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Veikko Salomaab, Leo Lahtie, and Teemu Niiranena,b
Journal of Hypertension 2022, 40:579–587
aDepartment of Medicine, Turku University Hospital and University of Turku, Turku,
bDepartment of Public Health and Welfare, Finnish Institute for Health and Welfare,
cNightingale Health Plc, dInstitute for Molecular Medicine Finland (FIMM), HiLIFE,
Helsinki, eDepartment of Computing, University of Turku, Turku, Finland, fEstonian
Genome Center, University of Tartu, Tartu, Estonia, gInstitute for Molecular
Medicine, University of Helsinki, Helsinki, hComputational Medicine, Faculty of
Medicine, University of Oulu and Biocenter Oulu, iCenter for Life Course Health
Research, University of Oulu, Oulu and jNMR Metabolomics Laboratory, School of
Pharmacy, University of Eastern Finland, Kuopio, Finland

Correspondence to Joonatan Palmu, Department of Internal Medicine, Kiinamyllyn-
katu 4–8, 20014 University of Turku, Turku, Finland. E-mail: jjmpal@utu.fi

Received 8 July 2021 Revised 4 November 2021 Accepted 4 November 2021

J Hypertens 40:579–587 Copyright � 2021 The Author(s). Published by Wolters
Kluwer Health, Inc. This is an open access article distributed under the Creative
Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.
Objective: Previous studies on the association between
metabolic biomarkers and hypertension have been limited
by small sample sizes, low number of studied biomarkers,
and cross-sectional study design. In the largest study to
date, we assess the cross-sectional and longitudinal
associations between high-abundance serum biomarkers
and blood pressure (BP).

Methods: We studied cross-sectional (N¼ 36 985; age
50.5�14.2; 53.1% women) and longitudinal (N¼ 4197;
age 49.4�11.8, 55.3% women) population samples of
Finnish individuals. We included 53 serum biomarkers and
other detailed lipoprotein subclass measures in our
analyses. We studied the associations between serum
biomarkers and BP using both conventional statistical
methods and a machine learning algorithm (gradient
boosting) while adjusting for clinical risk factors.

Results: Fifty-one of 53 serum biomarkers were cross-
sectionally related to BP (adjusted P<0.05 for all).
Conventional linear regression modeling demonstrated that
LDL cholesterol, remnant cholesterol, apolipoprotein B, and
acetate were positively, and HDL particle size was
negatively, associated with SBP change over time (adjusted
P<0.05 for all). Adding serum biomarkers (cross-sectional
root-mean-square error: 16.27 mmHg; longitudinal:
17.61 mmHg) in the model with clinical measures (cross-
sectional: 16.70 mmHg; longitudinal 18.52 mmHg)
improved the machine learning model fit. Glucose,
albumin, triglycerides in LDL, glycerol, VLDL particle size,
and acetoacetate had the highest importance scores in
models related to current or future BP.

Conclusion: Our results suggest that serum lipids, and
particularly LDL-derived and VLDL-derived cholesterol
measures, and glucose metabolism abnormalities are
associated with hypertension onset. Use of serum
metabolite determination could improve identification of
individuals at high risk of developing hypertension.

Keywords: amino acids, blood pressure, hypertension,
inflammation, lipids, nuclear magnetic resonance
spectroscopy

Abbreviations: BCAA, branched amino acids; BP, blood
pressure; NMR, nuclear magnetic resonance spectroscopy;
PUFA, polyunsaturated fatty acids; SCFA, short-chain fatty
acid; SFA, saturated fatty acids
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INTRODUCTION
A
lthough many hypertension risk factors have been
identified, the exact mechanisms behind the age-
related increase in blood pressure (BP) remain

elusive. Present-day metabolomics offers a promising
method to identify and study metabolic biomarkers associ-
ated with current hypertension and future hypertension
onset. However, only a few prior studies have reported
associations between a large number of serum metabolic
measures and hypertension in large population cohorts
with a longitudinal design [1]. Therefore, additional
research on the cross-sectional and longitudinal associa-
tions between metabolic biomarkers and hypertension in
large population samples are warranted. This information
could potentially be used to elucidate the metabolic under-
pinnings of elevated BP [2].

Recent development in high-throughput nuclear mag-
netic resonance (NMR) spectroscopy-based metabolic pro-
filing offers amethod for studying advanced lipidmeasures,
fatty acids, amino acids, and inflammatory proteins in large
population samples [2,3]. In the present study, we aim to
advance the current knowledge on the associations
between circulating metabolic biomarkers and BP in well
phenotyped, representative cross-sectional and longitudi-
nal population samples of 36 985 and 4197 participants,
respectively.
DOI:10.1097/HJH.0000000000003051
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METHODS

Cross-sectional study sample
Our study sample consists of six Finnish population sam-
ples, FINRISK 1997, FINRISK 2002, FINRISK 2007, FINRISK
2012, Health 2000, and FinHealth 2017 (Fig. S1, http://
links.lww.com/HJH/B807). All studies are coordinated by
the Finnish Institute for Health and Welfare. The studies
were approved by the Coordinating Ethics Committee of
the Helsinki University Hospital District and all participants
gave written informed consent.

The FINRISK studies have been performed every 5 years
since 1972 to monitor the development of cardiovascular
risk factors in Finnish population aged 25–74 years [4]. The
FINRISK 1997–2012 study samples consist of participants
randomly drawn from the national population register from
up to six geographical areas in Finland. The proportion of
individuals who participated in the health examinations
varied between 56 and 72% [4]. Health 2000 is a multidisci-
plinary epidemiological survey of individuals aged at least
30 years living in mainland Finland [5]. The participants,
living in 80 municipalities around Finland, were randomly
drawn from the population register in the year 2000 to
participate in a health examination. The participation rate
for health examination was 83%. In FinHealth 2017 study
[6], participants aged at least 18 years were drawn from the
national population register for municipalities in mainland
Finland to participate in a health examination. The partici-
pation rate of the health examination was 58%.

Data were available for a total of 38404 FINRISK, Health
2000, and FinHealth 2017 participants. We excluded 1419
participants because of missing covariates for a final study
sample of 36 985 individuals who were included in the
analysis (Fig. S1, http://links.lww.com/HJH/B807).

Longitudinal study sample
FINRISK 2007 participants who lived in Helsinki, Vantaa,
Turku and Loimaa area were invited to a follow-up exami-
nation in 2014 (participation rate for health examination in
2014 54%) [7,8]. All living participants of Health 2000 were
invited to participate in a follow-up examination in 2011
(participation rate for health examination 59%) [9]. Data
were available for 968 FINRISK 2007 and 3229 Health 2000
participants with repeated BP measurements for a final
longitudinal study sample of 4197 participants (Fig. S1,
http://links.lww.com/HJH/B807).

Study flow
In the FINRISK and FinHealth 2017 studies, after filling in a
questionnaire on sociodemographic information, lifestyles,
medications, and medical history at home, the participants
attended a physical examination at a local study site. The
participants underwent measurements for height and
weight and blood samples were drawn mainly after a
minimum of 4 h of fasting [4]. A study nurse measured
sitting BP three times from the right arm using a mercury
sphygmomanometer with an appropriately sized cuff.

In the Health 2000–2011 study, participants were inter-
viewed by centrally trained interviewers on sociodemo-
graphic information, lifestyle, medications, and medical
580 www.jhypertension.com
history 1–6weeks before attending physical examination at
local study sites. The participants underwent measurements
for height and weight. Overnight fasting blood samples
were drawn. A study nurse measured sitting BP two times
from the right arm using a mercury sphygmomanometer
and a 15� 43 cm sized cuff; a larger cuff was used when
needed.

Serum samples and storage
In all studies, samples were delivered in dry ice to the
Finnish National Institute for Health and Welfare and stored
at �70 8C [5,10]. Metabolic analyses were performed using
1H-NMR spectroscopy on highly automated platform
(Nightingale Health Plc, Helsinki, Finland; biomarker quan-
tification version 2016) [3]. In short, 350 mm serum aliquots
were quantified in molar concentration units independently
from other samples in the same well plate or same cohort
[11]. Measured NMR concentrations have been reported to
be consistent with the available clinical chemistry assays
(cholesterol measures, apolipoproteins, total triglycerides,
glucose, creatinine, and albumin) performed soon after
sample collection [10]. The utilized NMR metabolomics
technology has received regulatory approval (CE) and 37
biomarkers in the panel have been certified to diagnostic
use [11]. We included in our core analyses 53 circulating
biomarkers and also studied 97 lipoprotein measures
related to 14 lipoprotein subclasses.

Outcome variables and covariates
The mean of the last two BP measurements was used to
determine SBP and DBP. Hypertension was defined as SBP
at least 140 mmHg, DBP at least 90mmHg, or self-reported
use of antihypertensive medication. BMI was defined as
weight divided by the square of the body height. Use of
lipid medication, diabetes, smoking, and leisure-time phys-
ical activity were self-reported. Leisure-time activity was
divided into four categories: sedentary, light activity for
over 4 h per week, fitness training or other strenuous
exercise for over 3 h per week, and competitive sports.
Smoking was defined as daily use of tobacco products.

Statistical methods
All metabolic biomarkers (including percentages) were
centered to zero and standardized to unit variance (Table
S1, http://links.lww.com/HJH/B807 and Table S2, http://
links.lww.com/HJH/B807) to simplify pair-wise compari-
sons and graphical representation of the results. Unless
otherwise noted, we adjusted all analyses for age, sex, BMI,
smoking, diabetes mellitus, leisure-time physical activity,
antihypertensive medication (unless the dependent vari-
able was hypertension), lipid medication, and cohort. We
studied the associations for baseline BP and SBP change in
follow-up with baseline metabolic measures using linear
and logistic regression models. We adjusted analyses for
multiple testing using Benjamini–Hochberg correction [12].
The SBP, and not DBP was studied in longitudinal analysis
because of its linear relation with age. We also performed
the previous analyses stratified by median age (50.5 years)
and sex. To assess the validity of sample pooling, we also
performed an inverse variance-weighted fixed-effect meta-
Volume 40 � Number 3 � March 2022
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analysis for per cohort results in cross-sectional (six
cohorts) and longitudinal (two cohorts) study samples.

In addition to conventional (univariable) statistical
approaches, we assessed the multivariable associations of
the 53 circulating biomarkers with baseline and follow-up
SBP using a XGBoost gradient boosting machine learning
algorithm. First, we used three sets of model covariates to
assess model fit: only clinical characteristics, only metabolic
measures, and the combination of clinical characteristics
and metabolic measures [13]. In the longitudinal models,
baseline SBP was included in among the covariates. We
trained our cross-sectional model using a leave-one-group-
out cross-validation in FINRISK 1997–2002 and Health 2011
and used FinHealth 2017 for testing. We used root-mean-
square error to measure training fit in cross-validation. In
the longitudinal analyses, we used the Health 2000–2011
cohort for training with five-fold cross-validation and the
FINRISK 2007–2014 cohort for testing. We performed
Bayesian optimization with the R package ‘mlrMBO’ to
tune the hyperparameters using 42 (six times the number
of hyperparameters) preliminary rounds followed by 100
optimization rounds [14]. We constructed partial depen-
dency plots with the R package ‘pdp’ to study and visualize
the (marginal) associations between model covariates and
SBP [15]. We estimated the fit of final gradient boosting
models using the root-mean-square error.

We used R version 3.6.1 for all statistical analyses and the
source code for the analyses is openly available at
doi:10.5281/zenodo.3625488 [16,17].

RESULTS
The characteristics of the cross-sectional (N¼ 36 985, mean
age 50.5� 14.2 years, 53.1% women) and longitudinal
(N¼ 4197, mean age at baseline 49.4� 11.8 years, 55.3%
women) study samples are reported in Table 1 and Table
S3, http://links.lww.com/HJH/B807, respectively. The sam-
ple selection flow is presented in Fi. S1, http://link-
s.lww.com/HJH/B807.

In the conventional cross-sectional analyses performed
using linear and logistic regression models, only two amino
TABLE 1. Characteristics of the cross-sectional study sample

Characteristics Total FINRISK 1997 Health 20

N 36 985 7106 6039

Age (years) (SD) 50.5 (14.2) 48.2 (13.1) 52.4 (14

Female [N (%)] 19652 (53.1) 3585 (50.5) 3293 (54

BMI (kg/m2) (SD) 27.0 (4.7) 26.6 (4.5) 26.9 (4.6

SBP (mmHg) (SD) 134.7 (19.9) 135.6 (19.8) 134.6 (21

DBP (mmHg) (SD) 80.4 (11.3) 82.3 (11.3) 81.8 (11

Hypertension [N (%) ] 17424 (47.1) 3328 (46.8) 2838 (47

Current smoker [N (%)] 8003 (21.6) 1702 (24.0) 1312 (21

Diabetes mellitus [N (%)] 1748 (4.7) 209 (2.9) 325 (5.4

Exercise [N (%)]
Light 8502 (23.0) 1604 (22.6) 1652 (27

Moderate 19550 (52.9) 4044 (56.9) 3329 (55

Heavy 8392 (22.7) 1376 (19.4) 980 (16

Competitive 541 (1.5) 82 (1.2) 78 (1.3

Antihypertensive medication [N (%)] 6799 (18.4) 927 (13.0) 1068 (17

Lipid medication [N (%)] 3632 (9.8) 237 (3.3) 374 (6.2

Continuous variables are presented as mean (standard deviation) and categorical values as coun
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acids (histidine and valine) of all 53 circulating biomarkers
included in our analysis were not associated with BP (Fig. 1,
Table S4, http://links.lww.com/HJH/B807). Six metabolic
measures, docosahexaenoic acid, citrate, creatinine, histi-
dine, valine, and tyrosine, were not associated with hyper-
tension (Fig. S2, http://links.lww.com/HJH/B807, Table S4,
http://links.lww.com/HJH/B807). Stratified analysis by sex
(Fig. S3, http://links.lww.com/HJH/B807, Table S5, http://
links.lww.com/HJH/B807) and median age (Fig. S4, http://
links.lww.com/HJH/B807, Table S6, http://links.lww.com/
HJH/B807) were highly consistent; men compared with
women and younger participants compared to older par-
ticipants had in some cases slightly larger effect sizes.
However, acetate was negatively associated with hyperten-
sion in women only and acetoacetate positively associated
with hypertension in men only. In older than median age
participants, total cholesterol, low-density lipoprotein
(LDL) cholesterol, esterified cholesterol, and high-density
lipoprotein (HDL) cholesterol were not associated with
hypertension. Large and extremely large HDL fractions
were negatively and medium and small HDL fractions
positively associated with hypertension (Fig. S5, http://
links.lww.com/HJH/B807)

In the longitudinal analyses with conventional statistical
approaches (N¼ 4197), we examined the associations
between baseline metabolites and change in SBP between
baseline and follow-up of 7–11 years (Fig. 2, Table S7,
http://links.lww.com/HJH/B807). We observed that LDL
cholesterol [b¼ 0.74 mmHg per 1SD normalized concentra-
tion; 95% confidence interval (CI) 0.28–1.20 mmHg;
P¼ 0.01], remnant cholesterol [b¼ 0.62 mmHg; 95% CI
0.14–1.10 mmHg; P¼ 0.03], apolipoprotein B
[b¼ 0.63 mmHg; 95% CI 0.14–1.11 mmHg; P¼ 0.03], and
acetate [b¼ 0.83 mmHg; 95% CI 0.25–1.41 mmHg; P¼ 0.02]
were associated with a BP increase and average HDL
particle size [b¼-0.89; 95% CI �1.46 to �0.32 mmHg;
P¼ 0.01) with a BP decrease during follow-up. Large and
extremely large HDL fractions were negatively and other
lipoprotein fractions (VLDL, IDL, and LDL) mostly posi-
tively associated with SBP change in follow-up (Fig. S6,
http://links.lww.com/HJH/B807).
00 FINRISK 2002 FINRISK 2007 FINRISK 2012 FINRISK 2017

7565 5825 5420 5030

.7) 47.9 (13.1) 50.9 (13.9) 51.2 (14.0) 54.1 (16.2)

.5) 4180 (55.3) 3071 (52.7) 2821 (52.0) 2702 (53.7)

) 26.8 (4.6) 27.1 (4.8) 27.1 (4.9) 27.5 (5.0)

.0) 134.5 (19.9) 135.8 (20.4) 133.9 (18.8) 133.8 (19.3)

.2) 78.7 (11.3) 78.9 (11.4) 81.2 (11.0) 79.3 (11.1)

.0) 3242 (42.9) 2855 (49.0) 2668 (49.2) 2493 (49.6)

.7) 1951 (25.8) 1196 (20.5) 1038 (19.2) 804 (16.0)

) 211 (2.8) 238 (4.1) 341 (6.3) 424 (8.4)

.4) 1697 (22.4) 1188 (20.4) 1145 (21.1) 1216 (24.2)

.1) 4088 (54.0) 3115 (53.5) 2640 (48.7) 2334 (46.4)

.2) 1694 (22.4) 1426 (24.5) 1529 (28.2) 1387 (27.6)

) 86 (1.1) 96 (1.6) 106 (2.0) 93 (1.8)

.7) 1073 (14.2) 1200 (20.6) 1215 (22.4) 1316 (26.2)

) 534 (7.1) 827 (14.2) 834 (15.4) 826 (16.4)

t (percentage). BP, blood pressure.

www.jhypertension.com 581

http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807
http://links.lww.com/HJH/B807


FIGURE 1 Cross-sectional associations between the metabolites and blood pressure (N¼36 985). Filled circle signifies FDR-corrected P less than 0.05. Associations are
adjusted for age, sex, BMI, current smoking, diabetes, antihypertensive medication, exercise, lipid medication, and cohort. Apo, apolipoprotein; C, cholesterol; DHA,
docosahexaenoic acid; HDL, high-density lipoprotein; LA, linoleic acid; LDL, low-density lipoprotein; MUFA, monounsaturated fatty acids; PG, phosphoglycerides; PUFA,
polyunsaturated fatty acids; SFA, saturated fatty acids; TG, triglycerides; VLDL, very-low density lipoprotein.
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FIGURE 2 Longitudinal associations between baseline metabolites levels and SBP change (N¼4197). Filled circle signifies FDR-corrected P less than 0.05. Associations are
adjusted for baseline SBP, age, sex, BMI, current smoking, diabetes, antihypertensive medication, exercise, lipid medication, and cohort. Apo, apolipoprotein; C, cholesterol;
DHA, docosahexaenoic acid; HDL, high-density lipoprotein; LA, linoleic acid; LDL, low-density lipoprotein; MUFA, monounsaturated fatty acids; PG, phosphoglycerides;
PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; TG, triglycerides; VLDL, very low-density lipoprotein.

Metabolomic profile of hypertension
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TABLE 2. Measurement of gradient boosting mode fit in cross-sectional and longitudinal samples

Root-mean-square error

Sample Step Full model Clinical characteristics Metabolic measures

Cross-sectional Training 15.50 mmHg 16.95 mmHg 16.36 mmHg

Cross-sectional Test 16.27 mmHg 16.70 mmHg 18.03 mmHg

Longitudinal Training 13.22 mmHg 14.84 mmHg 16.46 mmHg

Longitudinal Test 17.61 mmHg 18.52 mmHg 19.78 mmHg

Full model included both clinical characteristics and 53 circulating metabolic biomarkers. In models adjusted with clinical characteristics, we used following covariates age, sex, BMI,
current smoking, diabetes, antihypertensive medication, exercise, and lipid medication, and baseline SBP (only in longitudinal model).

Palmu et al.
The observed cross-sectional associations were consis-
tent across study cohorts (Fig. S7, http://links.lww.com/
HJH/B807). The results from inverse variance-weighted
fixed-effect meta-analysis were also consistent with the
pooled cross-sectional (Fig. S8, http://links.lww.com/
HJH/B807) and longitudinal (Fig. S9, http://link-
s.lww.com/HJH/B807) analyses.

We then examined the overall relation of the metabolic
biomarkers with current and future SBP using multivariable
gradient boosting machine learning algorithm. First, we
compared the predictive accuracy between models that
included only clinical characteristics, only metabolic mea-
sures, and both the clinical variables and metabolic mea-
sures. The hyperparameters used in models are presented
in Table S8, http://links.lww.com/HJH/B807. Adding met-
abolic measures (cross-sectional root-mean-square error:
16.27 mmHg; longitudinal: 17.61 mmHg) in the model with
clinical measures (cross-sectional: 16.70 mmHg; longitudi-
nal 18.52 mmHg) improved the machine learning model fit
(Table 2).

Then, we assessed the independent associations of
the metabolic measures with current and future SBP using
the same machine learning approach. Expectedly, the
clinical characteristics, such as age, BMI, antihypertensive
medication (cross-sectional model), and baseline SBP
FIGURE 3 The top 15 clinical and metabolic measures of current (a) and future (b) b
boosting). The importance (gain) of a feature represents the total contribution each featu
measures, the model was adjusted for age, sex, BMI, current smoking, diabetes, antihyp
longitudinal model). The sum of the importance of all the features equals one. LA, linole
saturated fatty acids.

584 www.jhypertension.com
(longitudinal model) contributed the most to the predictive
ability of the models (Fig. 3). Of the metabolic measures,
glucose, albumin, and triglycerides in LDL were the most
important metabolic measures in the cross-sectional
model. In the longitudinal model, the three most important
metabolic predictors of future SBP were glycerol, average
VLDL size, and acetoacetate, which were then followed by
other metabolic measures with similar levels of impor-
tance. The multivariable-adjusted association between
the most important metabolic measures and current or
future BP is shown in Fig. 4.

DISCUSSION
We investigated the cross-sectional and longitudinal asso-
ciations between serum high-abundance metabolic mea-
sures and BP in representative population samples of up to
36 985 and 4197 individuals. In addition to conventional
statistical methods where a single metabolic measure was
assessed in each model, we used a machine learning
approach to identify a metabolic signature related to blood
pressure and longitudinal blood pressure change. Our
results demonstrate that metabolic measures provide incre-
mental predictive value over conventional clinical variables
for current and future SBP. In cross-sectional models,
lood pressure assessed using a multivariable machine learning approach (gradient
re has in the trees of the gradient boosting model. In addition to the 53 metabolic

ertensive medication, exercise, and lipid medication, and baseline SBP (only in
ic acid; LDL, low-density lipoprotein; PG, phosphoglycerides; TG, triglycerides; SFA,
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FIGURE 4 The multivariable-adjusted relation between the top nine metabolites and current (a) and future (b) blood pressure. The top nine biomarkers in the gradient
boosting models are represented for cross-sectional (a) and longitudinal (b) samples. Partial dependency plots approximate the relationship between single metabolic
measure and outcome variable when the effect of all other model covariates is averaged out. LA, linoleic acid; LDL, low-density lipoprotein; TG, triglycerides; SFA, saturated
fatty acids.

Metabolomic profile of hypertension
glucose, albumin, and triglycerides in LDL were the stron-
gest metabolic correlates of SBP. In longitudinal models,
glycerol, average VLDL size, and acetoacetate were the
strongest predictors of future SBP. We did not observe
any major sex-specific or age-specific differences between
the studied 53 metabolic measures and BP.

In our study, triglycerides in LDL were strongly associ-
ated with current BP whereas average VLDL was a robust
predictor of future BP in the machine learning models. The
longitudinal associations between circulating lipoprotein
fractions and hypertension have been studied by certain
population studies. In the Brisighella Heart Study
(N¼ 1864), baseline LDL cholesterol level was positively
related to rate of new-onset of hypertension [18]. In the
Women’s Health Study (N¼ 17 527), average VLDL particle
size, as in our study, was positively associated with the
development of hypertension. In that study, apolipoprotein
B and total triglycerides were also predictive of future
hypertension whereas average LDL particle size was nega-
tively associated with the development of hypertension
[19]. The association between HDL fractions and hyperten-
sion, however, appears to be more convoluted. In the
Women’s Health Study, medium-HDL and small-HDL par-
ticle concentrations were positively associated with future
hypertension. In contrast, average HDL particle size, large-
HDL particle concentration, and HDL cholesterol were
negatively associated with the development of hyperten-
sion [19]. In a cross-sectional study of 14 215 normotensive
men, baseline HDL cholesterol categorized in five groups
demonstrated a U-shaped association with the develop-
ment of hypertension [20]. HDL particles isolated from
Journal of Hypertension
patients with cardiovascular disease have been reported
to lack the ability to induce endothelial nitric oxide pro-
duction and stimulate endothelial repair [21,22]. All in all,
results from our and previous studies suggest that serum
lipids, and particularly LDL-derived and VLDL-derived cho-
lesterol levels are associated with the development
of hypertension.

In the multivariable machine learning model, glycolysis-
related metabolic markers glucose and glycerol were asso-
ciated with BP. In healthy individuals, postprandial insulin
secretion related to increasing glucose levels promotes four
changes in circulating metabolites reflecting switch from
catabolism to anabolism: increased glycolysis (lactate
increases) and decreased lipolysis (glycerol decreases),
and ketogenesis (beta-hydroxybutyrate and acetoacetate
decrease) [23]. Two prior studies have reported on the
associations of glycolysis-related metabolic measures,
including ketone bodies, with hypertension in humans.
In the Bogalusa Heart Study (N¼ 1249), fasting glucose
was positively associated with SBP [24]. In an American
prospective study (N¼ 5554), lactate, an indicator of oxida-
tive capacity, was positively associated with development
of hypertension in women but not in men [25]. As insulin
resistance and diabetes are both related to arterial stiffen-
ing, these findings are somewhat expected and highlight
the importance of glucose metabolism abnormalities in the
development of hypertension [26].

In the cross-sectional univariate andmultivariable analyses,
we observed a positive association between albumin and
blood pressure. Albumin is a key contributor to the vascular
colloid-osmotic pressure and important transporter of
www.jhypertension.com 585
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hormones, drugs, amino acids, and free fatty acids [27]. In the
Oslo Health Study (N¼ 5171) and in the Neuroprotective
Model for Healthy Longevity among the Malaysian Elderly
study (N¼ 2322), positive cross-sectional associations were
observed between albumin and BP [27,28]. However, a retro-
spective study of normotensive Japanese (N¼ 2240) reported
a negative association between blood albumin and risk of
hypertension [29]. The authors of this study concluded that the
positive cross-sectional associations could be explained by
increased vascular volume whereas the negative longitudinal
associations could be a result of the anti-inflammatory and
antioxidant properties of albumin [29]. As albumin was not a
significant correlate of future BP, our cross-sectional findings
mainly suggest that the association between albumin and BP
may not be causal.

Although nearly all measured fatty acids and amino acids
were strongly related to BP in the cross-sectional analyses,
none of them demonstrated any strong associations in the
longitudinal analyses. Despite several prior studies report-
ing strong cross-sectional associations of fatty acids and
amino acids with BP [30–35], the nature and strength of
these associations warrants further study.

Strengths and limitations
Our study has several strengths, such as a large cross-
sectional population sample, access to repeated measure-
ments, and consistent biomarker quantification by the same
NMR spectrometry method in all included cohorts. How-
ever, our results must be interpreted in the context of
potential limitations. First, although feasible to perform
in large scale, NMR provided only a limited number of
metabolic measures, of which the majority were lipid
measures. Second, our longitudinal sample size, although
relatively large, may have been insufficient to capture some
associations. Third, the dates of baseline examinations
ranged over 15 years in our study cohorts resulting differ-
ences in freezing times. Fourth, many of the statistically
significant associations that were observed had relatively
small effect sizes.

In conclusion, we assessed the metabolic profile of
hypertension in a representative population sample of
up to 36 985 individuals with repeated measurements
available for 4197 participants. Our study is the largest
study to date to investigate the relation between circulating
metabolic measures and hypertension. We identified a
metabolic serum signature associated with blood pressure
and longitudinal blood pressure change using conven-
tional statistics and machine learning approaches. Our
results suggest that serum lipids, and particularly LDL-
and VLDL-derived cholesterol levels, and glucose metab-
olism abnormalities are associated with hypertension
onset. Use of serum NMR metabolite determination could
improve the identification of individuals at high risk of
developing hypertension.
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3. Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative

serum nuclear magnetic resonance metabolomics in cardiovascular
epidemiology and genetics. Circ Cardiovasc Genet 2015; 8:192–206.

4. Borodulin K, Tolonen H, Jousilahti P, Jula A, Juolevi A, Koskinen S,
et al. Cohort Profile: the National FINRISK Study. Int J Epidemiol 2018;
47:696–1696.

5. Heistaro S. Methodology report: Health 2000 survey. Menetelmära-
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