and disease conditions and cell types, including separation of patients 

with early death (within 14 days of onset of COVID-19 symptoms) and late death (within 

30 days of onset of COVID-19 symptoms). g, Expression of selected manually curated gene 

sets of chemotaxis, inflammasome receptors and type I interferon (response) genes across 

different cell types (y-axis). Dot size indicates significance and colour indicates expression 

level (log2(fold-change)). h, qRT–PCR comparing IFNA1, IFNA2, IFNB1, and IL-6 mRNA 

levels in COVID-19 and control lungs (n = 3 donors for each group). Mean ± s.d., t-test.
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Extended Data Fig. 10 |. Identification of ectopic tuft-like cells.
a–c, First three DCs of airway epithelial cells with group annotation with cell-type 

assignment (a), group assignment (b) and indicating expression of tuft cell signature (c) 

in the same projections. d, Expression of previously established signatures identifying 

cell types in cell types assigned in this study. Dot size indicates fraction of cells and 

colour indicates expression level (log-normalized and scaled, see Methods). e, Expression 

of selected cell-type-specific signatures of airway and alveolar epithelium from previous 

studies in cells identified as tuft-like cells in this study. Signatures in descending 
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order of enrichment or significance. Colour indicates significance. f, g, Representative 

immunofluorescence staining of control lungs (f; two areas) and COVID-19 (g; airway and 

parenchyma) for KRT5 and CHAT. Arrows indicate CHAT+ cells. Scale bar, 50 μm. h, 

Quantification of CHAT+ cells in the upper airway epithelium of control and COVID-19 

lungs. Mean ± s.d., t-test. i, Quantification of CHAT+ cells in the alveolar epithelium of 

control and COVID-19 lungs. Mean ± s.d., t-test. j, k, Immunofluorescence staining for 

KRT5 and POU2F3 of control lungs (j) and COVID-19 lungs (k), including upper airway 

(left) and parenchyma (right). White arrows indicate POU2F3+ cells. Scale bars, 50 μm. f–k, 

n = 3 donors per group.
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Extended Data Fig. 11 |. Role of tuft cells in macrophage infiltration in mouse viral pneumonia 
model.
a, Immunofluorescence staining for SCGB1A1 and DCLK1 of proximal (left) and distal 

(right) airway from wild-type (WT) mice at baseline. n = 3 mice per group. Arrow, DCLK1+ 

cell. Scale bar, 50 μm. b, As in a, but in wild-type (left) and Pou2f3−/− mice 14 days after 

infection with H1N1 (PR8). c, Quantification of tuft cells as percentage of DCLK1+ cells 

in Pou2f3−/− compared to wild-type mice. Mean ± s.d., t-test. b, c, n = 4 mice per group. 

d, Immunofluorescence staining for CD45 and CD64 of lung parenchyma from wild-type 
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(left) and Pou2f3−/− (right) mice 14 days after infection with H1N1 (PR8). Arrows indicate 

CD45+CD64+ macrophages. Scale bar, 50 μm. e, Quantification (CD45+CD64+ cells among 

CD45+ cells) as percentage in Pou2f3−/− mice compared to wild-type mice 14 days after 

infection with H1N1. Mean ± s.d., t-test. d, e, n = 3 mice per group. f, Gating strategy to 

identify CD45+CD64+F4/80+ cells. g, Identification of CD64+F4/80+ cells (based on gating 

strategy in f) in wild-type (left) and Pou2f3−/− mice (right) 14 days after infection with 

H1N1. h, Quantification of flow-cytometric determination of CD45+CD64+F4/80+ cells as 

percentage of CD45+ cells in Pou2f3−/− relative to wild-type mice (n = 3 per group). Mean 

± s.d., t-test. i, qRT–PCR comparing relative mRNA expression of indicated chemokines and 

cytokines in Pou2f3−/− and wild-type mice 14 days after infection with H1N1 (n = 3 per 

group). Mean ± s.d., t-test. j, As in i, but 44 days after infection with H1N1(n = 3 per group). 

k, Exemplary immunofluorescence staining (n = 3 mice per group) for KRT5 and DCLK1 in 

wild-type mouse 90 days after infection. Arrows indicate DCLK1+ cells. Scale bar, 50 μm. l, 
As in i, j, but comparing expression of indicated chemokines and cytokines in control donors 

and patients with COVID-19 (n = 3 donors per group). Mean ± s.d., t-test.
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Extended Data Fig. 12 |. Role of fibroblasts, potential drug targets and model of lethal 
COVID-19.
a, b, Exemplary αSMA immunohistochemical staining of tissue from control (a; sample 

C56; n = 7 donors) and COVID-19 samples (b; samples L05cov and L06cov; n = 17 

donors). Scale bars, 500 μm. c, Percentage of α-SMA+ cells per total area (n as in a, 

b). Mean ± s.d., t-test. d, Exemplary Sirius red staining of control (left, n as in a) and 

COVID-19 (right, n as in b) samples. Scale bar, 600 μm. e, Detailed annotation of fibroblasts 

in this study and selected marker genes. Dot size indicates fraction of cells and colour 
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indicates expression level (log-normalized and scaled). f, Fractions of cell types among all 

cells in COVID-19 (n = 19 donors examined over 20 experiments) and control lungs (n 
= 7 donors). Middle line, median; box edges, 25th and 75th percentiles; whiskers, most 

extreme points that do not exceed ±1.5 × IQR. Wilcoxon rank-sum test. g, h, Inferred 

cell-to-cell interactions among major cell types (indicated as circles connected by lines) 

in control (g) and COVID-19 (h) lung samples. The size of the circle corresponds to 

the frequency of the respective cell type and the thickness of the lines connecting circles 

indicates the absolute number of interactions. i, Differential enrichment (COVID-19 versus 

control samples) of specific ligand–receptor interactions (rows) between two different 

cell types (columns). Dot colour indicates log2(fold-change) of inferred ligand–receptor 

expression in COVID-19 compared to control lungs (unpaired two-sided Wilcoxon rank-sum 

test); dot size is inversely correlated with Benjamini–Hochberg adjusted P (see Methods). 

j, Inferred protein activity (rows) among cells corresponding to pathological fibroblasts, 

intermediate pathological fibroblasts, and non-pathological fibroblasts (columns). Proteins 

with high activity in pathological fibroblasts are highlighted. k, Model summarizing 

potential mechanisms that contribute to morbidity and mortality in patients with COVID-19, 

focusing on impaired cellular regeneration and rapidly ensuing fibrosis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Study design and cellular landscape.
a, Overview of study design. b, Major clusters and respective cell-type assignments in 

UMAP. c, Origins of cells with same embedding as in b. d, Fraction of major cell types in 

control (n = 7) and COVID-19 lungs (n = 19). Middle line, median; box edges, 25th and 

75th percentiles; whiskers, most extreme points that do not exceed ±1.5× the interquartile 

range (IQR). Wilcoxon rank-sum test.
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Fig. 2 |. Immune responses in COVID-19.
a, UMAP projection highlighting immune cell clusters. b, Visualization of myeloid cells 

using the first three DCs. Insert indicates group assignment. c, Fraction of myeloid cells in 

control (n = 7) and COVID-19 lungs (n = 19). Middle line, median; box edges, 25th and 

75th percentiles; whiskers: most extreme points that do not exceed ±1.5 × IQR. Wilcoxon 

rank-sum test. d. Representative immunofluorescence staining for CD169, AXL and DAPI 

(large image) in control and COVID-19 lung tissue; top, selected area with overlay; bottom, 

individual channels. Scale bar, 20 μm. e, f, Top 20 recurrently detected IGHV–IGLV 
combinations in COVID-19 (e) and corresponding group annotation (f). *Combination 

for previously described anti-RBD antibody21. g, UMAP of T/NK cells; insert, group 

assignments. h, i, RNA expression (log-normalized) of GZMB (h) and MKI67 (i) in the 

same embedding as g.
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Fig. 3 |. Impaired lung regeneration and sources of inflammation.
a, b, UMAP of investigated alveolar and airway epithelial cells (a) and corresponding group 

assignments (b). c, Differential gene expression (log-normalized, scaled; see Methods) 

of AT1 and AT2 cells from COVID-19 and control lungs. Columns, single cells; rows, 

expression of top-regulated genes. Left bar, lineage markers for AT1 (purple) and AT2 (pink) 

cells. Colour-coded top lanes indicate expression strength of signatures (log-normalized; see 

Methods) and group assignment as indicated on the right. exp., expression. d, e, Violin plots 

of ETV5 and CAV1 mRNA expression (log-normalized) in AT2 and AT1 cells, respectively; 

Wilcoxon signed-rank test with Bonferroni correction. f, UMAP embedding of AT1 and 

AT2 cells and identified DATPs; insert indicates group assignments. g, Violin plots of DATP 

signature expression (log-normalized) in AT1 and AT2 cells. Wilcoxon singed-rank test. h, 

First three DCs showing main trajectories of AT2 and AT1 cells and DATPs, expression 

of DATP signature and group assignment (insert). i, Fractions of DATP and AT cells in 

control (n = 7) and COVID-19 lungs (n = 19). Middle line, median; box edges, 25th and 

75th percentiles; whiskers, most extreme points that do not exceed ±1.5 × IQR. Wilcoxon 

rank-sum test. j, Representative immunofluorescence staining for pro-SPC, KRT8 and DAPI 

in control and COVID-19 lung tissue; top, representative area with overlay; bottom, small 

images with individual channels of selected area. Scale bar, 50 μm. k, l, Tissue mass 

cytometric quantification of IL-1β (k) and IL-6 (l) in healthy lung tissue and samples from 
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donors with different infectious aetiologies. Each dot represents quantification of IL-1β and 

IL-6 in a region of interest (ROI); two-sided Mann–Whitney test with Benjamini–Hochberg 

false discovery rate (FDR) adjustment.
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Fig. 4 |. Pathological fibroblasts and ensuing fibrosis in COVID-19.
a, Coefficient of determination (R2) of days from symptom onset to death and fibrosis 

score in COVID-19 samples (n = 16, see Methods). Error bands, 95% s.e. interval on 

the Pearson correlation. b, UMAP of fibroblast (FB) sub-populations; insert indicates 

group assignments. path., pathological. c, Fractions of pathological fibroblasts among all 

fibroblasts in control (n = 7) and COVID-19 lungs (n = 19). Middle line, median; box edges, 

25th and 75th percentiles; whiskers, most extreme points that do not exceed ±1.5 × IQR. 

Wilcoxon rank-sum test.
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