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Background: Emerging evidence suggests that intestinal dysbiosis contributes to systemic inflammation and cardiovascular diseases 
in dialysis patients. The purpose of this study was to evaluate the effects of probiotic supplementation on various inflammatory pa-
rameters in hemodialysis (HD) patients. 
Methods: Twenty-two patients with maintenance HD were enrolled. These patients were treated twice a day with 2.0 ×1010 colony 
forming units of a combination of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI for 3 months. The microbiome 
and fecal short-chain fatty acids (SCFAs) were analyzed. The percentages of CD14+ CD16+ proinflammatory monocytes and CD4+ 
CD25+ regulatory T-cells (Tregs) before and after probiotic supplementation were determined by flow cytometry. Serum levels of calpro-
tectin and cytokine responses upon lipopolysaccharide (LPS) challenge were compared before and after probiotic supplementation. 
Results: Fecal SCFAs increased significantly after probiotic supplementation. Serum levels of calprotectin and interleukin 6 upon LPS 
stimulation significantly decreased. The anti-inflammatory effects of probiotics were associated with a significant increase in the per-
centage of CD4+ CD25+ Tregs (3.5% vs. 8.6%, p < 0.05) and also with a decrease of CD14+ CD16+ proinflammatory monocytes (310/
mm2 vs. 194/mm2, p < 0.05). 
Conclusion: Probiotic supplementation reduced systemic inflammatory responses in HD patients and this effect was associated with 
an increase in Tregs and a decrease in proinflammatory monocytes. Hence, targeting intestinal dysbiosis might be a novel strategy for 
decreasing inflammation and cardiovascular risks in HD patients. 
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Introduction 

Maladaptive and persistent inflammation has been recog-

nized as an important player in the development of car-

diovascular diseases and also as a predictor of mortality in 

patients with chronic kidney disease (CKD) [1,2]. Although 

not completely understood, retention of uremic solutes, 

oxidative stress, immune dysfunction, or dialysis-related 
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factors including repeated exposure to dialysis membranes, 

contaminated dialysis water, and, recently, intestinal dys-

biosis, have been implicated as important culprits in the 

development of chronic inflammation [3]. 

Significant alterations in the diversity and number of 

operational taxonomic units (OTUs) associated with in-

creased intestinal permeability have been demonstrated 

in preclinical and clinical studies. Uremic milieu, slower 

colonic transit time, bowel edema due to volume overload, 

restrictions of fiber-rich diets, medications including phos-

phate binders, and frequent use of antibiotics might be 

factors contributing to the generation and maintenance of 

dysbiosis [3–5]. 

Probiotics are “live microorganisms that, when adminis-

tered in adequate amounts, confer a health benefit to the 

host” [6]. Probiotics have been shown to partially restore 

normal intestinal microbiota and reduce the level of ure-

mic toxins and systemic inflammation. A recent study by 

Soleiman et al. [7] showed improvement of glycemic con-

trol and reduction in C-reactive protein (CRP) in diabetic 

patients undergoing hemodialysis (HD). One of the mech-

anisms of probiotic-induced anti-inflammatory effects 

might be mediated via immune modulation. 

CD4+ CD25+ regulatory T-cells (Tregs) are a subpopu-

lation of T-cells with regulatory function and have been 

demonstrated to be effective in reducing inflammation [8]. 

CD14+ CD16+ nonclassical monocytes are a subset of proin-

flammatory monocytes which are increased in advanced 

CKD patients [9]. Lee et al. [10] previously demonstrated 

a positive correlation between these cells and vascular 

stiffness, suggesting the possible important role of this 

monocyte subset in increased cardiovascular risks in CKD 

patients. 

The purpose of this study was to assess the effect of pro-

biotic supplementation on inflammation in maintenance 

HD patients. We analyzed the microbiome, fecal short-

chain fatty acids (SCFAs), and inflammatory responses 

before and 3 months after probiotic supplementation. The 

percentage of circulating Tregs and the number of CD14+ 

CD16+ monocytes were also measured by flow cytometry. 

The effect of probiotic supplementation on these parame-

ters was also examined 4 months after the discontinuation 

of probiotics. 

Methods 

Study design 
Enrolled patients included those aged ≥18 years undergo-

ing maintenance dialysis for more than 3 months at Korea 

University Anam Hospital, a tertiary hospital in Seoul, 

South Korea, from November to December 2018. Exclu-

sion criteria were patients who: (a) were on HD for acute 

kidney injury; (b) were on HD less than twice per week; 

(c) had uncontrolled diarrhea or gastrointestinal infection; 

(d) were currently taking or had taken probiotics within 3 

months; (e) were treated with oral or intravenous antibi-

otics within 4 weeks of enrollment; and (f ) were actively 

being treated for cancer, or with immunosuppressive drugs 

except for low dose steroid. The enrolled patients were 

treated with sachets (2-g mixtures of probiotics containing 

7.0 × 109 colony-forming units [CFU]/g of Bifidobacterium 

bifidum BGN4 and 2.0 × 109 CFU/g of Bifidobacterium 

longum BORI) twice per day for 3 months. Compliance was 

checked by asking patients whether they took probiotics on 

schedule before every HD session. Blood and fecal samples 

were obtained at baseline and 3 and 7 months. 

The study protocol was approved by the Institutional 

Review Board of Korea University Medical Center (No. 

2018AN0346). Written informed consent was provided by 

all participants. The study was retrospectively registered in 

Clinical Research Information Service (CRIS) (KCT0005417; 

09/09/2020).

Laboratory measurements  
Routine laboratory measurements including complete 

blood counts with white blood cell differentials, CRP, albu-

min, blood urea nitrogen, creatinine, and electrolytes were 

obtained before the dialysis session. Patients’ demographic 

factors and current medications were also recorded. 

Blood samples were centrifuged at 2,500 ×g for 15 min-

utes and stored at –80°C for calprotectin measurements. 

Samples were analyzed using an enzyme-linked immuno-

sorbent assay (LS-F9275; LSBio, Seattle, WA, USA) accord-

ing to the manufacturer’s instructions. 

Flow cytometric detection of regulatory T-cells and proin-
flammatory monocyte subsets 

Blood samples were collected before the dialysis session. 
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Whole blood (2.5 mL) was collected in a heparinized tube 

and 200 µL aliquots of heparinized blood were stained for 

15 minutes at room temperature with either anti-human 

CD4 conjugated with allophycocyanin (CD4-APC), an-

ti-human CD25 conjugated with phycoerythrin (CD25-

PE) antibodies for detection of Tregs, anti-human CD14 

conjugated with fluorescein isothiocyanate (CD14-FITC), 

or anti-human CD16 conjugated with allophycocyanin 

(CD16-APC) antibodies for the detection of monocytes 

(BD Biosciences, San Jose, CA, USA). After red blood cell 

lysis and washing, flow cytometric detection of Tregs 

and the CD14+ CD16+ proinflammatory monocyte subset 

from among 106 cells was performed (FACSCalibur; BD 

Biosciences) and analyzed by FlowJo version. 8.5.2 (BD 

Biosciences). The percentage of cells or the actual number 

of cells at baseline were compared to the values 3 months 

after initiation of probiotic supplementation as well as 4 

months after the discontinuation of probiotic treatment. 

Quantification of cytokines before and after lipopolysac-
charide challenge 

Fold changes of cytokine production upon lipopolysac-

charide (LPS) challenge were compared before and after 3 

months of probiotic supplementation. Right after collect-

ing whole blood in a heparinized tube, 2 mL of blood was 

treated with or without 1 µg/mL of LPS (L2630; Sigma-Al-

drich, St. Louis, MO, USA) for 24 hours in a 5% CO2 incuba-

tor at 37°C. The plasma was separated and stored at –20°C 

until measurement. Quantification of plasma cytokines 

was performed using human inflammation cytometric 

bead array kits (BD Biosciences) and cytometric bead ar-

rays (human inflammation kit; BD Biosciences) according 

to the manufacturer’s instructions to simultaneously detect 

levels of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-12p70, and 

tumor necrosis factor-α. 

Measurement of fecal short-chain fatty acids 

The concentrations of SCFAs in fecal samples were ana-

lyzed using high-performance liquid chromatography in 

the National Instrumentation Center for Environmental 

Management at Seoul National University (Seoul, South 

Korea). Feces were prepared in normal saline (300 µL per 

1 g of feces). The fecal slurry supernatants were obtained 

through centrifugation (2,100 ×g for 10 minutes). SCFAs, 

including acetic, butyric, propionic, isovaleric, and valeric 

acids, were measured before and 3 months after probiotic 

supplementation. 

Microbiome analysis 

Sample DNA extraction and next generation sequencing 
Bacterial genomic DNA was extracted from stool samples 

using a QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, 

Germany). DNA extraction was performed after homog-

enization at 30 s for 1 minute using a TissueLyser system 

(Qiagen) and quantified using a QUBIT 3.0 Fluorometer 

(Thermo Fisher Scientific, Waltham, MA, USA). For next 

generation sequencing (NGS), 16S ribosomal RNA (rRNA) 

gene amplifications and index polymerase chain reactions 

(PCRs) were performed following the Illumina 16S metag-

enomic Sequencing Library preparation guide (Illumina, 

San Diego, CA, USA). The V3 and V4 regions of 16S rRNA 

were amplified using the following primer pair (forward 

5’–TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-

CCTACGGGNGGCWGCAG–3’, reverse 5’–TCTCGTGG-

GCTCGGAGATGTGTATAAGAGACAGGACTACHVGGG-

TATCTAATCC–3’). 

Nextera XT index kits (Illumina), using eight cycles, were 

then used to fragment DNA and add adapter sequences 

onto the DNA template. Each PCR product was purified 

using AMPure XP beads (Beckman Coulter, Pasadena, CA, 

USA). The amplicon library was sequenced by the 2 × 300 

bp paired-end method on a Miseq instrument (Illumina) 

according to the Illumina protocol. 

Bioinformatics analysis 
Raw sequencing data were analyzed via QIIME2 (https://

docs.qiime2.org/2019.7/) [11]. The fastq files were import-

ed to QIIME2 using the ‘Casava 1.8 paired-end demulti-

plexed method’ and merged by DADA2 [12]. Filter param-

eters for trimming and truncating using the DADA2 plugin 

were 0 and 140 to remove low-quality regions of sequences. 

Feature tables and data generation (‘qiime feature-table 

summarized’ and ‘qiime feature-table tabulate-seqs’), and 

phylogenetic tree construction (‘qiime phylogeny-align-

to-tree-mafft-fasttree’) were then performed. QIIME 2’s 

statistical analyses were also performed using the diversity 

plugin (“core-metrics-phylogenetic,” “alpha-group-sig-
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nificance,” and “beta-group- significance”). To perform 

taxonomic classification, ‘Greengenes 13_8 99% OTUs full-

length sequences’ were used as 16S rRNA gene databases 

[13,14]. 

Statistical analysis 

All analyses were performed using IBM SPSS version 25.0 

(IBM Corp., Armonk, NY, USA). Data are expressed as me-

dians (interquartile ranges) according to the distribution. 

Continuous variables (baseline, after 3 months) were com-

pared using the Wilcoxon signed-rank test. A p-value of 

<0.05 was considered significant. 

Results 

Baseline patient characteristics 

Of the 22 patients enrolled, 18 completed the study (two 

withdrew consent and two were hospitalized). The mean 

age was 68.1 years, and 16 patients (72.7%) were male. All 

patients received dialysis three times per week. The aver-

age time for receiving HD was 8 years (interquartile range, 

4.3–11.8 years) and the prevalences of diabetes, hyperten-

sion, or histories of gastrointestinal surgeries were 18%, 

81.5%, and 22%, respectively (Table 1). The percentages 

of patients on various medications, including phosphate 

binders, antacids, iron, and stool softeners, are reported in 

Table 1. 

The effect of probiotic supplementation on the microbi-
ome and microbial metabolites 

The richness expressed as Faith phylogenetic diversity, a sum 

of the branch lengths of a phylogenetic tree, was not different 

before and after probiotic supplementation (Fig. 1A). The 

evenness of the microbiome, which represents a relative 

abundance of the different species (Pielou’s evenness), was 

also comparable (Fig. 1B). 

We observed that the relative abundance of Prevotella, 

Enterococcus, Alistipes, Clostridia, Escherichia-Shigella, 

Klebsiella, and Bifidobacterium increased whereas Bacte-

roides, Faecalibacterium, Eubacterium siraeum, Tyzzerella, 

Sutterella, and Akkermansia decreased after probiotic sup-

plementation (Fig. 1C).  

However, despite lack of change in species richness 

or evenness, we found probiotic supplementation for 3 

months resulted in a significant increase of SCFAs such as 

acetic, butyric, propionic, and valeric acids in feces (Fig. 2). 

Effect of probiotic supplementation on inflammatory re-
sponses 

Serum levels of CRP, albumin, calcium, phosphate, and 

intact parathyroid hormone were comparable before and 

after 3 months of probiotic supplementation. Hemoglo-

bin, total white blood cell, and monocyte counts were also 

comparable (Table 2). Serum calprotectin, a marker of 

Table 1. Patient demographic characteristics at baseline
Clinical characteristic Data

No. of patients 22

Age (yr) 70.5 (61.2–76.5)

Male sex 16 (72.7)

Body mass index (kg/m2) 22.4 (20.8–25.2)

Dialysis frequency (per week) 3 (100)

Dialysis vintage (yr) 6.5 (4.3–11.8)

Peritoneal dialysis history 8 (36.4)

Kidney transplantation history 2 (9.1)

Comorbidity

  Hypertension 18 (81.8)

  Heart failure 10 (45.5)

  Ischemic heart disease 8 (36.4)

  Gastrointestinal operation history 5 (22.7)

  Cancer 5 (22.7)

  Diabetes mellitus 4 (18.2)

  Liver disease 3 (13.6)

  Chronic obstructive pulmonary disease 2 (9.1)

Medication

  Potassium binder 19 (86.4)

  Statin 14 (63.6)

  Phosphate binder 19 (86.4)

    Ca containing 9 (40.9)

    Non-Ca containing 10 (45.5)

  Oral iron 8 (36.4)

  Warfarin 4 (18.2)

  Antacid 3 (13.6)

  Steroid 3 (13.6)

  Stool softener 2 (9.1)

  Antihistamine 1 (4.5)

Data are expressed as number only, median (interquartile range), or num-
ber (%).
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acute inflammation, decreased significantly after 3 months 

of probiotic supplementation (7,030 ng/mL vs. 1,831 ng/

mL, p = 0.004) (Fig. 3A). 

We also compared cytokine production upon LPS stim-

ulation and found that the fold increase of IL-6 after LPS 

stimulation significantly decreased 3 months after probiot-

ic supplementation (Fig. 3B). 

Effect of probiotic supplementation on CD14+CD16+proin-
flammatory monocyte subset 

We assessed the impact of probiotic supplementation on cir-

culating proinflammatory monocytes. Using flow cytometry, 

monocyte subpopulations were divided into three different 

subsets: classical, intermediate, and nonclassical monocytes 

according to CD14 or CD16 positivity (Fig. 4A). Although 

the percent monocytes did not change in complete blood 

count, the actual number of CD14+ CD16+ proinflammato-

ry, nonclassical monocytes decreased significantly after 3 

months of probiotic supplementation (310/mm2 vs. 194/

mm2, p < 0.05) (Fig. 4B). 

Effect of probiotic supplementation on regulatory T-cells 

Circulating CD4+ CD25+ regulatory T-cells were identified 

by flow cytometry (Fig. 5A). The percentage of circulating 

CD4+ CD25+ Tregs increased from 3.5% at baseline to 8.6% 3 

months after initiating probiotic supplementation (Fig. 5B). 

Figure 1. Microbiome analysis. (A) Richness using Faith’s phylogenetic diversity (PD). (B) Community’s Pielou’s evenness. (C) Microbi-
ome composition alteration at the genus level.
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Regulatory T-cells and proinflammatory monocytes after 
discontinuation of probiotic supplementation 

The increased percentage of Tregs at 3 months after ini-

tiation of probiotic supplementation showed a complete 

return to baseline levels 4 months after the discontinuation 

of probiotics (Fig. 6A). The number of proinflammatory 

monocytes that decreased after probiotic supplementation 

also showed a trend to return to baseline after discontin-

uation of probiotic supplementation (p = 0.061) (Fig. 6B). 

However, the decreased serum calprotectin level was 

maintained after discontinuation of probiotics (Fig. 6C). 

Adverse effects 

Two patients were hospitalized during the study period, 

one for community-acquired pneumonia and the other 

for calculous cholecystitis. They were dropped in the final 

analysis. A causal relationship between probiotic use and 

infections was not clear. 

Discussion 

In this study, we demonstrated that the probiotic com-

bination of B. bifidum BGN4 and B. longum BORI had 

anti-inflammatory and immunomodulatory effects in pa-

tients undergoing maintenance HD. Supplementation of 

probiotics for 3 months resulted in increased SCFA levels 

in feces. Serum calprotectin levels, as well as IL-6 response 

upon LPS challenge, decreased significantly 3 months after 

initiation of probiotic supplementation, and this anti-in-

flammatory effect was associated with a decreased number 

of circulating proinflammatory, nonclassical monocytes 

and an increased percentage of immunomodulatory Tregs. 

However, this effect on circulating immune cells was tran-

sient and returned to baseline after discontinuation of the 

Figure 2. Effect of probiotic supplementation on fecal short-chain fatty acids level. (A) Acetic acid, (B) butyric acid, (C) propionic 
acid, (D) isovaleric acid, and (E) valeric acid.
*p < 0.05, **p < 0.01 compared to baseline.
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probiotics. 

Emerging evidence shows that intestinal microbiota 

plays an important role in both normal physiology as well 

as in acute or chronic inflammatory conditions. Both qual-

itative and quantitative changes in microbiomes have been 

reported in uremic animals as well as in patients. Chen 

et al. [15] reported the increase of relative abundance of 

Enterobacteriaceae, Ruminococcaceae, and Lachnospira-

ceae families in CKD patients and Sampaio-Maia et al. [16] 

showed the decrease of butyrate-producing bacteria such 

as Roseburia, Faecalibacterium, Clostridium, Coprococcus, 

and Prevotella in end-stage kidney disease. Although we 

observed that the relative abundance of Prevotella, Entero-

coccus, and Bifidobacterium increased whereas Bacteriodes 

and Faecalibacterium decreased after probiotic supple-

mentation, the exact role of this change remains uncertain. 

However, a recent meta-analysis of eight studies with 261 

patients suggested the potential beneficial effects of probi-

otics on inflammation, uremic toxins, and gastrointestinal 

symptoms [17]. 

B. bifidum BGN4 and B. longum BORI were isolated from 

the feces of healthy breast-fed infants and have been used 

Table 2. Comparison of baseline and postprobiotics supplement for clinical parameters
Parameter Baseline (n=22) 3 Month (n=18) P-value

Hemoglobin (g/dL) 10.6 ± 1.1 10.3 ± 1.3 0.56

Platelet (×1,000/µL) 167.0 ± 52.6 164.9 ± 56.3 0.77

WBC (×1,000/µL) 6,414 ± 2,197 5,739 ± 1,820 0.25

  Neutrophil (%) 60.7 ± 5.4 60.3 ± 5.7 0.75

  Lymphocyte (%) 23.5 ± 5.4 23.8 ± 5.0 0.97

  Monocytes (%) 9.8 ± 2.9 9.8 ± 2.4 0.59

  Eosinophil (%) 5.1 ± 3.1 5.3 ± 3.2 0.49

  Basophil (%) 0.8 ± 0.4 0.8 ± 0.4 0.37

hs-CRP (mg/L) 3.8 ± 6.9 4.2 ± 6.1 0.37

BUN, pre-HD (mg/dL) 57.5 ± 18.6 60.3 ± 15.4 0.91

Creatinine (mg/dL) 9.0 ± 2.4 9.3 ± 2.7 0.53

Na (mmol/L) 138.2 ± 2.0 138.1 ± 2.7 0.78

K (mmol/L) 4.7 ± 0.8 4.6 ± 0.8 0.25

Cl (mmol/L) 101.0 ± 3.1 100.8 ± 3.4 0.51

CO2, total (mmol/L) 22.3 ± 2.7 21.7 ± 2.4 0.77

Ca, total (mg/dL) 9.0 ± 0.7 8.7 ± 0.7 0.04

P (mg/dL) 4.9 ± 1.5 5.3 ± 1.8 0.47

Mg (mmol/L) 1.1 ± 0.1 1.1 ± 0.1 0.80

Uric acid (mg/dL) 4.6 ± 1.2 5.1 ± 1.0 0.10

Protein (g/dL) 6.7 ± 0.4 6.7 ± 0.5 0.77

Albumin (g/dL) 3.9 ± 0.3 4.0 ± 0.3 0.10

Total cholesterol (mg/dL) 118.7 ± 27.8 118.7 ± 41.7 0.36

AST (IU/L) 20.3. ± 9.2 21.2 ± 11.6 0.76

ALT (IU/L) 16.4 ± 9.8 15.4 ± 4.0 0.65

ALP (IU/L) 101.9 ± 49.3 94.1 ± 34.5 0.18

GGT (IU/L) 25.0 ± 21.2 27.4 ± 26.3 0.06

Bilirubin, total (mg/dL) 0.6 ± 0.2 0.6 ± 0.2 0.27

Glucose (mg/dL) 96.0 ± 15.2 99.7 ± 15.5 0.53

Kt/V 1.7 ± 0.2 1.7 ± 0.3 0.22

URR (%) 75.1 ± 5.3 76.2 ± 4.71 0.09

Postdialysis body weight (kg) 61.6 ± 11.4 61.2 ± 11.4 0.81

Data are expressed as mean ± standard deviation.
ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate transaminase; BUN, blood urea nitrogen; CRP, high-sensitivity C-reactive protein; 
GGT, gamma-glutamyl transferase; HD, hemodialysis; URR, urea reduction ratio; WBC, white blood cell.
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as probiotics since 2000 [18–20]. Their complete genom-

ic sequences were reported to GenBank [21]. B. longum 

BORI has been shown to shorten the duration of diarrhea 

in a clinical study of infants infected with rotavirus [18]. A 

safety assessment of B. bifidum BGN4 and B. longum BORI 

concerning ammonia production, hemolysis of blood cells, 

biogenic amine production, antimicrobial susceptibility 

patterns, antibiotic resistance gene transferability, PCR 

data on antibiotic resistance genes, mucin degradation, 

genome stability, and the presence of virulence factors has 

been recently reported [22]. Both strains have been con-

sidered “generally recognized as safe” by the U.S. Food and 

Drug Administration (GRN813 for B. longum BORI and 

GRN814 for B. bifidum BGN4; https://www.accessdata.fda.

gov/scripts/fdcc/?set=GRASNotices). 

CKD has emerged as a major cardiovascular risk factor 

Figure 3. Effect of probiotic supplementation on inflammatory markers. (A) Serum calprotectin level. (B) Fold increase of cytokines 
after lipopolysaccharide stimulation.
IL, interleukin; TNF, tumor necrosis factor.
*p < 0.05, **p < 0.01, ***p < 0.001 compared to baseline.

Figure 4. Effect of probiotic supplementation on proinflammatory, nonclassical monocyte subset. (A) Identification of monocyte 
subset according to CD14 and CD16 by flow cytometry. (B) Number of CD14+ CD16+ nonclassical monocytes.
*p < 0.05 compared to baseline.
FSC, forward scatter; SSC, side scatter; FL, fluorescence; FITC, fluorescein isothyocianate; APC, allophycocyanin.
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and chronic inflammation is recognized as an important 

player [23]. The intestine is the single largest organ of the 

immune system, harboring the largest number of T-cells 

and macrophages in our body and thus considered to be 

a potent regulator of systemic immunity [24]. Therefore, it 

can be hypothesized that a pre- or probiotic-induced bene-

ficial effect might be mediated by effects on immune cells. 

In our previous study, we demonstrated that probiotics 

directly expanded CD11c+ CD103+ regulatory dendritic 

cells in vitro and percentages of regulatory dendritic cells 

increased significantly in probiotic-fed CKD mice, showing 

the possible direct effect of probiotics on immune cells [5]. 

In this study, we first observed that probiotic supplemen-

tation resulted in decreased numbers of proinflammatory 

monocytes. Monocytes are cells of the innate immune 

system and have heterogeneous phenotypes according to 

surface expression of CD14 or CD16 proteins [25]. Among 

them, CD14+ CD16+ are nonclassical monocytes that have 

been known to invade the endothelium and cause plaque 

formation in the general population and in patients with 

CKD [9]. We also demonstrated the expansion of these 

subsets and their associations with CRP and vascular stiff-

ness in patients with advanced CKD [10]. A significant de-

crease in the actual number of CD14+ CD16+ nonclassical 

Figure 5. Effect of probiotic supplementation on CD4+ CD25+ regulatory T-cells. (A) Identification of circulating CD4+ CD25+ regula-
tory T-cells. (B) Percentage of regulatory T-cells.
***p < 0.001 compared to baseline.
FSC, forward scatter; SSC, side scatter; FL, fluorescence; APC, allophycocyanin; PE, phycoerythrin.

Figure 6. Effect of discontinuation of probiotics on immune cells and calprotectin level. (A) Percentage of CD4+ CD25+ regulatory 
T-cells. (B) Number of CD14+ CD16+ nonclassical monocytes. (C) Serum calprotectin level.
NS, not significant.
*p < 0.05, **p < 0.01, ***p < 0.001 compared to baseline.
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monocytes after probiotic supplementation suggests that 

the anti-inflammatory effect of probiotics could be partial-

ly mediated by inhibitory effects on the proinflammatory 

monocyte subset. 

In addition to monocytes, we compared the percentage 

and number of circulating Tregs before and after probiotic 

supplementation and observed that the percentage of CD4+ 

CD25+ cells in blood showed a significant increase after 3 

months of probiotic supplementation. Mahajan et al. [26] 

showed that Tregs protect against constant macrophage in-

flammation and reduce proinflammatory cytokine produc-

tion in murine CKD models. Impaired Treg function was 

also observed in CKD patients, leading to chronic inflam-

mation and subsequent atherosclerosis and cardiovascular 

diseases [27]. Wang et al. [28] also demonstrated that CKD 

patients with cognitive dysfunction who had increased per-

centages of Tregs showed significantly higher mini-mental 

state examination scores than those with reduced percent-

ages of Tregs.  

Given this potent immune suppressive function, expan-

sion of circulating Tregs after probiotic supplementation 

is likely contribute to anti-inflammatory effect in our pa-

tients despite the possibility that CD25 positivity does not 

exclusively represent Tregs. However, we observed that the 

increased percentage of Tregs returned to baseline in all 

patients 4 months after the discontinuation of probiotics, 

suggesting the effect was only transient. There was no dif-

ference in the number of nonclassical monocytes 4 months 

after the discontinuation of probiotics.  

We observed that serum calprotectin levels, as well as 

fold increases of IL-6 after the LPS challenge, decreased 

significantly after probiotic supplementation. Calprotectin 

is a heterodimeric complex of two S100 calcium-binding 

proteins; myeloid-related protein (MRP)-8 and MRP-14, 

which are mainly expressed in neutrophils and monocytes. 

Although calprotectin was originally known as a novel bio-

marker of disease activity in patients with inflammatory 

bowel disease when measured in feces, recent data suggest 

that serum calprotectin levels can be a useful biomarker of 

disease activity in several acute and chronic inflammatory 

conditions [29,30]. Serum and urine calprotectin have been 

demonstrated to be associated with the severity of renal 

injuries and endothelial dysfunction in Henoch-Schön-

lein purpura as well as anti-neutrophil cytoplasmic anti-

body-associated vasculitis even if CRP levels are not elevat-

ed [31,32]. As calprotectin is mainly produced by activated 

monocytes and neutrophils, decrease of calprotectin after 

probiotic supplementation is likely to be associated with 

decrease of CD14+ CD16+ proinflammatory monocytes. 

Although we observed that calprotectin levels decreased 

significantly after 3 months of probiotic supplementation, 

the usefulness of serum calprotectin levels as a sensitive 

marker of inflammation in patients with CKD or HD re-

quires further examination. 

IL-6 has been demonstrated to be an important player in 

the progression of CKD [33]. It exacerbates inflammation 

as well as endothelial injury by reducing endothelial nitric 

oxide synthase and injection of recombinant IL-6 exacer-

bates atherosclerosis in mice [34]. Our data showing that 

the fold increase of IL-6 upon LPS challenge significantly 

decreased after 3 months of probiotic supplementation 

also support its anti-inflammatory effect. This is also in line 

with previous studies showing decreased levels of IL-6 after 

6-month supplementation of probiotics in peritoneal dial-

ysis patients [35]. 

Various metabolites produced by intestinal microbiota 

are important in both normal physiology and in patholog-

ical conditions. SCFAs are bacterial fermentation products 

with pleiotropic functions including lipid regulation, en-

ergy metabolism, and immune regulation via interaction 

with G protein-coupled receptors (GPCR), histone deacety-

lases, or direct humoral effects [36]. They are known to be 

important in colonocyte survival, maintaining barrier in-

tegrity and immune modulation [37]. In contrast, excessive 

production of trimethylamine due to the consumption of 

an animal protein-rich diet has been shown to be associ-

ated with atherosclerosis and cardiovascular diseases [38]. 

In our study, we observed that the levels of acetic, butyric, 

propionic, and valeric acids increased significantly after 

3 months of probiotic supplementation. Relative increase 

of Bifidobacterium, Ruminococcaceae, and Prevotella, well 

known as butyrate producers, might be responsible for 

this result [39]. Given that SCFAs have immunomodula-

tory effects, it is possible that significantly elevated levels 

of SCFAs during the probiotic supplementation might be 

responsible for decreased proinflammatory monocytes 

and expansion of Tregs. SCFAs such as butyrate have been 

demonstrated to induce Treg expansion directly or via IL-

10 upon binding to GPCR [40]. This would have caused 

increased levels of Tregs in this study. 
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Even though our data show that probiotics elicited a very 

potent anti-inflammatory effect, two of the patients in our 

study required hospitalization. One patient was diagnosed 

with calculous cholecystitis, underwent a laparoscopic 

cholecystectomy, and was administered systemic antibi-

otics. The second patient was diagnosed with communi-

ty-acquired pneumonia after 1 month of probiotic sup-

plementation and was discharged after 5 days of systemic 

antibiotic therapy. Although a causal relationship between 

probiotic use and serious infections in this study was not 

clear, one should always be aware that excessive suppres-

sion of inflammatory responses might increase the risk of 

infections.  

This study has several limitations. First, only a small 

number of patients participated, and it was not a random-

ized-controlled or crossover study. A low prevalence of 

diabetes was probably due to the small sample size and 

selection bias. Second, no control group was available to 

compare the results of probiotics supplementation. Also, 

defining Tregs by only CD25 positivity is another limita-

tion. Additional markers such as Foxp3 would have helped 

further isolate functional Tregs. 

In conclusion, probiotic combinations of B. bifidum 

BGN4 and B. longum BORI reduced systemic inflammato-

ry responses and this effect was partially mediated by an 

increase of Tregs and a decrease of the nonclassical proin-

flammatory monocyte subset. Larger-scale clinical studies 

testing the components of microbiota or their metabolites 

and assessing the effects on long-term outcomes in dialysis 

patients are needed. 
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