Skip to main content
. 2022 Feb 3;15:22. doi: 10.1186/s13048-022-00943-z

Table 4.

The diagnostic performance in differentiating malignancies from BOT based on various MR-based radiomics models

Model Group SEN SPE PPV NPV ACC AUC(95% CI)
2d_cor Training 0.708 0.936 0.919 0.759 0.821 0.90(0.85–0.96)
2d_cor Testing 0.729 0.851 0.833 0.755 0.789 0.82(0.73–0.90)
3d_cor Training 0.875 0.717 0.764 0.846 0.798 0.85(0.77–0.93)
3d_cor Testing 0.936 0.717 0.772 0.917 0.828 0.84(0.76–0.93)
2d_sag Training 0.776 0.902 0.884 0.807 0.840 0.89(0.83–0.96)
2d_sag Testing 0.729 0.824 0.795 0.764 0.778 0.79(0.69–0.88)
3d_sag Training 1.000 1.000 1.000 1.000 1.000 1.0(1.0–1.0)
3d_sag Testing 1.000 0.980 0.980 1.000 0.990 1.0(1.0–1.0)

SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative positive value, ACC accuracy, AUC area under the curve, CI confidence interval