Table 4.
Model | Group | SEN | SPE | PPV | NPV | ACC | AUC(95% CI) |
---|---|---|---|---|---|---|---|
2d_cor | Training | 0.708 | 0.936 | 0.919 | 0.759 | 0.821 | 0.90(0.85–0.96) |
2d_cor | Testing | 0.729 | 0.851 | 0.833 | 0.755 | 0.789 | 0.82(0.73–0.90) |
3d_cor | Training | 0.875 | 0.717 | 0.764 | 0.846 | 0.798 | 0.85(0.77–0.93) |
3d_cor | Testing | 0.936 | 0.717 | 0.772 | 0.917 | 0.828 | 0.84(0.76–0.93) |
2d_sag | Training | 0.776 | 0.902 | 0.884 | 0.807 | 0.840 | 0.89(0.83–0.96) |
2d_sag | Testing | 0.729 | 0.824 | 0.795 | 0.764 | 0.778 | 0.79(0.69–0.88) |
3d_sag | Training | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.0(1.0–1.0) |
3d_sag | Testing | 1.000 | 0.980 | 0.980 | 1.000 | 0.990 | 1.0(1.0–1.0) |
SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative positive value, ACC accuracy, AUC area under the curve, CI confidence interval