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Abstract

Mutation of the gene Tafazzin (TAZ) causes Barth syndrome, an X-linked disorder characterized 

by cardiomyopathy, skeletal muscle weakness, and neutropenia. TAZ is an acyltransferase that 

catalyzes the remodeling of cardiolipin, the signature phospholipid of the inner mitochondrial 

membrane. Here we review the major model systems that have been established to study the role 

of cardiolipin remodeling in mitochondrial function and the pathogenesis of Barth syndrome. We 

summarize key features of each model and provide examples of how each has contributed to 

advance our understanding of TAZ function and Barth syndrome pathophysiology.

Introduction

Mutation of the gene Tafazzin (TAZ) causes Barth syndrome1. TAZ is an acyltransferase 

required for the remodeling of cardiolipin (CL), a hallmark phospholipid of the 

mitochondrial inner membrane. In normal tissues with high metabolic demand, the four acyl 

chains of CL have a narrow, characteristic composition (e.g. tetralinoleoyl-CL in striated 

muscles). Because enzymes in its synthetic pathway lack acyl chain specificity, de novo 
synthesized CL has greater acyl chain diversity and tends to be more saturated. Remodeling 

CL into its mature form involves exchange of acyl chains, through phospholipase-catalyzed 

removal of one acyl chain to form monolysocardiolipin (MLCL) followed by reacylation, 

or through transacylation, both catalyzed by TAZ.2,3 Patients lacking functional TAZ have 

decreased total CL, increased CL saturation and diversity of acyl chains, and increased 

MLCL to CL ratio.2,4 These abnormalities of CL composition impair the function of 

proteins of the inner mitochondrial membrane, including F1F0 ATPase, components of the 

electron transport chain, which collectively lead to the manifestations of Barth syndrome. 

While TAZ is ubiquitously expressed and CL abnormalities in Barth syndrome are 

widespread, the cardinal disease manifestations -- cardiomyopathy, skeletal myopathy, and 

neutropenia5,6 -- are tissue restricted. The precise mechanisms by which mutation of TAZ 
and impaired CL biosynthesis lead to these tissue restricted phenotypes remain imprecisely 

defined.
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Although CL composition varies between species, the steps of CL biogenesis and its 

impairment by TAZ mutation are well conserved throughout eukaryotes, from yeast through 

humans. To improve biological understanding of TAZ function and Barth Syndrome 

pathogenesis, and to expedite development of effective therapies, diverse model systems 

have been established to study the consequences of TAZ mutation. Here we review these 

major model systems and highlight important findings (Fig. 1).

Yeast

Saccharomyces cerevisiae, baker’s yeast, are eukaryotic cells that are readily cultured and 

genetically manipulated. Powerful genetic and biochemical tools have been developed to 

study yeast. These features, combined with their relatively low cost and short experimental 

timelines, make yeast a superb model system to study gene functions that are highly 

conserved and manifest in unicellular organisms. At the same time, yeast cannot model 

aspects of gene function that are less conserved or selectively expressed in multicellular 

organisms, and it has limited utility as a pre-clinical model to test candidate therapies.

Yeast lacking taz1, the yeast homolog of TAZ, were unable to grow on non-fermentable 

carbon sources at elevated temperature7,8. Like human TAZ mutant cells, yeast taz1 mutants 

had reduced overall CL, reduced unsaturated acyl chains, and elevated monolysocardiolipin 

(MLCL). Human TAZ complemented the yeast taz1 mutation, indicating functional 

conservation.8. These features make yeast a highly tractable model system to study the 

function of TAZ and CL.

Several key findings have been made in the yeast system. In yeast, the phospholipase that 

catalyzes CL deacylation to MLCL is CLD19; the corresponding enzyme(s) in mammals 

have not been identified. Cld1 deletion blocks CL remodeling such that de novo synthesized, 

saturated CL predominates. Remarkably, Cld1 deletion rescued the growth defect of Δtaz1 
yeast.10,11 Changes in MLCL/CL and total CL level, but not CL saturation, mirrored the 

severity of the growth defect: compared to wild-type, Δtaz1 had low overall CL level, 

reduced unsaturation, high MLCL/CL, and impaired growth, whereas Δcld1Δtaz1 had 

normal overall CL level, reduced unsaturation, low MLCL/CL, and normal growth. These 

data suggest that saturated CL can fulfill many functions of unsaturated CL, and that 

elevated MLCL/CL or reduced total CL cause the deleterious effects of TAZ mutation. 

Studies of yeast with mutations in CL biosynthesis genes also implicated CL in the 

regulation of mitochondrial iron homeostasis and the iron-sulfur cluster biogenesis12,13, 

intermediary metabolism including the TCA cycle14,15, and to increased oxidative stress,16 

which may contribute to Barth syndrome pathophysiology in humans and mice (see below). 

Genetic screens in yeast have identified genetic modifiers of taz1 mutation. A synthetic 

screen for genes whose inactivation results in growth deficiency in combination with 

taz1 mutation identified Yme1, a mitochondrial quality control protease17 On the other 

hand, screens for taz1 suppressors identified Odc1p, a conserved carrier of a-ketoglutarate 

and other Krebs cycle intermediates located in the mitochondrial inner membrane,18 and 

cycloheximide, a protein synthesis inhibitor.19 It will be interesting to determine if these 

genes and pathways also modify TAZ deficiency in mammalian models.
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The yeast system has also been useful to functionally assess TAZ splice isoforms and 

human TAZ mutations. Interestingly, of several human TAZ splice isoforms tested, only 

one, lacking the primate-specific exon 5, complemented, indicating that only this isoform 

possesses conserved acyltransferase activity in yeast.8 Yeast have also been used to dissect 

the pathogenic mechanism of human mutations. Based on genetic complementation and 

biochemistry, twenty one conserved human missense mutants were classified into those that 

affect TAZ catalytic activity, localization, and stability.20–22

Fruit fly

Drosophila melanogaster is a powerful invertebrate system that has been employed to 

investigate the pathobiology of Taz mutation. Like yeast, advanced genetic approaches 

and reagents have been developed to dissect pathogenic mechanisms that are conserved 

between humans and flies. Flies also have specialized cell types, including muscle cells and 

a rudimentary heart tube, that are relevant to Barth syndrome, and have matured as a model 

to study diseases of these organ systems.23,24 However, because of the evolutionary distance 

between flies and humans, flies are an imperfect model of human pathophysiology.

Taz null flies had reduced total CL and reduced unsaturated acyl chains.25 Mutant 

indirect wing muscles contained clusters of mitochondria with abnormal cristae.25 Although 

not grossly apparent, in quantitative assays mutant adult flies had muscle weakness, 

as demonstrated by reduced ability to fly and to climb against gravity.25,26 Moreover, 

Taz mutant flies had reduced endurance that failed to improve with exercise training,26 

a phenotype highly relevant to patients, who commonly manifest muscle weakness as 

profound fatigue following minimal exertion.27 However, the beat rate, contractility, and 

compliance of Taz mutant fly heart tubes was normal25,28 and did not show increased 

susceptibility to pacing-induced heart failure.26 Flies were also used to test human and 

Drosophila Taz splice isoforms. Unlike yeast, in which only the isoform lacking primate-

specific exon 5 was active,8 in flies isoforms both with and without exon 5 had transacylase 

activity.29

Male Taz null flies were also sterile as a result of defective spermatid individualization.30 

Although male sterility is not a feature of patients with Barth syndrome, this phenotype 

nevertheless was useful to establish the importance of CL metabolism in mediating the 

pathogenic effects of Taz mutation in animals. Analogous to the finding that cld1 mutation 

mitigated the phenotype of taz1 mutant yeast, mutation of Pla2-VIA in flies suppressed the 

male sterile phenotype of Taz mutant flies. Taz mutation decreased CL levels, increased 

MLCL/CL ratio, and increased the diversity of CL species. Pla2-VIA; Taz double mutants 

restored CL levels and MLCL/CL ratio but did not alter the diversity of CL species. 

However, in wild-type flies Pla2-VIA was not required for CL remodeling. The effect of 

Pla2-VIA mutation on the muscle phenotypes of Taz mutant flies was not reported. These 

findings suggest that suppression of the phospholipase(s) that mediate CL deacylation in 

humans may be a therapeutic strategy to treat Barth syndrome. However, the identity of the 

responsible phospholipase(s) and their function in other aspects of cellular homeostasis are 

currently unknown.
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The reproducible exercise and sterility phenotypes of Drosophila could be readily adapted to 

take advantage of the power of fly genetics to identify genes that genetically interact with 

Taz and modulate the phenotypes of heart, skeletal muscle, and sperm.

Zebrafish

Danio rerio has matured into a potent vertebrate model system amenable to both genetic 

and small molecule screens. As inexpensive vertebrates with well developed forward 

and reverse genetics and well established systems to study cardiac and skeletal muscle 

physiology, zebrafish occupy a unique position among the major model organisms.31,32 

Morpholino knockdown of taz in zebrafish embryos yielded among the first animal models 

of Barth syndrome.33 Morpholinos reduced heart rate, contraction, and looping, and caused 

embryonic lethality. Specificity of these effects was supported by phenotypic rescue by 

co-injected morpholino-resistant taz mRNA.

Despite this promising beginning, zebrafish have not subsequently been used to model Barth 

syndrome. CRISPR/Cas9 has now enabled generation of targeted mutations in zebrafish,34 

and comparison between morpholino and targeted mutant phenotypes has raised questions 

about morphant specificity.35 Surprisingly, genetic taz mutant fish have not been reported. 

Such fish could be used to study mature heart phenotypes in taz mutant fish, to perform 

genetic interaction studies, and to conduct small molecule screens for suppressors of the taz 
mutant phenotype.36,37

Mice

Mus musculus is the most frequently used mammalian model of disease. Some key 

advantages of mice are that they are amenable genetic manipulation, their husbandry is less 

expensive compared to other mammals, and an enormous set of investigative tools, reagents, 

and reference literature on mice has arisen as a result of their intensive study.

Initial efforts to create genetically modified Taz mutant mice were unsuccessful; in 

retrospect, this was likely due to male sterility of Taz mutant mice (discussed below), 

which precluded germline transmission of genetic modifications made in male embryonic 

stem cells. To circumvent this difficulty, a genetic model was created by developing 

transgenic mice in which administration of doxycycline (Dox) induced expression of a short 

hairpin RNA that depleted Taz mRNA by over 90%. This Taz knockdown (Taz-KD) model 

yielded the first mammalian model of Taz depletion.38,39 Induction of Taz knockdown 

by administration of Dox in chow at 200–625 mg/kg throughout most of gestation and 

postnatal life resulted in 90–97% reduction of Taz mRNA in heart. Tetralinoleoyl-CL, 

the most abundant CL species in mammalian striated muscle, was markedly decreased, 

MLCL accumulated, total CL was reduced, and unsaturated CL decreased. In younger mice 

(2 mo), cardiac mitochondrial genome copy number was increased; however significantly 

more frequent alterations in mitochondrial ultrastructure, most commonly involving cristae 

morphology, were not evident until 8 months. At 2 months of age, cardiac function was 

normal. Mild cardiomyopathy was evident at 7–10 months. Skeletal muscle force-frequency 

was only mild impaired in Taz-KD. However, by 5 months of age Taz-KD mice exhibited a 

dramatic reduction in maximal exercise capacity. Indirect calorimetry revealed that Taz-KD 
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mice did not differ significantly from controls at baseline. During exercise, Taz-KD mice 

had markedly impaired oxygen utilization, earlier switch to carbohydrate substrates, and 

increased lactic acid production,40 which parallel observations made in Barth patients.41 

Reduced neutrophil counts were alluded to but not explicitly described in the initial 

characterization of the Taz-KD model.39 These investigators also noted that Dox itself may 

affect neutrophil counts, potentially confounding studies of neutropenia using this model.

Another group studied the same Taz-KD mice but used a different Dox dosing regimen -- 2 

mg/ml Dox in 10% sucrose drinking water -- which resulted in an estimated 3–10x higher 

Dox intake42. Taz-KD had reduced fetal survival and those that survived to term had high 

perinatal lethality. Cardiac histological sections demonstrated myocardial non-compaction 

and diminished cardiomyocyte proliferation, and electron microscopy revealed that fetal 

cardiomyocytes had abnormal mitochondrial ultrastructure and sarcomeric organization. 

Fetal heart systolic function was not significantly reduced, although reduced peak velocity 

in the dorsal aorta may have been consistent with subtle reduction of systolic function. The 

doppler blood flow pattern in the dorsal aorta also suggested possible diastolic dysfunction. 

These data were interpreted to indicate that Taz deficiency in Taz-KD caused abnormal fetal 

heart development, cardiac non-compaction, and fetal and perinatal death. Notably, fetal 

loss in this model was more severe than observed in genetic Taz null embryos (see below), 

suggesting that factors in addition to Taz deficiency likely contribute to this embryonic 

demise. For example, Dox affects mitochondria43 and metalloproteases44, suggesting the 

possibility that high Dox interacts with Taz deficiency to impair fetal survival. Although 

germline Taz null mutation in C57BL6/J mice causes high perinatal loss45, this was not 

due to inactivation of Taz in fetal cardiomyocytes, since conditional ablation of Taz early 

after cardiogenesis by Tnnt2-Cre did not impair fetal or perinatal survival (Wang and Pu, 

unpublished).

Studies using the Taz-KD model need to be interpreted with several caveats in mind. First, 

TAZ is incompletely ablated. Unlike most patients with TAZ loss of function mutations, Taz-

KD had 3–10% residual Taz mRNA,38,39 and protein levels as high as 45% of controls.46 

Second, the genetic background of the mice in initial reports was “C57BL6/129S6”, and 

studies of the germline null Taz mouse have now revealed that strain background is a 

critical variable (see below). Third, the dose of Dox is an important variable47 and can 

account for differences between studies. Moreover, nursing pups likely receive a low dose 

of Dox. Although murine data are not available, human data suggest that Dox excretion 

into milk is low, so that infant serum levels are approximately 6% those of the mother 

(LactMed: https://www.ncbi.nlm.nih.gov/books/NBK500561/), which may contribute to late 

onset and mild phenotypes observed in Taz-KD mice. Fourth, there are inconsistencies 

between the knockdown and knockout models that suggest that some aspects of the Taz-KD 

phenotype cannot be explained solely by depletion of Taz. High embryonic attrition reported 

for Taz-KD mice under the high Dox dosing regimen described above is one example. 

Another is the development of increased left ventricular wall thickness with preserved 

systolic function reported as the cardiac phenotype in some studies of aged Taz-KD 

mice.48 To test the hypothesis that increased mitochondrial production of reactive oxygen 

species (ROS) contributes to the pathogenesis of heart disease in Barth syndrome, Taz-KD 

mice were crossed to mice that express mitochondrially targeted catalase (MCAT).48 This 
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study found that Taz-KD mice did have elevated levels of reactive oxygen species, but 

the cardiac phenotype was not altered by the MCAT transgene, leading the authors to 

conclude that elevated ROS is not required for cardiac pathology in this model. However, the 

cardiac pathology reported, left ventricular wall thickening, was not observed in the initial 

description of Taz-KD mice on the same Dox dose, and furthermore increased wall thickness 

was not observed in Taz knockout mice. Although a hypertrophic cardiomyopathy pattern 

has been described in some Barth syndrome patients, the inconsistent cardiac phenotype 

in the Taz-KD model across studies and the possibility that the hypertrophic phenotype is 

synthetic and not solely attributable to Taz deficiency preclude reaching a clear conclusion 

about the contribution of ROS to Barth syndrome cardiomyopathy. Notably, another study 

of the Taz-KD model did not find elevated production of mitochondrial oxidants and 

questioned its contribution to Barth syndrome pathogenesis.49

Mice with genetically targeted Taz have now been developed. A conditional Taz allele 

was created by flanking exons 5 to 10 with loxP sites. Chimeric mice transmitted this 

allele in the germline, yielding the Tazflox allele. Germline Cre-mediated recombination 

deleted exons 5–10, resulting in the constitutive Taznull allele.45,50 Taznull and Tazflox alleles 

were extensively backcrossed into the C57BL6/J background, and initial cardiovascular 

characterization of these mice was performed in this background. Western blotting 

confirmed that this allele is protein null.45 As expected, TAZnull/Y had elevated MLCL/CL 

and increased CL diversity. Mutant cardiac mitochondria were smaller but more numerous 

and had simplified cristae. TAZnull/Y mice had slightly reduced survival to term, but most 

of these neonates die in the first several days after birth. TAZnull/Y neonates had lower 

body weight than control littermates, and those most likely to perish had the most severely 

reduced birth weight. Cardiac selective inactivation of Taz did not impair fetal or neonatal 

survival, suggesting that perinatal death was non-cardiac (see below). These neonates had 

reduced motor activity and righting behavior, and less frequent milk spots, suggesting that 

skeletal muscle weakness, maternal culling behavior, and inability to compete with more 

vigorous littermates caused postnatal demise.

Taznull/Y mice had lower body weight and length than their littermates, similar to pre-

pubertal growth retardation observed in Barth patients. However, in humans this growth 

delay is often abrogated by late catch up growth,6 whereas Taznull/Y mice were smaller 

than littermates throughout life.6,51 Taznull/Y mice had progressive dilated cardiomyopathy, 

with cardiac systolic function becoming measurably depressed by 3 months of age.45 Hearts 

also exhibited myocardial fibrosis and increased cardiomyocyte apoptosis. These mutant 

mice also had skeletal muscle disease, as demonstrated by markedly reduced endurance on 

exercise treadmill testing. Neutrophil counts were lower in Taznull/Y mice than littermate 

controls but remained within the normal range for mice. Taznull/Y male mice are sterile 

due to defective spermatogenesis.50,52 Mechanistic investigation revealed that Taz and 

mitochondria make a novel contribution to acrosomes, specialized structures within the head 

of sperm.

The perinatal lethality of C57BL6/J Taznull/Y mice can make this model cumbersome 

for studies of postnatal phenotypes. Conditional mutagenesis can be used to circumvent 

this difficulty. Myh6-Cre selectively inactivates floxed alleles in cardiomyocytes, 
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usually by embryonic day 12.5. Myh6-Cre; Tazfl/Y mice lack Taz expression in 

postnatal cardiomyocytes.45 These mice survive normally and develop progressive dilated 

cardiomyopathy that is slightly more aggressive than observed in Taznull/Y mice, perhaps 

because the most severely affected Taznull/Y mice die perinatally, resulting in survivor bias.

A critical factor to consider in the design and interpretation of experiments using Taz 
mutant mice is strain background. By crossing Taznull/WT female mice in the C57BL6/J 

strain background with mice in other inbred strains, we obtained Taznull/Y F1 males with 

different strain backgrounds. Survival, cardiomyopathy, and skeletal muscle involvement 

varied tremendously by strain background, suggestive of strong genetic modifiers (Wang and 

Pu, unpublished). Identification of these genetic modifiers may lead to novel therapeutic 

strategies to treat Barth syndrome and may explain the highly variable expression of 

TAZ mutation in Barth patients. From an experimental standpoint, one can manipulate 

strain background to adjust survival and the severity of cardiomyopathy or skeletal muscle 

phenotypes. At the same time, the experimental design must strictly control for effects of 

genetic background, and greater variability can be expected in mixed genetic backgrounds.

The Taz-KD, Taznull/Y, and Myh6-Cre; Tazflox/Y mouse models have all been used to 

test the efficacy of AAV-Taz gene therapy.45,46 Taz-KD mice were treated with self-

complementary AAV9 that expressed full length human TAZ from the Desmin promoter.46 

At a dose of 1E13 vg/kg, the vector increased TAZ protein levels from 45% of control 

to approximately 115%. The fraction of transduced cardiomyocytes was not measured. 

This treatment significantly improved cardiac systolic function above untreated levels, 

but function remained well below control levels. Skeletal muscle function, measured by 

spontaneous activity measurements after light exercise, were improved to normal levels. 

Taznull/Y mice were treated with standard or self-complementary AAV9 that expressed full 

length human TAZ from the synthetic CAG promoter.45 AAV, administered on the second 

postnatal day at a dose that transduced ~65% of cardiomyocytes and ~60% of skeletal 

muscle cells, rescued perinatal lethality, and returned cardiac function to normal. However, 

at 4 months of age, treated mice exhibited declining heart function, likely reflecting loss 

or dysfunction of non-transduced cardiomyocytes. The cardiac specific Myh6-Cre; Tazflox/Y 

model was used to further study dose-response. A dose of 2E13 vg/kg, which transduced 

~70% of adult cardiomyocytes, prevented cardiac dysfunction for over 4 months, whereas a 

dose that transduced ~30% of cardiomyocytes had a more variable and less durable effect. 

Moreover, the higher dose also was able to reverse mild established cardiac dysfunction 

and improve exercise capacity. Overall, both gene therapy studies provide proof-of-concept 

that AAV-TAZ gene therapy could be effective therapy for Barth syndrome, although 

transduction of a large majority of muscle cells is likely required for durable efficacy. One 

question not yet addressed is the optimal TAZ splice isoform to use for gene therapy. Both 

full length and exon 5-deleted splice isoforms have transacylase activity, but their relative 

activity in rescuing BTHS phenotype needs to be established.

In summary, Taznull/Y and Cre; Tazflox/Y mice are excellent models of Barth syndrome to 

study disease mechanisms and to test the efficacy and safety of proposed therapies.
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Human induced pluripotent stem cells

A number of mammalian cell models have been developed to study the effects of TAZ 

deficiency, including immortalized patient-derived lymphocytes53 or skin fibroblasts54, 

C2C12 murine skeletal myoblasts with engineered TAZ mutation55, patient-derived induced 

pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (iPSC-CMs),56,57 and 

human iPSCs and iPSC-CMs with engineered TAZ mutation.56 Here we focus on human 

iPSC and iPSC-CM models as these are unique human models of relevant affected cell 

types.

iPSCs harboring disease-causing mutations can be reprogrammed from patients’ somatic 

cells or generated from reference wild-type iPSC lines by introduction of patient-derived 

mutations through genome editing. For studies of biological mechanisms, genome-edited 

wild-type and mutant lines are often preferable, because the control cells should be isogenic 

except for the introduced mutation. Patient-derived lines afford the additional opportunity 

to investigate effects of the patient’s genetic background on disease manifestations and 

treatment responses. Wild-type reference iPSC lines can be used as non-isogenic controls, or 

the patient mutations can be corrected through genome editing to yield an isogenic control 

for each patient-derived mutant line. iPSCs are differentiated into iPSC-CMs by well-

established, highly efficient protocols, yielding cardiomyocyte-like cells.58,59 These cells 

spontaneously beat and develop cardiomyocyte-like action potentials and calcium transients. 

However, their structural and functional properties are comparable to fetal or neonatal 

cardiomyocytes, and in most cases these cells lack properties of adult cardiomyocytes, 

such as rectangular shape, T-tubules, highly ordered sarcomeres, and reliance on oxidative 

phosphorylation.60 The immaturity of iPSC-CMs is an important caveat that should kept in 

mind while interpreting the results of experiments using iPSC-CMs.

Patient-derived and genetically engineered iPSCs57 and iPSC-CMs56,61 that lack TAZ 

have expected derangements in CL biogenesis. Mitochondrial function assays reproducibly 

demonstrated marked reduction in maximal electron transport chain activity, which has been 

linked to disassembly of respiratory chain supercomplexes and cardiac-specific succinate 

dehydrogenase deficiency.61 TAZ mutant iPSC-CMs had high levels of mitochondrial 

ROS,56 likely reflecting escape of electrons from partially disassembled respiratory chain 

complexes. Sarcomere assembly was markedly impaired in TAZ mutant iPSC-CMs, and 

correspondingly engineered heart tissues built from TAZ mutant iPSC-CMs had severely 

compromised ability to generate contractile force.56 These phenotypes were rescued by 

a mitochondrially targeted ROS scavenger, but not by culture conditions that normalized 

ATP levels,56 suggesting that elevated ROS generation participates in the pathogenesis of 

contractile dysfunction, at least in this cell culture model.

One mechanism by which mitochondrial ROS might affect sarcomere assembly and 

contractile function is through oxidation and activation of protein kinases. A key ROS-

sensitive kinase in the heart is Ca2+-calmodulin-dependent protein kinase II (CaMKII).62 

Excessive activation of this kinase is pro-arrhythmic and deleterious to heart function.63 

In TAZ mutant iPSC-CMs, ROS activated CaMKII, which increased phosphorylation 

of RYR2, the main cardiomyocyte intracellular Ca2+ release channel, on serine 2814, 

resulting in elevated diastolic Ca2+, reduced Ca2+ transient amplitude, and increased 
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frequency of spontaneous Ca2+ release events.64 These findings were suppressed by ROS 

scavenger, CaMKII inhibitor, and genetic ablation of the RYR2-S2814 phosphorylation 

site. CaMKII inhibition likewise improved the function of Taz mutant cardiomyocytes 

isolated from Myh6-Cre; Tazfl/Y mice. These data implicate ROS activation of CaMKII 

in the pathogenesis of cardiac dysfunction and arrhythmia, at least in the iPSC-CM Barth 

syndrome model.

These studies show that iPSCs and iPSC-CMs are useful models to dissect disease 

mechanisms, despite their immaturity. These models are amenable to genetic and small 

molecule screening approaches, which could be used to further develop mechanistic insights 

or novel therapies in Barth syndrome. iPSCs can now also be differentiated into human 

skeletal muscle-like cells.65 Given the importance of muscle fatigue in Barth syndrome 

manifestations,65 an iPSC-derived skeletal muscle model would appear to be a promising 

direction for future studies. Similarly, a human iPSC-based model could provide insights 

into the mechanisms by which TAZ mutation causes neutropenia. Patient-derived iPSCs may 

be useful to build patient-specific disease models, which it is hoped will enable precision 

medicine approaches by predicting therapeutic responses of individual patients.66 However, 

accuracy with which such patient-specific models predict individual responses has not yet 

been established.

Conclusions

In summary, a wealth of model systems have been developed to study the pathological 

effects of TAZ mutation. These model systems have put researchers in an excellent 

position to dissect the pathophysiology of Barth syndrome and to discover new therapeutic 

approaches. While much progress has been made, key questions remain regarding 

the mechanistic links between TAZ mutation and abnormal CL composition and the 

manifestations of Barth syndrome. For instance, the contribution of elevated ROS to Barth 

syndrome pathogenesis remains controversial. Is there a mammalian counterpart of yeast 

Cld1 and Drosophila Pla2-VIA, and if so could its inhibition ameliorate Barth syndrome 

manifestations? What are the mechanisms by which TAZ mutation causes neutropenia and 

growth delay? What is the mechanism that accounts for the wide variation in disease 

severity observed between Barth patients, and between inbred mouse strains, and could this 

mechanism be therapeutically exploited? The TAZ-KO model will also be invaluable for 

preclinical testing of emerging candidate therapies. An important caveat is that mice and 

humans have considerable physiological differences, and it currently is not known the degree 

to which therapeutic efficacy in the TAZ-KO model predicts the responses of patients. One 

important practical hurdle is optimizing this model to study skeletal muscle disease and 

therapies targeting this indication: in the pure C57BL6/J background, high neonatal loss is 

likely due to skeletal muscle disease and therefore cannot be circumvented by tissue-specific 

gene knockout. Potential solutions are temporally controlled gene inactivation or selection 

of a different inbred strain background that circumvents lethality yet exhibits significant 

skeletal muscle disease.
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Figure 1. Experimental models of Barth syndrome.
Table lists major model systems, some advantages or disadvantages of each model system, 

and key phenotypes reportedl.
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