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Background: The role of artificial intelligence (AI) in health 
care is expanding rapidly. Currently, there are at least 29 US 
Food and Drug Administration-approved AI health care de-
vices that apply to numerous medical specialties and many 
more are in development.
Observations: With increasing expectations for all health 
care sectors to deliver timely, fiscally-responsible, high-
quality health care, AI has potential utility in numerous 
areas, such as image analysis, improved workflow and ef-
ficiency, public health, and epidemiology, to aid in pro-

cessing large volumes of patient and medical data. In this 
review, we describe basic terminology, principles, and 
general AI applications relating to health care. We then 
discuss current and future applications for a variety of 
medical specialties. Finally, we discuss the future potential 
of AI along with the potential risks and limitations of current  
AI technology.
Conclusions: AI can improve diagnostic accuracy, increase 
patient safety, assist with patient triage, monitor disease pro-
gression, and assist with treatment decisions. 
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Artificial Intelligence (AI) was first 
described in 1956 and refers to ma-
chines having the ability to learn 

as they receive and process information, 
resulting in the ability to “think” like hu-
mans.1 AI’s impact in medicine is increas-
ing; currently, at least 29 AI medical devices 
and algorithms are approved by the US 
Food and Drug Administration (FDA) in 
a variety of areas, including radiograph in-
terpretation, managing glucose levels in 
patients with diabetes mellitus, analyzing 
electrocardiograms (ECGs), and diagnos-
ing sleep disorders among others.2 Signifi-
cantly, in 2020, the Centers for Medicare 
and Medicaid Services (CMS) announced 
the first reimbursement to hospitals for an 
AI platform, a model for early detection of 
strokes.3 AI is rapidly becoming an integral 
part of health care, and its role will only in-
crease in the future (Table).

As knowledge in medicine is expanding 
exponentially, AI has great potential to assist 
with handling complex patient care data. The 
concept of exponential growth is not a natu-
ral one. As Bini described, with exponential 
growth the volume of knowledge amassed 
over the past 10 years will now occur in per-
haps only 1 year.1 Likewise, equivalent ad-
vances over the past year may take just a few 
months. This phenomenon is partly due to 
the law of accelerating returns, which states 
that advances feed on themselves, continu-
ally increasing the rate of further advances.4 
The volume of medical data doubles every 
2 to 5 years.5 Fortunately, the field of AI is 
growing exponentially as well and can help 

health care practitioners (HCPs) keep pace, 
allowing the continued delivery of effective 
health care.

In this report, we review common termi-
nology, principles, and general applications of 
AI, followed by current and potential appli-
cations of AI for selected medical specialties. 
Finally, we discuss AI’s future in health care, 
along with potential risks and pitfalls.

AI OVERVIEW
AI refers to machine programs that can 
“learn” or think based on past experi-
ences. This functionality contrasts with sim-
ple rules-based programming available to 
health care for years. An example of rules-
based programming is the warfarindosing.
org website developed by Barnes-Jewish Hos-
pital at Washington University Medical Cen-
ter, which guides initial warfarin dosing.6,7 
The prescriber inputs detailed patient infor-
mation, including age, sex, height, weight, 
tobacco history, medications, laboratory re-
sults, and genotype if available. The ap-
plication then calculates recommended 
warfarin dosing regimens to avoid over- or  
underanticoagulation. While the dosing algo-
rithm may be complex, it depends entirely on 
preprogrammed rules. The program does not 
learn to reach its conclusions and recommen-
dations from patient data.

In contrast, one of the most common 
subsets of AI is machine learning (ML).  
ML describes a program that “learns from 
experience and improves its performance as 
it learns.”1 With ML, the computer is ini-
tially provided with a training data set—data 
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with known outcomes or labels. Because 
the initial data are input from known sam-
ples, this type of AI is known as supervised 
learning.8-10 As an example, we recently re-
ported using ML to diagnose various types 
of cancer from pathology slides.11 In one 
experiment, we captured images of colon 
adenocarcinoma and normal colon (these  
2 groups represent the training data set). Un-
like traditional programming, we did not 
define characteristics that would differen-
tiate colon cancer from normal; rather, the 
machine learned these characteristics inde-
pendently by assessing the labeled images 
provided. A second data set (the validation 
data set) was used to evaluate the program 
and fine-tune the ML training model’s pa-
rameters. Finally, the program was presented 
with new images of cancer and normal cases 
for final assessment of accuracy (test data 
set). Our program learned to recognize dif-
ferences from the images provided and was 
able to differentiate normal and cancer im-
ages with > 95% accuracy.

Advances in computer processing have 
allowed for the development of artificial 
neural networks (ANNs). While there are 
several types of ANNs, the most common 

types used for image classification and seg-
mentation are known as convolutional neu-
ral networks (CNNs).9,12-14 The programs 
are designed to work similar to the human 
brain, specifically the visual cortex.15,16 As 
data are acquired, they are processed by var-
ious layers in the program. Much like neu-
rons in the brain, one layer decides whether 
to advance information to the next.13,14 
CNNs can be many layers deep, leading to 
the term deep learning: “computational mod-
els that are composed of multiple processing 
layers to learn representations of data with 
multiple levels of abstraction.”1,13,17

ANNs can process larger volumes of data. 
This advance has led to the development 
of unstructured or unsupervised learning. 
With this type of learning, imputing defined 
features (ie, predetermined answers) of the 
training data set described above is no lon-
ger required.1,8,10,14 The advantage of unsu-
pervised learning is that the program can be 
presented raw data and extract meaningful 
interpretation without human input, often 
with less bias than may exist with supervised 
learning.1,18 If shown enough data, the pro-
gram can extract relevant features to make 
conclusions independently without pre-
defined definitions, potentially uncovering 
markers not previously known. For example, 
several studies have used unsupervised learn-
ing to search patient data to assess readmis-
sion risks of patients with congestive heart 
failure.10,19,20 AI compiled features indepen-
dently and not previously defined, predicting 
patients at greater risk for readmission supe-
rior to traditional methods.

A more detailed description of the various 
terminologies and techniques of AI is beyond 
the scope of this review.9,10,17,21 However, in 
this basic overview, we describe 4 general 
areas that AI impacts health care (Figure).

Health Care Applications
Image analysis has seen the most AI health 
care applications.8,15 AI has shown potential 
in interpreting many types of medical im-
ages, including pathology slides, radiographs 
of various types, retina and other eye scans, 
and photographs of skin lesions. Many stud-
ies have demonstrated that AI can inter-
pret these images as accurately as or even 
better than experienced clinicians.9,13,22-29 
Studies have suggested AI interpretation of 

TABLE Key Historical Events in Artifical Intelligence  
Development With a Focus on Health Care Applications
Years Events

1943 Neural network conceptual paper published118

1956 The term artificial intelligence is coined by John McCarthy1

1959 The term machine learning is coined by Arthur Samuel119

1983 First computer digitized X-ray developed for radiology120

1986 The term deep learning introduced by Rina Dechter121

1989 Convolutional neural networks invented by Yann LeCun122

2011 IBM Watson beats human contestants at Jeopardy game show44

2016 AlphaGo artificial intelligence system beats professional GO player44

2016 FDA approves the first artificial intelligence software for patient care2

2017 FDA approves the first whole slide scanner for clinical use in pathology 
(Philips IntelliSite)123

2018 FDA approves the first medical device for patient care without physician 
oversight (IDx-DR)75

2020 Centers for Medicare and Medicaid Services announces the first  
reimbursement to hospital for use of artificial intelligence technologies3

Abbreviation: FDA, US Food and Drug Administration.
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radiographs may better distinguish patients  
infected with COVID-19 from other causes 
of pneumonia, and AI interpretation of pa-
thology slides may detect specific genetic 
mutations not previously identified without 
additional molecular tests.11,14,23,24,30-32

The second area in which AI can impact 
health care is improving workflow and effi-
ciency. AI has improved surgery scheduling, 
saving significant revenue, and decreased pa-
tient wait times for appointments.1 AI can 
screen and triage radiographs, allowing at-
tention to be directed to critical patients. This 
use would be valuable in many busy clinical 
settings, such as the recent COVID-19 pan-
demic.8,23 Similarly, AI can screen retina im-
ages to prioritize urgent conditions.25 AI has 
improved pathologists’ efficiency when used 
to detect breast metastases.33 Finally, AI may 
reduce medical errors, thereby ensuring pa-
tient safety.8,9,34

A third health care benefit of AI is in 
public health and epidemiology. AI can as-
sist with clinical decision-making and di-
agnoses in low-income countries and areas 
with limited health care resources and per-
sonnel.25,29 AI can improve identification of 
infectious outbreaks, such as tuberculosis, 
malaria, dengue fever, and influenza.29,35-40 
AI has been used to predict transmission 
patterns of the Zika virus and the current 
COVID-19 pandemic.41,42 Applications can 
stratify the risk of outbreaks based on multi-
ple factors, including age, income, race, atyp-
ical geographic clusters, and seasonal factors 
like rainfall and temperature.35,36,38,43 AI has 
been used to assess morbidity and mortal-
ity, such as predicting disease severity with 
malaria and identifying treatment failures in  
tuberculosis.29

Finally, AI can dramatically impact health 
care due to processing large data sets or dis-
connected volumes of patient information—
so-called big data.44-46 An example is the 
widespread use of electronic health records 
(EHRs) such as the Computerized Patient 
Record System used in Veteran Affairs med-
ical centers (VAMCs). Much of patient in-
formation exists in written text: HCP notes, 
laboratory and radiology reports, medica-
tion records, etc. Natural language processing 
(NLP) allows platforms to sort through ex-
tensive volumes of data on complex patients 
at rates much faster than human capability, 

which has great potential to assist with diag-
nosis and treatment decisions.9

Medical literature is being produced at 
rates that exceed our ability to digest. More 
than 200,000 cancer-related articles were 
published in 2019 alone.14 NLP capabili-
ties of AI have the potential to rapidly sort 
through this extensive medical literature and 
relate specific verbiage in patient records 
guiding therapy.46 IBM Watson, a supercom-
puter based on ML and NLP, demonstrates 
this concept with many potential applica-
tions, only some of which relate to health 
care.1,9 Watson has an oncology component 
to assimilate multiple aspects of patient care, 
including clinical notes, pathology results, 
radiograph findings, staging, and a tumor’s 
genetic profile. It coordinates these inputs 
from the EHR and mines medical literature 
and research databases to recommend treat-
ment options.1,46 AI can assess and compile 
far greater patient data and therapeutic op-
tions than would be feasible by individual cli-
nicians, thus providing customized patient 
care.47 Watson has partnered with numer-
ous medical centers, including MD Anderson 
Cancer Center and Memorial Sloan Kettering 
Cancer Center, with variable success.44,47-49 
While the full potential of Watson appears 
not yet realized, these AI-driven approaches 
will likely play an important role in leverag-
ing the hidden value in the expanding vol-
ume of health care information.

MEDICAL SPECIALTY APPLICATIONS
Radiology
Currently > 70% of FDA-approved AI medi-
cal devices are in the field of radiology.2 Most 
radiology departments have used AI-friendly 
digital imaging for years, such as the picture 
archiving and communication systems used 
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by numerous health care systems, includ-
ing VAMCs.2,15 Gray-scale images common 
in radiology lend themselves to standardiza-
tion, although AI is not limited to black-and- 
white image interpretation.15

An abundance of literature describes plain 
radiograph interpretation using AI. One FDA-
approved platform improved X-ray diagno-
sis of wrist fractures when used by emergency 
medicine clinicians.2,50 AI has been applied 
to chest X-ray (CXR) interpretation of many 
conditions, including pneumonia, tubercu-
losis, malignant lung lesions, and COVID-
19.23,25,28,44,51-53 For example, Nam and 
colleagues suggested AI is better at diagnos-
ing malignant pulmonary nodules from CXRs 
than are trained radiologists.28

In addition to plain radiographs, AI has 
been applied to many other imaging tech-
nologies, including ultrasounds, positron 
emission tomography, mammograms, com-
puted tomography (CT), and magnetic res-
onance imaging (MRI).15,26,44,48,54-56 A large 
study demonstrated that ML platforms sig-
nificantly reduced the time to diagnose in-
tracranial hemorrhages on CT and identified 
subtle hemorrhages missed by radiologists.55 
Other studies have claimed that AI programs 
may be better than radiologists in detect-
ing cancer in screening mammograms, and 
3 FDA-approved devices focus on mam-
mogram interpretation.2,15,54,57 There is also 
great interest in MRI applications to detect 
and predict prognosis for breast cancer based 
on imaging findings.21,56

Aside from providing accurate diagno-
ses, other studies focus on AI radiograph 
interpretation to assist with patient screen-
ing, triage, improving time to final diagno-
sis, providing a rapid “second opinion,” and 
even monitoring disease progression and of-
fering insights into prognosis.8,21,23,52,55,56,58 
These features help in busy urban centers 
but may play an even greater role in areas 
with limited access to health care or trained 
specialists such as radiologists.52

Cardiology
Cardiology has the second highest number 
of FDA-approved AI applications.2 Many car-
diology AI platforms involve image analysis, 
as described in several recent reviews.45,59,60 
AI has been applied to echocardiography to 
measure ejection fractions, detect valvular 

disease, and assess heart failure from hyper-
trophic and restrictive cardiomyopathy and 
amyloidosis.45,48,59 Applications for cardiac 
CT scans and CT angiography have success-
fully quantified both calcified and noncal-
cified coronary artery plaques and lumen 
assessments, assessed myocardial perfu-
sion, and performed coronary artery cal-
cium scoring.45,59,60 Likewise, AI applications 
for cardiac MRI have been used to quanti-
tate ejection fraction, large vessel flow assess-
ment, and cardiac scar burden.45,59

For years ECG devices have provided in-
terpretation with limited accuracy using pre-
programmed parameters.48 However, the 
application of AI allows ECG interpreta-
tion on par with trained cardiologists. Nu-
merous such AI applications exist, and  
2 FDA-approved devices perform ECG in-
terpretation.2,61-64 One of these devices incor-
porates an AI-powered stethoscope to detect 
atrial fibrillation and heart murmurs.65

Pathology
The advancement of whole slide imaging, 
wherein entire slides can be scanned and dig-
itized at high speed and resolution, creates 
great potential for AI applications in pathol-
ogy.12,24,32,33,66 A landmark study demonstrat-
ing the potential of AI for assessing whole 
slide imaging examined sentinel lymph 
node metastases in patients with breast can-
cer.22 Multiple algorithms in the study dem-
onstrated that AI was equivalent or better 
than pathologists in detecting metastases, es-
pecially when the pathologists were time- 
constrained consistent with a normal work-
ing environment. Significantly, the most ac-
curate and efficient diagnoses were achieved 
when the pathologist and AI interpretations 
were used together.22,33

AI has shown promise in diagnosing many 
other entities, including cancers of the pros-
tate (including Gleason scoring), lung, colon, 
breast, and skin.11,12,24,27,32,67 In addition, AI 
has shown great potential in scoring bio-
markers important for prognosis and treat-
ment, such as immunohistochemistry (IHC) 
labeling of Ki-67 and PD-L1.32 Pathologists 
can have difficulty classifying certain tumors 
or determining the site of origin for metas-
tases, often having to rely on IHC with lim-
ited success. The unique features of image 
analysis with AI have the potential to assist in  
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classifying difficult tumors and identifying 
sites of origin for metastatic disease based on 
morphology alone.11

Oncology depends heavily on molecular 
pathology testing to dictate treatment options 
and determine prognosis. Preliminary studies 
suggest that AI interpretation alone has the 
potential to delineate whether certain mo-
lecular mutations are present in tumors from 
various sites.11,14,24,32 One study combined 
histology and genomic results for AI interpre-
tation that improved prognostic predictions.68 
In addition, AI analysis may have potential 
in predicting tumor recurrence or prognosis 
based on cellular features, as demonstrated 
for lung cancer and melanoma.67,69,70

Ophthalmology
AI applications for ophthalmology have fo-
cused on diabetic retinopathy, age-related 
macular degeneration, glaucoma, retinopa-
thy of prematurity, age-related and congeni-
tal cataracts, and retinal vein occlusion.71-73 
Diabetic retinopathy is a leading cause of 
blindness and has been studied by numer-
ous platforms with good success, most hav-
ing used color fundus photography.71,72 One 
study showed AI could diagnose diabetic ret-
inopathy and diabetic macular edema with 
specificities similar to ophthalmologists.74 
In 2018, the FDA approved the AI platform 
IDx-DR. This diagnostic system classifies ret-
inal images and recommends referral for pa-
tients determined to have “more than mild 
diabetic retinopathy” and reexamination 
within a year for other patients.8,75 Signifi-
cantly, the platform recommendations do not 
require confirmation by a clinician.8

AI has been applied to other modalities 
in ophthalmology such as optical coherence 
tomography (OCT) to diagnose retinal dis-
ease and to predict appropriate management 
of congenital cataracts.25,73,76 For example, an 
AI application using OCT has been demon-
strated to match or exceed the accuracy of 
retinal experts in diagnosing and triaging pa-
tients with a variety of retinal pathologies, in-
cluding patients needing urgent referrals.77

Dermatology
Multiple studies demonstrate AI performs 
at least equal to experienced dermatologists 
in differentiating selected skin lesions.78-81 
For example, Esteva and colleagues demon-

strated AI could differentiate keratinocyte 
carcinomas from benign seborrheic keratoses 
and malignant melanomas from benign nevi 
with accuracy equal to 21 board-certified  
dermatologists.78

AI is applicable to various imaging proce-
dures common to dermatology, such as der-
moscopy, very high-frequency ultrasound, 
and reflectance confocal microscopy.82 Sev-
eral studies have demonstrated that AI 
interpretation compared favorably to der-
matologists evaluating dermoscopy to assess 
melanocytic lesions.78-81,83

A limitation in these studies is that they 
differentiate only a few diagnoses.82 Further-
more, dermatologists have sensory input 
such as touch and visual examination under 
various conditions, something AI has yet to 
replicate.15,34,84 Also, most AI devices use no 
or limited clinical information.81 Dermatolo-
gists can recognize rarer conditions for which 
AI models may have had limited or no train-
ing.34 Nevertheless, a recent study assessed 
AI for the diagnosis of 134 separate skin dis-
orders with promising results, including 
providing diagnoses with accuracy compa-
rable to that of dermatologists and provid-
ing accurate treatment strategies.84 As Topol 
points out, most skin lesions are diagnosed 
in the primary care setting where AI can have 
a greater impact when used in conjunction 
with the clinical impression, especially where 
specialists are in limited supply.48,78

Finally, dermatology lends itself to using 
portable or smartphone applications (apps) 
wherein the user can photograph a lesion for 
analysis by AI algorithms to assess the need 
for further evaluation or make treatment rec-
ommendations.34,84,85 Although results from 
currently available apps are not encouraging, 
they may play a greater role as the technology 
advances.34,85

Oncology
Applications of AI in oncology include pre-
dicting prognosis for patients with cancer 
based on histologic and/or genetic informa-
tion.14,68,86 Programs can predict the risk of 
complications before and recurrence risks 
after surgery for malignancies.44,87-89 AI can 
also assist in treatment planning and predict 
treatment failure with radiation therapy.90,91

AI has great potential in processing the 
large volumes of patient data in cancer  
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genomics. Next-generation sequencing has  
allowed for the identification of millions of 
DNA sequences in a single tumor to detect 
genetic anomalies.92 Thousands of mutations 
can be found in individual tumor samples, 
and processing this information and deter-
mining its significance can be beyond human 
capability.14 We know little about the effects 
of various mutation combinations, and most 
tumors have a heterogeneous molecular pro-
file among different cell populations.14,93 The 
presence or absence of various mutations can 
have diagnostic, prognostic, and therapeutic 
implications.93 AI has great potential to sort 
through these complex data and identify ac-
tionable findings.

More than 200,000 cancer-related articles 
were published in 2019, and publications in 
the field of cancer genomics are increasing ex-
ponentially.14,92,93 Patel and colleagues assessed 
the utility of IBM Watson for Genomics against 
results from a molecular tumor board.93 Wat-
son for Genomics identified potentially signif-
icant mutations not identified by the tumor 
board in 32% of patients. Most mutations were 
related to new clinical trials not yet added to 
the tumor board watch list, demonstrating the 
role AI will have in processing the large vol-
ume of genetic data required to deliver person-
alized medicine moving forward.

Gastroenterology
AI has shown promise in predicting risk or 
outcomes based on clinical parameters in 
various common gastroenterology problems, 
including gastric reflux, acute pancreatitis, 
gastrointestinal bleeding, celiac disease, and 
inflammatory bowel disease.94,95 AI endo-
scopic analysis has demonstrated potential 
in assessing Barrett’s esophagus, gastric He-
licobacter pylori infections, gastric atrophy, 
and gastric intestinal metaplasia.95 Applica-
tions have been used to assess esophageal, 
gastric, and colonic malignancies, including 
depth of invasion based on endoscopic im-
ages.95 Finally, studies have evaluated AI to 
assess small colon polyps during colonos-
copy, including differentiating benign and 
premalignant polyps with success compa-
rable to gastroenterologists.94,95 AI has been 
shown to increase the speed and accuracy 
of gastroenterologists in detecting small pol-
yps during colonoscopy.48 In a prospective 
randomized study, colonoscopies performed 

using an AI device identified significantly 
more small adenomatous polyps than colo-
noscopies without AI.96

Neurology
It has been suggested that AI technologies 
are well suited for application in neurol-
ogy due to the subtle presentation of many 
neurologic diseases.16 Viz LVO, the first 
CMS-approved AI reimbursement for the 
diagnosis of strokes, analyzes CTs to de-
tect early ischemic strokes and alerts the 
medical team, thus shortening time to treat-
ment.3,97 Many other AI platforms are in use 
or development that use CT and MRI for 
the early detection of strokes as well as for 
treatment and prognosis.9,97

AI technologies have been applied to neu-
rodegenerative diseases, such as Alzheimer 
and Parkinson diseases.16,98 For example, sev-
eral studies have evaluated patient move-
ments in Parkinson disease for both early 
diagnosis and to assess response to treat-
ment.98 These evaluations included assess-
ment with both external cameras as well as 
wearable devices and smartphone apps.

AI has also been applied to seizure disor-
ders, attempting to determine seizure type, 
localize the area of seizure onset, and address 
the challenges of identifying seizures in neo-
nates.99,100 Other potential applications range 
from early detection and prognosis predic-
tions for cases of multiple sclerosis to restor-
ing movement in paralysis from a variety of 
conditions such as spinal cord injury.9,101,102

Mental Health
Due to the interactive nature of mental health 
care, the field has been slower to develop AI 
applications.18 With heavy reliance on textual 
information (eg, clinic notes, mood rating 
scales, and documentation of conversations), 
successful AI applications in this field will 
likely rely heavily on NLP.18 However, stud-
ies investigating the application of AI to men-
tal health have also incorporated data such 
as brain imaging, smartphone monitoring, 
and social media platforms, such as Face-
book and Twitter.18,103,104

The risk of suicide is higher in veteran pa-
tients, and ML algorithms have had limited 
success in predicting suicide risk in both vet-
eran and nonveteran populations.104-106 While 
early models have low positive predictive 
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values and low sensitivities, they still prom-
ise to be a useful tool in conjunction with 
traditional risk assessments.106 Kessler and 
colleagues suggest that combining multiple 
rather than single ML algorithms might lead 
to greater success.105,106

AI may assist in diagnosing other mental 
health disorders, including major depressive 
disorder, attention deficit hyperactivity dis-
order (ADHD), schizophrenia, posttraumatic 
stress disorder, and Alzheimer disease.103,104,107 
These investigations are in the early stages 
with limited clinical applicability. However,  
2 AI applications awaiting FDA approval re-
late to ADHD and opioid use.2 Furthermore, 
potential exists for AI to not only assist with 
prevention and diagnosis of ADHD, but also 
to identify optimal treatment options.2,103

General and Personalized Medicine
Additional AI applications include diagnos-
ing patients with suspected sepsis, measuring 
liver iron concentrations, predicting hospi-
tal mortality at the time of admission, and 
more.2,108,109 AI can guide end-of-life deci-
sions such as resuscitation status or whether 
to initiate mechanical ventilation.48

AI-driven smartphone apps can be benefi-
cial to both patients and clinicians. Examples 
include predicting nonadherence to antico-
agulation therapy, monitoring heart rhythms 
for atrial fibrillation or signs of hyperkalemia 
in patients with renal failure, and improving 
outcomes for patients with diabetes mellitus 
by decreasing glycemic variability and reduc-
ing hypoglycemia.8,48,110,111 The potential for 
AI applications to health care and personal-
ized medicine are almost limitless.

DISCUSSION
With ever-increasing expectations for all 
health care sectors to deliver timely, fiscally-
responsible, high-quality health care, AI has 
the potential to have numerous impacts. AI 
can improve diagnostic accuracy while lim-
iting errors and impact patient safety such 
as assisting with prescription delivery.8,9,34 It 
can screen and triage patients, alerting clini-
cians to those needing more urgent evalua-
tion.8,23,77,97 AI also may increase a clinician’s 
efficiency and speed to render a diagno-
sis.12,13,55,97 AI can provide a rapid second 
opinion, an ability especially beneficial in 
underserved areas with shortages of special-

ists.23,25,26,29,34 Similarly, AI may decrease the 
inter- and intraobserver variability common 
in many medical specialties.12,27,45 AI applica-
tions can also monitor disease progression, 
identifying patients at greatest risk, and pro-
vide information for prognosis.21,23,56,58 Finally, 
as described with applications using IBM 
Watson, AI can allow for an integrated ap-
proach to health care that is currently lacking.

We have described many reports suggest-
ing AI can render diagnoses as well as or 
better than experienced clinicians, and spec-
ulation exists that AI will replace many roles 
currently performed by health care practitio-
ners.9,26 However, most studies demonstrate 
that AI’s diagnostic benefits are best realized 
when used to supplement a clinician’s im-
pression.8,22,30,33,52,54,56,69,84 AI is not likely to 
replace humans in health care in the fore-
seeable future. The technology can be lik-
ened to the impact of CT scans developed in 
the 1970s in neurology. Prior to such detailed 
imaging, neurologists spent extensive time 
performing detailed physicals to render diag-
noses and locate lesions before surgery. There 
was mistrust of this new technology and con-
cern that CT scans would eliminate the need 
for neurologists.112 On the contrary, neurol-
ogy is alive and well, frequently being aug-
mented by the technologies once speculated 
to replace it.

Commercial AI health care platforms rep-
resented a $2 billion industry in 2018 and are 
growing rapidly each year.13,32 Many AI prod-
ucts are offered ready for implementation for 
various tasks, including diagnostics, patient 
management, and improved efficiency. Oth-
ers will likely be provided as templates suit-
able for modification to meet the specific 
needs of the facility, practice, or specialty for 
its patient population.

AI Risks and Limitations
AI has several risks and limitations. Although 
there is progress in explainable AI, at times 
we still struggle to understand how the out-
put provided by machine learning algorithms 
was created.44,48 The many layers associated 
with deep learning self-determine the criteria 
to reach its conclusion, and these criteria can 
continually evolve. The parameters of deep 
learning are not preprogrammed, and there 
are too many individual data points to be ex-
trapolated or deconvoluted for evaluation 
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at our current level of knowledge.26,51 These  
apparent lack of constraints cause concern 
for patient safety and suggest that greater val-
idation and continued scrutiny of validity is 
required.8,48 Efforts are underway to create 
explainable AI programs to make their pro-
cesses more transparent, but such clarifica-
tion is limited presently.14,26,48,77

Another challenge of AI is determin-
ing the amount of training data required to 
function optimally. Also, if the output de-
scribes multiple variables or diagnoses, are 
each equally valid?113 Furthermore, many 
AI applications look for a specific process, 
such as cancer diagnoses on CXRs. How-
ever, how coexisting conditions like cardio-
megaly, emphysema, pneumonia, etc, seen 
on CXRs will affect the diagnosis needs to 
be considered.51,52 Zech and colleagues pro-
vide the example that diagnoses for pneu-
mothorax are frequently rendered on CXRs 
with chest tubes in place.51 They suggest that 
CNNs may develop a bias toward diagnosing 
pneumothorax when chest tubes are pres-
ent. Many current studies approach an issue 
in isolation, a situation not realistic in real-
world clinical practice.26

Most studies on AI have been retrospec-
tive, and frequently data used to train the 
program are preselected.13,26 The data are typ-
ically validated on available databases rather 
than actual patients in the clinical setting, 
limiting confidence in the validity of the AI 
output when applied to real-world situations. 
Currently, fewer than 12 prospective trials 
had been published comparing AI with tra-
ditional clinical care.13,114 Randomized pro-
spective clinical trials are even fewer, with 
none currently reported from the United 
States.13,114 The results from several studies 
have been shown to diminish when repeated 
prospectively.114

The FDA has created a new category 
known as Software as a Medical Device and 
has a Digital Health Innovation Action Plan 
to regulate AI platforms. Still, the process of 
AI regulation is of necessity different from 
traditional approval processes and is contin-
ually evolving.8 The FDA approval process 
cannot account for the fact that the program’s 
parameters may continually evolve or adapt.2

Guidelines for investigating and report-
ing AI research with its unique attributes 
are being developed. Examples include the  

TRIPOD-ML statement and others.49,115 In 
September 2020, 2 publications addressed 
the paucity of gold-standard randomized 
clinical trials in clinical AI applications.116,117 
The SPIRIT-AI statement expands on the 
original SPIRIT statement published in 2013 
to guide minimal reporting standards for AI 
clinical trial protocols to promote transpar-
ency of design and methodology.116 Similarly, 
the CONSORT-AI extension, stemming from 
the original CONSORT statement in 1996, 
aims to ensure quality reporting of random-
ized controlled trials in AI.117

Another risk with AI is that while an in-
dividual physician making a mistake may 
adversely affect 1 patient, a single mistake 
in an AI algorithm could potentially affect 
thousands of patients.48 Also, AI programs 
developed for patient populations at a facil-
ity may not translate to another. Referred to 
as overfitting, this phenomenon relates to 
selection bias in training data sets.15,34,49,51,52 
Studies have shown that programs that un-
derrepresent certain group characteristics 
such as age, sex, or race may be less effec-
tive when applied to a population in which 
these characteristics have differing repre-
sentations.8,48,49 This problem of under-
representation has been demonstrated in 
programs interpreting pathology slides, ra-
diographs, and skin lesions.15,32,51

Admittedly, most of these challenges are 
not specific to AI and existed in health care 
previously. Physicians make mistakes, treat-
ments are sometimes used without adequate 
prospective studies, and medications are 
given without understanding their mecha-
nism of action, much like AI-facilitated pro-
cesses reach a conclusion that cannot be fully 
explained.48

CONCLUSIONS
The view that AI will dramatically impact 
health care in the coming years will likely 
prove true. However, much work is needed, 
especially because of the paucity of prospec-
tive clinical trials as has been historically re-
quired in medical research. Any concern that 
AI will replace HCPs seems unwarranted. 
Early studies suggest that even AI programs 
that appear to exceed human interpreta-
tion perform best when working in coop-
eration with and oversight from clinicians. 
AI’s greatest potential appears to be its ability 
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to augment care from health professionals,  
improving efficiency and accuracy, and 
should be anticipated with enthusiasm as the 
field moves forward at an exponential rate.
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