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Abstract

We conducted a prospective evaluation of the diagnostic performance of high-resolution 

microendoscopy (HRME) to detect cervical intraepithelial neoplasia (CIN) in women with 

abnormal screening tests. Study participants underwent colposcopy, HRME, and cervical biopsy. 

The prospective diagnostic performance of HRME using an automated morphologic image 

analysis algorithm was compared to colposcopy using histopathologic detection of CIN as the gold 

standard. To assess the potential to further improve performance of HRME image analysis, we 

also conducted a retrospective analysis assessing performance of a multi-task convolutional neural 

network to segment and classify HRME images. 1,486 subjects completed the study; 435 (29%) 

subjects had CIN grade 2 or more severe (CIN2+) diagnosis. HRME with morphologic image 

analysis for detection of CIN grade 3 or more severe diagnoses (CIN3+) was similarly sensitive 

(95.6% vs. 96.2%, p=0.81) and specific (56.6% vs. 58.7%, p=0.18) as colposcopy. HRME with 
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morphologic image analysis for detection of CIN2+ was slightly less sensitive (91.7% vs. 95.6%, 

p<0.01) and specific (59.7% vs. 63.4%, p=0.02) than colposcopy. Images from 870 subjects were 

used to train a multi-task convolutional neural network-based algorithm and images from the 

remaining 616 were used to validate its performance. There were no significant differences in the 

sensitivity and specificity of HRME with neural network analysis vs. colposcopy for detection of 

CIN2+ or CIN3+. Using a neural network-based algorithm, HRME has comparable sensitivity and 

specificity to colposcopy for detection of CIN2+. HRME could provide a low-cost, point-of-care 

alternative to colposcopy and biopsy in the prevention of cervical cancer.
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cervical cancer prevention; diagnostic imaging; high-resolution microendoscopy; point-of-care; 
deep learning

Introduction

Cervical cancer remains a major global health problem; women living in low-income 

countries and rural areas are disproportionately affected.1 In Brazil, there are an estimated 

16,590 new cases of cervical cancer per year, with disproportionately higher incidence 

rates in underserved populations.2 Barretos Cancer Hospital (BCH) in São Paulo state 

has implemented innovative mobile screening programs to reach women living in rural 

areas3,4, but diagnostic follow-up of women who screen positive remains challenging. The 

standard of care for screen-positive women in Brazil and many other countries is to undergo 

colposcopy. The provider performs a tissue biopsy of any visually abnormal area and 

submits the sample for examination by a pathologist. Yet, the availability of colposcopy 

and pathology services are often limited in low-resource settings, resulting in long delays 

between visits, high cost, and loss to follow-up.5 For example, over one-third of women 

with abnormal screening tests did not return for their follow-up visit when referred for 

colposcopy in a previous study at BCH.6

In 2018, the World Health Organization (WHO) called for the elimination of cervical cancer 

as a public health problem. The WHO proposed screening 70% of women at ages 35 and 45 

using a high-precision test, such as HPV DNA testing.5 HPV screening tests identify women 

at risk of cervical cancer with high sensitivity but low specificity.7 Given the limitations of 

performing colposcopy and histopathology in low-resource settings, effective strategies are 

urgently needed to triage women with abnormal cervical screening tests and ensure they 

receive appropriate management.8,9

In vivo microscopy has the potential to aid clinical decision-making by providing high 

resolution images of biological tissues in real time, obviating the need for colposcopy 

and cervical biopsy.10 We developed a low-cost, high-resolution microendoscope (HRME) 

capable of imaging cervical epithelium with sub-cellular resolution for real-time, in vivo 
diagnosis.11 Previous smaller clinical studies have shown HRME to be feasible for real-time 

detection of high-grade cervical abnormalities.6,12-14 HRME images can be interpreted 

rapidly and objectively using a morphologic image analysis algorithm.6,15 Here we report 

results of the CLARA (Cervical Lesion Assessment with Real-time microendoscopy image 

Hunt et al. Page 2

Int J Cancer. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Analysis) study. The primary objective of this study was to prospectively evaluate diagnostic 

performance of HRME with morphologic image analysis in women with abnormal cervical 

cancer screening tests and compare accuracy to that of colposcopy. The secondary objective 

was to use the acquired dataset to explore whether the diagnostic accuracy of HRME could 

be further improved using a multi-task convolutional neural network trained to segment and 

classify HRME images.

Materials and Methods

Study design and participants

We conducted an unblinded, single arm trial to prospectively assess the diagnostic 

performance of HRME with morphologic image analysis to detect high-grade cervical 

abnormalities in women with abnormal screening tests. The primary endpoint was a 

comparison of the diagnostic performance of HRME with morphologic image analysis and 

colposcopy for detection of high-grade cervical abnormalities. Sample size calculations were 

performed to determine the number of subjects needed to estimate 95% confidence intervals 

of both sensitivity and specificity within a 4% margin of error. Based on a 25% prevalence 

of high-grade cervical abnormalities, a 12.5% drop-out rate, and the diagnostic accuracy 

of HRME reported in a prior study6, the necessary sample size was calculated to be 1,600 

subjects.

Potential subjects were identified through a regional screening program operated by BCH. 

Per BCH standard-of-care practices, women who had abnormal cervical cytology (atypical 

squamous cells of undetermined significance [ASC-US] or more severe abnormality [ASC-

US+]) or tested positive for hrHPV by the cobas 4800 HPV test were referred for 

colposcopy. Women scheduled for colposcopy at BCH were assessed for eligibility using 

the following inclusion criteria: 1) abnormal cervical screening test, 2) at least 18 years 

old, 3) intact uterine cervix, 4) not pregnant (negative urine pregnancy test required for 

subjects with child-bearing potential), 5) no known allergy to the fluorescent dye used for 

HRME imaging (proflavine or acriflavine), 6) does not belong to an indigenous Brazilian 

population, and 7) willing and able to provide written informed consent.

This study was approved by the BCH Ethics Research Committee, the Brazilian 

National Ethics Research Commission / CONEP (CAAE: 61743416.1.0000.5437), and the 

Institutional Review Boards of Rice University (ID#2017–293) and The University of Texas 

MD Anderson Cancer Center (ID#2017–0096). Written informed consent was obtained from 

all participants. The protocol was registered at ClinicalTrials.gov (NCT03195218).

High-resolution microendoscope

The HRME instrument is a portable, fiber-optic fluorescence microscope designed to obtain 

high-resolution images of cervical tissue in vivo with sub-cellular resolution.11,15,16 The 

system has been described in detail previously.15 Images are obtained by placing the fiber 

optic probe (Fujikura FIGH–30–850N , Myriad Fiber Imaging Tech. Inc., NJ, USA) in 

gentle contact with the uterine cervix; the field-of-view is 790 microns and the lateral spatial 

Hunt et al. Page 3

Int J Cancer. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT03195218


resolution is approximately 4 microns. The current cost of goods for the HRME is US$1500/

unit with an additional US$745 per optical probe.

HRME is performed following topical application of proflavine (0.01% concentration), a 

fluorescent antiseptic that labels cell nuclei in the superficial epithelium. Proflavine has a 

long history of safe clinical use.17,18 A retrospective case-control analysis of screen positive 

women previously exposed to proflavine during HRME found no significant differences in 

disease progression between the proflavine exposed and control groups.19

The HRME morphologic image analysis software allows clinicians to acquire and 

automatically analyze images to assess the likelihood that a cervical site has high-grade 

abnormalities. The diagnostic algorithm evaluated prospectively in this study was trained 

using data collected in a prior study at BCH.6 The algorithm uses morphological analysis 

to segment and categorize individual cell nuclei as normal or abnormal based on predefined 

shape and size criteria. The software reports a morphologic abnormality score for each 

image analyzed, which is calculated as the number of abnormal nuclei per square millimeter 

in the image. Samples with a morphologic abnormality score below 120 were classified as 

non-neoplastic while those equal to or greater than 120 were classified as neoplastic.

Diagnostic exam procedure

All diagnostic exams and study procedures were performed by one of three study 

colposcopists in the Cancer Prevention department at BCH (Fig. 1). All three had prior 

experience using HRME for diagnostic assessment of the uterine cervix. Clinicians first 

performed general visual inspection of the cervix and collected cervical swabs for cytology 

and HPV DNA testing. Then, colposcopy was performed after application of 5% acetic acid 

followed by Lugol’s iodine. Colposcopy was performed using either a traditional stationary 

colposcope (CP-M1255 colposcope, D.F. Vasconcellos, Brazil) or a mobile colposcope 

(EVA 3 Plus, MobileODT, Israel). The clock position and colposcopic impression of any 

abnormal areas (low-grade, high-grade, or suspected cancer) were indicated on the case 

report form.

Following colposcopy, proflavine was applied to the uterine cervix and HRME imaging 

was performed. HRME images were acquired from areas noted as abnormal by colposcopy 

and from each quadrant with no lesions. In each quadrant without a lesion, HRME images 

were acquired from a randomly selected colposcopically normal site at the squamocolumnar 

junction. For each site where an HRME image was acquired, the following information was 

recorded: site number, clock position, HRME result (morphologic abnormality score and 

classification), colposcopist impression of tissue type (squamous, columnar, or metaplasia), 

and colposcopy impression (normal, low-grade, high-grade, or suspected cancer).

Sites identified as abnormal by colposcopy and/or by HRME were biopsied. In cases where 

a large lesion spanning multiple quadrants was present, the colposcopist biopsied the most 

severe area within the lesion based on colposcopic impression. If no abnormal sites were 

identified by either method, then a single biopsy was taken from a clinically normal site 

imaged by the clinician. Endocervical curettage (ECC) was performed if indicated per local 

standard of care.
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Histopathology & follow-up

Histopathology was used as the gold standard to assess the diagnostic performance of 

colposcopy and HRME for detection of high-grade cervical abnormalities. Two experienced 

pathologists, blinded to the results of HRME, independently reviewed the histologic slides 

from each biopsy categorizing the diagnosis for the specimen into one of twelve categories 

using criteria defined by the WHO20 . These include the following: atrophy, inflammation, 

metaplasia, cervical intraepithelial neoplasia (CIN) 1, CIN 2, CIN 3, adenocarcinoma 

in situ (AIS), squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma, 

indeterminate (insufficient for diagnosis), or ‘other’ (in which case the pathologist specified 

a classification category not included in this list). Discrepant results were resolved by 

consensus review between the two pathologists. Based on final histopathology results, 

participants were treated or scheduled for follow-up per BCH standard of care practices. 

This included excision with loop electrosurgical excision or cold knife conization for women 

with CIN2/3 and referral to gynecologic oncology for those diagnosed with AIS or invasive 

cancer.

Prospective analysis of diagnostic accuracy of HRME with morphologic image analysis

Study data were collected on a paper case report form and subsequently entered into 

an electronic study database using REDCap (Research Electronic Data Capture).21 De-

identified colposcopy and HRME images and de-identified lab report documents for all 

other diagnostic test results including cytology, HPV testing, and histopathology were 

uploaded to the database. Both CIN 2 or more severe diagnoses (CIN 2+) and CIN 3 or more 

severe diagnoses (CIN 3+) were used as endpoints to evaluate the diagnostic performance of 

colposcopy and HRME. HRME was recorded as a binary result (positive or negative) and 

colposcopy positivity was defined as low-grade or more severe impression.

Study data including age, colposcopy, HRME morphologic image analysis, and pathology 

results were exported from REDCap into Mathematica 12.0 for cross-tabulation of 

contingency tables and calculation of descriptive statistics. Contingency tables were entered 

into GraphPad Prism 8.3 for statistical analyses. Sensitivity and specificity with 95% 

confidence intervals (95% CI) were calculated on a per-site basis and a per-patient basis. 

In the per-patient analysis, the most abnormal colposcopy result, the most abnormal HRME 

result (maximum morphologic abnormality score for all images), and the most abnormal 

histopathology result were used. 95% CI of sensitivity and specificity were generated by a 

modified Wald method.22 Significance testing comparing the sensitivity and specificity of 

colposcopy vs. HRME with morphologic image analysis was performed using McNemar’s 

test.23 A non-parametric test for trend was used to assess differences in sensitivity and 

specificity by age group.24 HRME results were also stratified by tissue type (squamous 

vs. columnar/metaplasia) using colposcopic impression of tissue type. One-way analysis 

of variance (ANOVA) on ranks was performed with Dunn’s multiple comparison tests 

to evaluate differences in morphologic abnormality score distributions by histopathology 

diagnosis and by tissue type impression. In addition to evaluating diagnostic performance 

using the prospective binary HRME threshold, receiver operator characteristic (ROC) 

analysis was performed using the morphologic abnormality score to assess the trade-off 

in sensitivity and specificity of this metric at all possible thresholds for positivity. Area 
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under the ROC curve was calculated using the trapezoidal rule. Significance testing for 

differences in area under the curve for squamous vs columnar/metaplasia was performed 

using DeLong’s test.25

Retrospective performance analysis using a multi-task convolutional neural network

To explore whether deep learning methods could improve the diagnostic accuracy of 

HRME, a subset of HRME images collected in this study were used to train a multi-task 

convolutional neural network (multi-task CNN) to classify HRME images. Using study data 

withheld from training, the diagnostic accuracy of HRME using a multi-task CNN was 

compared to that of colposcopy and to HRME using morphologic image analysis.

Study data were randomly divided by patient into training (~60%), validation (~20%), 

and test sets (~20%), ensuring that each partition had an equal distribution of pathology 

outcomes. The dataset partitions were as follows: 870 patients in the training set (516 

[59%] negative, 98 [11%] CIN 1, 55 [6%] CIN 2, 189 [22%] CIN 3, and 12 [1%] invasive 

carcinoma), 302 patients in the validation set (181 [60%] negative, 33 [11%] CIN 1, 20 [7%] 

CIN 2, 64 [21%] CIN 3, and 4 [1%] invasive carcinoma), and 314 patients in the test set 

(185 [59%] negative, 38 [12%] CIN 1, 19 [6%] CIN 2, 66 [21%] CIN 3, and 6 [2%] invasive 

carcinoma).

The multi-task CNN model utilized the architecture proposed by Mehta et al. to perform 

joint segmentation and classification of histopathology images.26 The multi-task CNN was 

trained in two-stages: (i) optimization of nuclear segmentation on a pixel-by-pixel basis and 

(ii) optimization of image classification accuracy (<CIN 2 vs CIN 2+). Prior to input into 

the CNN model, the circular region of HRME images corresponding to the fiber bundle 

was cropped to yield four non-overlapping, square sub-images. Nuclear segmentation masks 

generated using morphologic image analysis were used as a weakly supervised ground truth 

for pixel-level segmentation. Once segmentation performance was optimized, the diagnostic 

classification branch was appended to the architecture and the network was trained to 

perform simultaneous image segmentation and classification. Diagnostic performance for 

images in the validation set was monitored during training to avoid overfitting; the model 

with the best performance for images in the validation set was selected and used to 

prospectively analyze images in the test set.

The final model was used to assess per-site and per-patient diagnostic performance in the 

validation and test sets by comparing results to histologic diagnosis. A multi-task CNN 

score was calculated for each site image by averaging the network output (probability of 

CIN 2+) across the four sub-images classified by the network. The per-patient CNN score 

was defined as the maximum multi-task CNN score for all images. One-way ANOVA on 

ranks was again utilized to evaluate differences in multi-task CNN score distributions by 

histopathology diagnosis. A threshold for positivity by the multi-task CNN was determined 

as the point on the ROC curve which minimized the Euclidean distance with respect to 

the operating point of colposcopy (low-grade or more severe). The performance of the 

multi-task CNN at this cutoff was then compared to colposcopy for both CIN 2+ and CIN 3+ 

endpoints with significance testing again performed using McNemar’s test.23 Significance 
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testing for differences in area under the curve for the multi-task CNN vs morphologic image 

analysis was performed using DeLong’s test.25

Results

Figure 2 shows the number of participants at each stage of the study. 2,028 screen positive 

women were interviewed to assess eligibility prior to their scheduled colposcopy. 1,821 

eligible women were invited to participate in the study. Two hundred twenty-one subjects 

declined to participate, and the remaining 1,600 provided written informed consent. 1,523 

subjects completed the diagnostic examination. An additional 37 participants were excluded 

from analysis for reasons outlined in Figure 2, leaving 1,486 participants with complete 

diagnostic information.

Table 1 summarizes the age, cytology and HPV results, and final histopathology diagnosis 

for the 1,486 subjects included in the analysis. The mean age of participants was 40.0 years 

old (SD=12.1), with 796 (54%) between the ages of 30 to 49. The distribution of patient 

pathology diagnoses was as follows: 882 (59%) negative, 169 (11%) CIN 1, 94 (6%) CIN 

2, 319 (21%) CIN 3, and 22 (1%) cervical cancer. The prevalence of high-grade cervical 

abnormalities (CIN 2+) was 29%.

A total of 45 imaging probes were used throughout the study, with an average of 33 uses per 

probe (min-max: 2-95 uses).

Prospective analysis of diagnostic accuracy of HRME with morphologic 

image analysis

Figure 3 summarizes the per-patient diagnostic performance of HRME with morphologic 

image analysis and that of colposcopy for 1,486 patients included in the analysis. Figure 

3A shows the maximum morphologic abnormality score for each patient stratified by 

histopathology result. Figures 3B and 3C show ROC curves and resulting AUC of HRME 

with morphologic image analysis for detection of CIN 2+ (AUC=0.83; 95% CI: 0.81 to 

0.85) and CIN 3+ (AUC=0.84; 95% CI: 0.82 to 0.86) using all possible thresholds for 

positivity. Figure 3D shows a contingency table comparing diagnostic results for colposcopy 

(low-grade or more severe) and HRME with morphologic image analysis by histopathology 

result. Percent agreement of colposcopy and HRME with morphologic image analysis 

was 79%. Figures 3E and 3F compare the sensitivity and specificity of colposcopy and 

HRME with morphologic image analysis for CIN 2+ and CIN 3+ cut-points. Using a 

cut-point of CIN 3+, there were no statistically significant differences in the sensitivity and 

specificity of colposcopy and HRME with morphologic image analysis. However, using a 

cut-point of CIN 2+, the sensitivity and specificity of colposcopy were higher than that of 

HRME with morphologic image analysis (sensitivity: 95.6% vs 91.7%, p<0.01; specificity: 

63.4% vs 59.7%, p=0.02). The difference between colposcopy and HRME on CIN 2 

biopsies was further investigated by examining additional indicators of high-grade disease 

for concordant (Colpo+/HRME+) and discordant (Colpo+/HRME−) cases (Supplementary 

Table 1). Discordant cases were less likely to have high-grade cytology (Fisher’s exact test: 
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OR=2.7, p=0.13), high-grade colposcopy impression (OR=11, p<0.001), as well as CIN 3+ 

upon histopathology review of tissue excised during treatment (OR=4.8, p=0.05).

Given the WHO recommendation of prioritizing screening for women ages 30 to 49 

year, per-patient diagnostic performance of HRME with morphologic image analysis was 

examined for the subset of participants in this recommended age bracket. Similar results 

were obtained (Supplementary Figure 1). Analysis of diagnostic performance for both older 

and younger age groups was also performed, including a non-parametric test for trend 

(Supplementary Figure 2). Sensitivity of colposcopy decreased with increasing age (p=0.02) 

whereas the performance of HRME was less age dependent (p=0.76). Additionally, the 

specificity of each diagnostic increased with older ages, but there was a greater improvement 

for colposcopy than HRME (colposcopy: p<0.001, HRME: p=0.42).

As some participants underwent multiple biopsies, a per-site analysis in which diagnostic 

performance was evaluated for each individual biopsy result was also conducted 

(Supplementary Figure 3). The distribution of colposcopy, HRME, and histopathology 

results for 1,901 biopsied sites are provided (Supplementary Table 2). On a per-site basis, 

HRME with morphologic image analysis had comparable sensitivity and specificity to 

colposcopy for detection of CIN3+, but had lower sensitivity and specificity for detection 

of CIN2+ (sensitivity: 93.2% vs 89.0%, p<0.01; specificity: 58.3% vs 54.2%, p=0.01) 

(Supplementary Figure 4).

Diagnostic performance of HRME with morphologic image analysis was stratified by 

colposcopic impression of tissue type. The distribution of colposcopic tissue type for the 

1,901 biopsied sites are provided (Supplementary Table 2). As shown in Supplementary 

Figure 5A, for sites with negative or CIN 1 biopsy results, the mean morphologic 

abnormality score is significantly lower for sites with a colposcopic impression of squamous 

tissue than for sites with a colposcopic impression of columnar tissue or metaplasia. As a 

result, the accuracy of HRME with morphologic image analysis is significantly higher for 

sites with a colposcopic impression of squamous tissue than for sites with a colposcopic 

impression of columnar tissue or metaplasia (CIN 2+: AUC=0.80 vs. 0.62, p<0.001; CIN 3+: 

AUC=0.81 vs 0.67, p<0.001).

Retrospective performance analysis using a multi-task convolutional neural 

network

Figure 4 summarizes the per-patient diagnostic performance of HRME with multi-task 

CNN analysis and that of colposcopy for the 616 patients in the validation and test 

sets. Figure 4A shows the maximum multi-task CNN score for each patient stratified 

by histopathology result. Figures 4B and 4C show ROC curves and resulting AUC of 

HRME with multi-task CNN analysis for detection of CIN 2+ (AUC=0.86; 95%CI: 0.83 to 

0.89) and CIN3+ (AUC=0.85; 95%CI: 0.82 to 0.88). Figure 4D shows a contingency table 

comparing diagnostic results for colposcopy (low-grade or more severe) and HRME with 

multi-task CNN analysis by histopathology result. Percent agreement of colposcopy and 

HRME with multi-task CNN analysis was 79%. Figures 4E and 4F compare the sensitivity 

and specificity of colposcopy and HRME with multi-task CNN analysis for CIN 2+ and CIN 
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3+ cut-points. At both CIN 2+ and CIN 3+ cut-points, there were no statistically significant 

differences in the sensitivity and specificity of colposcopy and HRME with multi-task CNN 

analysis (CIN 2+: 96.1% vs. 92.7% sensitivity, p=0.11; 61.3% vs. 59.3% specificity, p=0.46; 

CIN 3+: 96.4% vs. 95.7% sensitivity, p=1.00; 56.7% vs. 55.9% specificity, p=0.79).

Figure 5 compares diagnostic performance of HRME with morphologic image analysis to 

that of HRME with multi-task CNN analysis for data in the validation and test sets. Overall, 

the AUC for detecting CIN 2+ was significantly higher when images were analyzed using 

a multi-task CNN than with morphologic analysis (0.83 vs. 0.76, p<0.001). Diagnostic 

performance using the multi-task CNN was improved for all tissue types, but especially for 

sites with a colposcopic impression of columnar tissue or metaplasia. For images with a 

colposcopic impression of squamous tissue, the multi-task CNN improved AUC from 0.78 

to 0.83 (p=0.003); whereas for images with a colposcopic impression of columnar tissue or 

metaplasia, AUC was improved from 0.64 to 0.78 (p<0.001).

Figure 6 shows three example HRME images from different tissue types. Figure 6A shows 

an image of colposcopically normal squamous epithelium; the image shows small, round, 

uniform nuclei throughout the field of view as is characteristic for normal, squamous 

cervical tissue.20 Using both real-time morphologic image analysis and multi-task CNN this 

site was classified as negative, in agreement with the histologic diagnosis of benign. Figure 

6B shows an HRME image of colposcopically abnormal squamous epithelium; the image 

shows enlarged, pleomorphic nuclei throughout the field-of-view. Using both real time 

morphologic image analysis and the multi-task CNN, this site was classified as positive, 

consistent with the histopathologic diagnosis of CIN3. Figure 6C shows an HRME image 

of colposcopically abnormal metaplastic epithelium; the image shows moderate nuclear 

enlargement, with nuclei arranged in glandular patterns. Histologic assessment revealed 

low-grade dysplasia (CIN1) with columnar tissue present. This site was incorrectly classified 

as positive using morphologic image analysis but was correctly classified as negative by 

multi-task CNN analysis.

Discussion

In this large, prospective analysis of HRME with morphologic image analysis, we observed 

that colposcopy outperformed HRME by a small but statistically significant difference for 

detection of CIN 2+, whereas no statistical differences were observed for detection of CIN 

3+. However, additional analysis the CIN 2 cases concordant and discordant colposcopy 

and HRME outcomes suggests that most of the few additional pick-ups by colposcopy 

alone represented low-grade cervical abnormalities which were less likely to cause cervical 

cancer (Supplementary Table 1). HRME performance also appeared to be less affected 

by age when compared with colposcopy (Supplementary Figure 2). Notably, HRME was 

more specific than colposcopy in the youngest age group (52% vs 38%, McNemar’s test: 

p<0.001), whereas colposcopy was more specific in the oldest age group (81% vs 59%, 

McNemar’s test: p<0.001). Inferences from these data are that: (1) benign HPV infections 

are more likely to be detected by colposcopy than HRME, and (2) atrophy of the cervix, 

which is increasingly likely with older age, decreases the sensitivity of colposcopy and the 

specificity of HRME for CIN2+.
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The retrospective analysis portion of this study is the first large scale evaluation of 

deep learning for HRME image analysis, and represents a promising area for further 

improving HRME performance. The multi-task CNN analysis increased the AUC of HRME, 

particularly for sites with a colposcopic impression of columnar/metaplasia. Although 

both morphologic analysis and multi-task CNN analysis approaches perform nuclear 

segmentation, the multi-task CNN model parameters are simultaneously optimized to 

perform segmentation and classification. We hypothesize that this joint optimization results 

in a more robust feature representation which can better account for columnar/metaplasia 

tissue morphologies. As machine learning is a very dynamic field of research, future 

developments could supersede this multi-task CNN and further improve automated image 

analysis with HRME. In addition to improved image analysis, a low-cost confocal HRME 

has recently been demonstrated to improve the image contrast of nuclear morphometry in 

columnar cervical tissue.27 Coupling multi-task CNN analysis with confocal imaging has 

potential to further diagnostic accuracy of HRME with automated image analysis.

A limitation of this study was that the field of view of the HRME probe is smaller than 

the punch biopsy specimens analyzed by histopathology. Therefore, even when the biopsy is 

acquired at the precise location where the optical probe was placed, the tissue examined by 

the pathologist may include areas outside the field of view of the associated HRME image. 

This imposes limitations on our ability to perfectly correlate HRME findings to pathology 

diagnosis. Additionally, not all sites imaged by HRME were biopsied. Sites lacking a 

gold-standard diagnosis were excluded from analysis (Supplementary Figure 2).

Given its cost and required operator skill, current HRME instrumentation is suited for use 

in several low- and middle-income countries, but is likely not yet appropriate for very 

low-resource areas. In this study, colposcopic guidance was used to direct probe placement 

and to facilitate a direct comparison between colposcopy and HRME. Additionally, the 

colposcopy device utilized was not standardized for all patients (approximately 25% of 

patients underwent colposcopy with the MobileODT system). These are both limitations 

of this study. The usability of the HRME system by non-specialists and with mobile 

colposcopy has been demonstrated in other low-resource settings including El Salvador 

(general practitioner doctor) and the Rio Grande Valley along the Texas-Mexico border 

(nurse practitioner and physician assistant).14,28 However, in order for HRME to be 

effectively utilized in very low-resource settings, improved methods to guide probe 

placement may be needed. Recent advances in visual evaluation using deep learning could 

potentially provide automated wide-field assessment of the uterine cervix and highlight 

suspected lesions for subsequent high-resolution imaging.29,30 Ongoing studies to evaluate 

HRME with automated visual assessment are under way. Additional studies to further assess 

the safety of proflavine use for HRME imaging as well as explore alternative fluorescent 

dyes will be useful moving forward.

HRME optical instrumentation functioned well throughout the course of the study with 

periodic maintenance. Optical probes were replaced if they became scratched or chipped, 

which likely reduced the average number of uses per probe. Recycling worn probes on site 

by polishing the tip is one strategy which could be utilized to further extend probe lifetimes. 

Image quality was regularly monitored using an image quality control (QC) check built 
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into the HRME software based on the signal to background of morphologic image analysis. 

When low-quality images were detected by the automated QC, users were prompted to take 

another image. Eighty six percent of all study images acquired passed the automated QC 

check, and 98% of all sites imaged had at least one image that passed QC. When reduced 

image quality was observed, it was either due to degradation of the optical probes (related 

to repeated exposure to disinfection detergents) and/or degradation of an optical filtering 

component (related to sustained humidity exposure).

In order to eliminate cervical cancer as a public health problem, effective strategies for 

management of screen-positive women are urgently needed. The clinical and infrastructural 

resource requirements of colposcopy and biopsy remain prohibitive in low- and middle-

income countries.31,32 In this study, automated, in vivo assessment of cervical tissues using 

HRME was demonstrated to have equivalent sensitivity and specificity as expert colposcopy 

for detection of high-grade cervical abnormalities. The potential to further optimize real-

time image analysis approaches for HRME using deep learning was also demonstrated. 

HRME may be a viable alternative to colposcopy and biopsy for low-resource healthcare 

settings, providing a point-of-care diagnosis and allowing for immediate treatment of pre-

cancerous cervical lesions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

AIS adenocarcinoma in situ

ANOVA analysis of variance

AUC area under the curve

BCH Barretos Cancer Hospital

CI confidence interval

CIN cervical intraepithelial neoplasia

CNN convolutional neural network

ECC endocervical curettage

HPV human papillomavirus

HRME high-resolution microendoscopy

QC quality control

ROC receiver operator characteristic

WHO world health organization
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Novelty and Impact:

High-resolution microendoscopy (HRME) is a promising, non-invasive diagnostic 

imaging method with potential for more rapid and objective triage of women with 

abnormal cervical cancer screening tests. However, large-scale prospective evaluations 

of HRME with automated image classifiers have yet to be reported. Our study 

prospectively evaluated the diagnostic performance of HRME at a Brazilian cancer 

hospital. Additionally, we explore the potential for deep learning image analysis to 

further improve HRME diagnostic performance using study data.

Hunt et al. Page 15

Int J Cancer. Author manuscript; available in PMC 2022 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Photograph of high-resolution microendoscope (HRME) and colposcope in the clinic.
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Figure 2: 
Flow diagram of subjects assessed for study eligibility and participants enrolled in and 

completing the study.

* Positive cytology test results included the following: ASC-US, ASC-H, LSIL, HSIL, and 

AGC, positive HPV test results included: HPV16 positive, HPV18 positive, pooled hrHPV 

positive (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68)

† Exclusions are reported as n (%), with percentages based on the total from the previous 

box.
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Figure 3: 
Diagnostic performance of colposcopy and HRME with morphologic image analysis using 

histopathology as the gold standard. (A) Per-patient HRME morphologic abnormality scores 

stratified by histopathology result. The solid line represents the prospective cutoff for 

positivity by morphologic image analysis. Bars overlaid on scatter plots indicate mean 

and 95% confidence intervals within each category. (B-C) Receiver operator characteristic 

curves of HRME with morphologic image analysis for detection of CIN2+ and CIN3+. 

Prospective performance of colposcopy (low-grade or more severe) and HRME with 

morphologic image analysis using the prospective positivity threshold are plotted on ROC 

curves for reference. (D) Cross tabulation of outcomes for colposcopy (low-grade or 

more severe) and HRME with morphologic image analysis by pathology result for each 

patient. (E-F) Comparisons of the sensitivity and specificity of colposcopy and HRME with 

morphologic image analysis for detection of CIN2+ and CIN3+. Error bars represent 95% 

confidence intervals. The following symbols indicate p-value results as follows: ns (P>0.05), 

*(P≤0.05), **(P≤0.01), ***(P≤0.001), ****(P≤0.0001).
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Figure 4: Diagnostic performance of HRME using a multi-task CNN.
(A) Per-patient HRME multi-task CNN scores stratified by histopathology result. The 

solid line represents the cutoff for positivity by multi-task CNN for comparison with 

colposcopy (low-grade or more severe). Bars overlaid on scatter plots indicate mean and 

95% confidence intervals within each column. (B-C) Receiver operator characteristic curves 

of HRME with multi-task CNN analysis for detection of CIN2+ and CIN3+. Performance of 

colposcopy (low-grade or more severe) are HRME with multi-task CNN analysis using the 

post-hoc positivity threshold are plotted on ROC curves for reference. (D) Cross tabulation 

of outcomes for colposcopy (low-grade or more severe) and multi-task CNN HRME 

classification by pathology result for each patient. (E-F) Comparisons of the sensitivity 

and specificity of colposcopy and HRME with multi-task CNN analysis for detection of both 

CIN2+ and CIN3+. Error bars represent 95% confidence intervals. The following symbols 

indicate p-value results as follows: ns (P>0.05), *(P≤0.05), **(P≤0.01).
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Figure 5: Diagnostic performance of HRME using morphologic image analysis and the multi-
task CNN.
ROC analysis comparing CIN2+ detection using morphologic image analysis with the multi-

task CNN. (A) ROC curves for all 789 images in the validation/test sets. (B) ROC curves 

for 559 images with a colposcopic impression of squamous tissue. (C) ROC curves for 225 

images with a colposcopic impression of columnar tissue or metaplasia.
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Figure 6: Example HRME images.
(A) Colposcopically normal, squamous epithelium with small, round, uniform nuclei. The 

image was classified as negative by real-time morphologic image analysis as well as 

histopathology. (B) Colposcopically abnormal squamous epithelium exhibiting enlarged, 

crowded, pleomorphic nuclei. The image was classified as positive by morphologic image 

analysis and the multi-task CNN; the histopathology result was high-grade dysplasia 

(CIN3). (C) Colposcopically abnormal, metaplastic epithelium with moderate nuclei 

crowding. The histopathology result was low-grade dysplasia (CIN1) with columnar tissue 

present. This image was incorrectly classified as positive by the prospective morphologic 

image analysis but correctly classified as negative by multi-task CNN analysis.
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Table 1:

Age, cytology/HPV testing results, and final pathology diagnosis for 1,486 subjects included in analysis.

No. patients 1,486

Age (years)

    18-29 323 (22%)

    30-39 434 (29%)

    40-49 362 (24%)

    50-59 289 (19%)

    60 and older 78 (5%)

    Mean 40.0

Cytology

    Normal 609 (41%)

    ASC-US 188 (13%)

    ASC-H 264 (18%)

    LSIL 79 (5%)

    HSIL 244 (16%)

    AGC 59 (4%)

    AIS 4 (<1%)

    Carcinoma 12 (1%)

    Unsatisfactory/Not collected 27 (2%)

HPV

    hrHPV Negative 561 (38%)

    hrHPV Positive 910 (61%)

      HPV16/18 Positive 389 (26%)

      Other hrHPV* Positive 521 (35%)

    Invalid/Not collected 15 (1%)

Final pathology diagnosis

    Negative 882 (59%)

    CIN 1 169 (11%)

    CIN 2 94 (6%)

    CIN 3 319 (21%)

    Invasive carcinoma 22 (1%)

Data are n (%) with percentages based on total number of patients.

Abbreviations: ASC-US (atypical squamous cells of undetermined significance), ASC-H (atypical squamous cells, cannot exclude HSIL), 
LSIL (low grade squamous intraepithelial lesion), HSIL (high grade squamous intraepithelial lesion), AGC (atypical glandular cells), AIS 
(adenocarcinoma in-situ), hrHPV (high-risk Human Papillomavirus), CIN (cervical intraepithelial neoplasia).

*
Pooled Other hrHPV positive for COBAS HPV test includes HPV31/33/35/39/45/51/52/56/58/59/66/68. If patients were positive for HPV16 

and/or HPV18 in addition to Other hrHPV, they were categorized as HPV16/18 positive.
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