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Abstract

TCF7L2 encodes transcription factor 7-like 2 (OMIM 602228), a key mediator of the evolutionary 

conserved canonical Wnt signaling pathway. Although several large-scale sequencing studies 

have implicated TCF7L2 in intellectual disability and autism, both the genetic mechanism and 

clinical phenotype have remained incompletely characterized. We present here a comprehensive 

genetic and phenotypic description of 11 individuals who have been identified to carry de novo 

variants in TCF7L2, both truncating and missense. Missense variation is clustered in or near 

a high mobility group box domain, involving this region in these variants’ pathogenicity. All 

affected individuals present with developmental delays in childhood, but most ultimately achieved 

normal intelligence or had only mild intellectual disability. Myopia was present in approximately 

half of the individuals, and some individuals also possessed dysmorphic craniofacial features, 

orthopedic abnormalities, or neuropsychiatric comorbidities including autism and attention-deficit/

hyperactivity disorder (ADHD). We thus present an initial clinical and genotypic spectrum 

associated with variation in TCF7L2, which will be important in informing both medical 

management and future research.
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Introduction:

TCF7L2 encodes a high mobility group (HMG) box-containing transcription factor and is 

located on chromosome 10q25.2-q25.3. Although it was initially identified and referred 

to as TCF4 (Castrop et al., 1992; Clevers, 2006), it should not be confused with the 

currently designated TCF4 (ITF2/SEF2-1B/SEF2/E2-2, MIM 602272), which is located on 

Chromosome 18 and associated with Pitt–Hopkins syndrome. TCF7L2 mediates canonical 

Wnt signaling. Signaling by secreted Wnt proteins through this pathway leads to release of 

the protein beta-catenin (CTNNB1) from a repressive degradation complex in the cytoplasm, 

allowing it to accumulate and translocate to the nucleus, where it acts with DNA-binding 

factors including TCF7L2 to turn on Wnt-responsive target genes. TCF7L2 thus acts with 

beta-catenin as an on/off switch for transcriptional regulation. Through mostly genome-wide 

association studies, TCF7L2 has been involved in a variety of human disease, including 

Type 2 diabetes mellitus, colon cancer, and schizophrenia (Alkelai et al., 2012; Folsom 

et al., 2008; Grant et al., 2006). TCF7L2 is also known to be critical in central nervous 

system development (Chodelkova et al., 2018; Lee et al., 2017; Nagalski et al., 2013). It 

has been directly involved in processes as diverse as neurogenesis and thalamic development 

to mediating the effects of neuropsychiatric pharmacological agents including lithium and 

nicotine (Chodelkova et al., 2018; Duncan et al., 2019; Lee et al., 2017; Misztal et al., 

2017; Nagalski et al., 2013). Large-scale sequencing studies have also identified a handful of 

isolated patients with de novo variants in TCF7L2 in association with neurodevelopmental 

disorders, but clinical details are lacking (Iossifov et al., 2014; De Rubeis et al., 2014; 

Lelieveld et al., 2016; Jeremy F McRae et al., 2017 (Deciphering Developmental Disorders 

[DDD] Study), 2017; Guo et al., 2018; Liu et al., 2018; Satterstrom et al., 2020; Wang et 

al., 2020). TCF7L2 encodes multiple alternatively spliced transcripts and alternative splicing 

has been demonstrated to play an important role in the function and specificity of the 

transcriptional repertoire of TCF7L2 in a variety of tissues and contexts, including the 

brain (Nagalski et al., 2013; Prokunina-Olsson et al., 2009; Weise et al., 2009). TCF7L2 is 

significantly intolerant to loss-of-function (LOF) variation, with significantly fewer observed 

LOF variants as compared to predicted, as indicated in the probability of being loss-of-

function intolerant (pLI) score of 0.99–1 reported in the gnomAD and ExAC databases. 

There is also a region of missense constraint encompassing the HMG box domain indicating 

additional intolerance to missense variation (Samocha et al., 2017). We describe here the 

genotypic and clinical phenotypic spectrum of 11 individuals with de novo, heterozygous 

variants in TCF7L2 presenting with a neurodevelopmental disorder.

Materials and Methods:

Patients were ascertained from GeneMatcher through the Match-maker Exchange Network 

between May 2019 and December 2020 (Philippakis et al., 2015; Sobreira et al., 2015). 

TCF7L2 variants were detected on exome sequencing in 10 individuals, and on a trio autism/ 
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intellectual disability gene panel at a commercial lab in one individual. No additional 

plausible candidate gene variants were identified (Supplementary Table 1). One additional 

patient was excluded from the cohort because the phenotype was confounded by perinatal 

hypoxic–ischemic injury; the data for this individual (S1) are included in Supplementary 

Table 1. Institutional review board approval was obtained. The reported variants in TCF7L2 

in our cohort are annotated on the coding sequence and protein structure in Figure 1. We 

found a marked pattern of clustering of the variants, with all missense variants located in or 

immediately adjacent to the PFAM predicted HMG box domain. Two residues, Tyr423 and 

Asn381, are each affected by two different missense variants (Figure 1). All of the missense 

variants occur at highly conserved locations, and none are found in the gnomAD database 

v2.1.1. All truncating variants occurred greater than 55 nucleotides upstream of the last 

exon–exon junction and are predicted to be subject to nonsense-mediated decay. The two 

splice variants we report are predicted by splice prediction tools (MaxEnt, NNSPLICE,SSF) 

with high likelihood to affect splicing.

Individuals with truncating variants and missense variants in our cohort present with 

largely indistinguishable phenotypes, although sample size is too small to make definitive 

conclusions regarding this (see Table 1 and Supplementary Table 1). All individuals present 

with developmental delays, including delayed speech and motor milestones. Intellectual 

abilities range from average cognitive functioning to mild/moderate intellectual disability. 

Variability in speech language abilities is notable regardless of intellectual functioning; 

abilities range from individuals who are completely non-verbal to individuals with 

hypophonia, dysphasia, and dysarthria. Autism and/or social communication deficits are 

frequently observed, and comorbid attention-deficit/hyperactivity disorder (ADHD) and 

executive functioning challenges are also seen. One individual has a history of glioma 

status post resection and focal motor seizures; this individual was also found to have a 

heterozygous TP53 variant of uncertain significance, and is being managed as Li–Fraumeni 

syndrome. Myopia is seen in 6 of 11 individuals, and is very severe in two We also reviewed 

previous reports of variation in TCF7L2 to evaluate whether phenotypes were consistent 

with this cohort (Supplemental Table 2); however, our assessment of previous reports was 

limited due to lack of validation, absent clinical descriptions, and varied methodological 

approaches. Thus, these limitations preclude definitive interpretation of previously reported 

variants.

We also reviewed previous reports of variation in TCF7L2 to evaluate whether phenotypes 

were consistent with this cohort (Supplemental Table 2); however, our assessment of 

previous reports was limited due to lack of validation, absent clinical descriptions, and 

varied methodological approaches. Thus, these limitations preclude definitive interpretation 

of previously reported variants.

Discussion:

We present a series of 11 patients with de novo, heterozygous variants in 

TCF7L2 manifesting with neurodevelopmental abnormalities. All individuals had initial 

developmental delays, and intellectual and verbal abilities ultimately demonstrate significant 

heterogeneity. Some individuals have average cognitive functioning and fluent speech, while 
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others are nonverbal. Other phenotypic features variably included autism spectrum disorder, 

social communication disorder, ADHD, speech–language impairment, dysmorphic features, 

myopia, hypertrichosis, and orthopedic abnormalities.

In this cohort, all missense variants occurred in or directly adjacent to the HMG box domain. 

The HMG box domain is an evolutionary conserved region that mediates interactions 

with DNA. This region is highly missense constrained. Interestingly, we also identify one 

splice variant that occurs at the start of an exon immediately following an alternatively 

spliced exon that is absent in both the canonical and the highest brain expressed isoforms 

(c.553-1G>A, Gnomad v2.1.1). Although speculative, it is thus possible that in addition to 

LoF as a possible mechanism of pathogenicity, this variant may lead to inappropriate exon 

retention.

No clear phenotypic differences were observed between individuals in this cohort with 

truncating and missense variants. For example, the five individuals with missense variants 

demonstrated a wide range of cognitive functioning similar to the individuals with truncating 

variants. Across the different forms of variation, individuals also shared findings like myopia 

and hypertrichosis. We hypothesize that the missense variation clustering at the HMG 

domain may interfere with appropriate DNA binding and interaction, contributing to a 

similar LoF effect as the truncating variants.

Given the genomic wide association study findings of intronic variants associated with 

diabetes risk, it is also interesting that there are no reported endocrine abnormalities, 

including diabetes mellitus, in any of the patients presented here, although it is important 

to note that this cohort reflects a predominately pediatric population and thus may not yet 

manifest certain findings.

TCF7L2 has been implicated in oligodendrocyte development and it has recently been 

posited that expression in this cellular subtype may represent an underappreciated 

mechanism of pathogenicity in neurodevelopmental disorders (Polioudakis et al., 2019; Ye 

et al., 2009; Zhao et al., 2016). Interestingly, recent work on Pitt– Hopkins syndrome, 

caused by mutations in TCF4, as well as idiopathic autism, has recently implicated 

oligodendrocyte pathology in autism (Phan et al., 2020). Further work will be needed 

to identify more definitively the cellular subtypes and neuronal circuitry responsible for 

mediating the effects of variation in TCF7L2, as well as functional interrogation of the 

described variation.

In conclusion, we present 11 patients with de novo, heterozygous variants in TCF7L2 

presenting with a distinct neurodevelopmental disorder associated with initial developmental 

delay, speech–language difficulties, and variable risk for intellectual disability, autism, 

ADHD, myopia, and orthopedic abnormalities. All reported missense variants occurred in 

or adjacent to the HMG box domain. The phenotypes of individuals with missense and 

truncating variants were indistinguishable. Based on this, we hypothesize that the molecular 

mechanism for this disorder is haploinsufficiency, although further work to confirm this is 

required on a research basis.
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Figure 1: 
Annotation of loss of function and missense variation in TCF7L2. Top bar indicates exon 

structure of NM_001146274.1. Second bar represents protein structure with PFAM amino 

acid ranges overlaid, that is, the CTNNB1-binding domain (orange) spanning amino acids 

1– 259, and the HMG box domain (light blue) spanning 350–417. Predicted splicing and 

loss-of-function variants are annotated above the figure and missense variants are annotated 

below
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Table 1:

Clinical features of affected patients.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Totals

Variant 
Information

Coding variant (c. ) 
( NM_001146274.1)

c.553-1G>A c.1269T>G c.787del c.1144C>T c.660dup c.875+1G>C c.1143C>G c.1142A>C c.1250G>T c.1267T>C c.1268A>G

Amino acid variant 
(p. )

p.
(Tyr423*)

p.
(Gln263 
Serfs*22)

p.
(Gln382*)

p.(Pro221 
Thrfs*107)

p.
(Asn381Lys)

p.
(Asn381Thr)

p.
(Trp417Leu)

p.
(Tyr423His)

p.
(Tyr423Cys)

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo

Demographics

Sex male male female female female male male male male male male

Age at evaluation 12 y 11 y 18 y 8 y 7 m 5 y 7 m 11 y 4 y 17 y 10 m 3 y 9 m 5 y 7 m 7 y 6 m

Development

Motor delay? yes yes yes yes yes yes no yes no no yes n=8/11

Age at walking 16 m 24 m 18 m 12-13 m 15 m 14 m 14 m 15 m 18 m 14 m 24 m

Speech delay? yes yes yes yes yes yes yes yes yes yes yes n=11/11

Age at first words 24 m delayed 7 years 4 y unknown unknown 2.5 y unknown 18 m unknown not verbal

Verbal at 
evaluation?

yes minimally yes yes yes yes yes yes yes no no n=8/11

Intellectual 
disability?

no yes yes no no no no yes no yes yes

Behavioral 
Features

Autism? no yes yes yes no no no no no no yes n=4/11

ADHD? yes yes no yes no yes no no no no no n=4/11

Sleep disturbances ? no yes yes no yes no yes no no no no n=4/11

Neurologic 
features

Tone abnormalities? no yes no no no no no yes no no yes n=3/11

Other clinical 
features

Dysmorphic 
features?

no yes no yes yes yes yes yes no yes yes n=8/11

Ophthalmology 
findings?

yes no no yes yes yes no yes no yes yes n=7/11

Dermatology 
findings?

no yes no yes yes no yes no no no yes n=5/11

Orthopedic 
findings?

no no no yes yes yes yes yes no no yes n=6/11
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