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A B S T R A C T   

Introduction: Micro-computed tomography (μCT) is a valuable imaging modality for longitudinal quantification of 
bone volumes to identify disease or treatment effects for a broad range of conditions that affect bone health. 
Complex structures, such as the hindpaw with up to 31 distinct bones in mice, have considerable analytic po
tential, but quantification is often limited to a single bone volume metric due to the intensive effort of manual 
segmentation. Herein, we introduce a high-throughput, user-friendly, and semi-automated method for seg
mentation of murine hindpaw μCT datasets. 
Methods: In vivo μCT was performed on male (n = 4; 2–8-months) and female (n = 4; 2–5-months) C57BL/6 mice 
longitudinally each month. Additional 9.5-month-old male C57BL/6 hindpaws (n = 6 hindpaws) were imaged by 
ex vivo μCT to investigate the effects of resolution and integration time on analysis outcomes. The DICOMs were 
exported to Amira software for the watershed-based segmentation, and watershed markers were generated 
automatically at approximately 80% accuracy before user correction. The semi-automated segmentation method 
utilizes the original data, binary mask, and bone-specific markers that expand to the full volume of the bone 
using watershed algorithms. 
Results: Compared to the conventional manual segmentation using Scanco software, the semi-automated 
approach produced similar raw bone volumes. The semi-automated segmentation also demonstrated a signifi
cant reduction in segmentation time for both experienced and novice users compared to standard manual seg
mentation. ICCs between experienced and novice users were >0.9 (excellent reliability) for all but 4 bones. 
Discussion: The described semi-automated segmentation approach provides remarkable reliability and 
throughput advantages. Adoption of the semi-automated segmentation approach will provide standardization 
and reliability of bone volume measures across experienced and novice users and between institutions. The 
application of this model provides a considerable strategic advantage to accelerate various research opportunities 
in pre-clinical bone and joint analysis towards clinical translation.   

1. Introduction 

Micro-computed tomography (μCT) is a valuable imaging modality 
for a variety of quantitative measures, such as evaluation of bone health 
in pre-clinical models (Stauber and Müller, 2008). Images can be 

acquired either longitudinally in vivo or ex vivo after tissue harvest, and 
various analytical processes have been developed to extract bone quality 
measures from the resulting datasets. Primarily, analytical approaches 
have focused on the evaluation of long bones to isolate the cortical and 
trabecular portions of the bones for detailed outcome measures. Various 

Abbreviations: μCT, Micro-Computed Tomography; TNF-Tg, Tumor Necrosis Factor Transgenic; MTP, Metatarsophalangeal; MRI, Magnetic Resonance Imaging; 
HU, Hounsfield Unit; Gy, Gray. 

* Corresponding author at: Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Ave, Box 665, Rochester, NY 14642, USA. 
E-mail addresses: Howard_Kenney@urmc.rochester.edu (H.M. Kenney), Yue_Peng@urmc.rochester.edu (Y. Peng), Kiana_Chen@urmc.rochester.edu (K.L. Chen), 

Raquel_Ajalik@urmc.rochester.edu (R. Ajalik), Lindsay_Schnur@urmc.rochester.edu (L. Schnur), Ronald_Wood@urmc.rochester.edu (R.W. Wood), Edward_ 
Schwarz@urmc.rochester.edu (E.M. Schwarz), Hani_Awad@urmc.rochester.edu (H.A. Awad).  

Contents lists available at ScienceDirect 

Bone Reports 

journal homepage: www.elsevier.com/locate/bonr 

https://doi.org/10.1016/j.bonr.2022.101167 
Received 29 November 2021; Received in revised form 29 December 2021; Accepted 12 January 2022   

mailto:Howard_Kenney@urmc.rochester.edu
mailto:Yue_Peng@urmc.rochester.edu
mailto:Kiana_Chen@urmc.rochester.edu
mailto:Raquel_Ajalik@urmc.rochester.edu
mailto:Lindsay_Schnur@urmc.rochester.edu
mailto:Ronald_Wood@urmc.rochester.edu
mailto:Edward_Schwarz@urmc.rochester.edu
mailto:Edward_Schwarz@urmc.rochester.edu
mailto:Hani_Awad@urmc.rochester.edu
www.sciencedirect.com/science/journal/23521872
https://www.elsevier.com/locate/bonr
https://doi.org/10.1016/j.bonr.2022.101167
https://doi.org/10.1016/j.bonr.2022.101167
https://doi.org/10.1016/j.bonr.2022.101167
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bone Reports 16 (2022) 101167

2

strategies have been developed to specifically evaluate trabecular and 
cortical components of bone, such as regions of interest placed within 
the trabecular bone, manual contouring of the trabecular and cortical 
boundary, or automated segmentation approaches (Bouxsein et al., 
2010; Buie et al., 2007; Kohler et al., 2007; Newton et al., 2020). These 
well-described segmentation methods have allowed for establishment of 
various derived measures (i.e. trabecular number, cortical thickness, 
etc.), that together provide detailed insight on the health and quality of 
the bone (Bouxsein et al., 2010). 

However, in complex structures such as the murine hindpaw, which 
contains 30 or 31 (as the fused navicular/lateral cuneiform (Richbourg 
et al., 2017) can also be variably fused with the intermediate cuneiform 
in C57BL/6 mice) distinct bones of various sizes and shapes, no strate
gies have been widely adopted to segment these individual bones for 
high-throughput and reproducible analysis. The conventional ap
proaches to μCT analysis in structures such as the hindpaw are solely 
reliant on manual contouring or density-based thresholding approaches 
(Proulx et al., 2007) that are prone to inaccuracies at bone edges (Ias
sonov et al., 2009; Diaz et al., 2021; Rathnayaka et al., 2011). Given the 
intensive segmentation efforts involved in further analysis, data analysis 
is typically limited to a single (Proulx et al., 2007), small subset, and/or 
focal regions of bones (Cambre et al., 2018). Since each individual bone 
in the hindpaw experiences unique in vivo forces, tendon strains, and 
combinations of articulating surfaces, limiting the analysis to single 
bones reduces the capacity to identify reliable bone-specific biomarkers 
to guide future pre-clinical and clinical investigation. In addition, reli
ance on these conventional manual segmentation methods conducted by 
different users with various segmentation strategies increases the 
probability of inter-user variability in outcome measures. Thus, the 
analytical strategies for complex structures with multiple small bones, 
such as the hindpaw, have enormous possibility for improvement. 

For example, in our previous work investigating inflammatory 
arthritis in the tumor necrosis factor transgenic (TNF-Tg) mouse model 
(Keffer et al., 1991), we performed μCT analysis on the hindpaw as a 
biomarker of arthritis onset and progression (Proulx et al., 2007). 
However, this analysis was limited to volume measurements of the talus, 
which articulates with the tibia in the ankle, primarily because of the 
ease in manual segmentation. To properly evaluate the relationship 
between experimental interventions and the effect on arthritis, μCT 
analysis is essential due to its comprehensive ability to evaluate com
plete bone volumes and capacity for longitudinal in vivo measurements 
of bone erosions. The reliance on manual segmentation strategies thus 
forces us and others to limit our analysis to single bones, such as the 
talus, while certain interventions may exhibit bone-specific effects that 
have yet to be investigated. Thus, establishment of a high-throughput 
data analysis approach would provide considerable benefit to validate 
or discover additional biomarkers of bone health for various pathologic 
conditions. 

Herein, we developed a high-throughput and user-friendly semi- 
automated segmentation workflow for murine hindpaw μCT datasets 
using commercially available algorithms in Amira software. As one of 
the major roadblocks to widespread adoption of automated segmenta
tion approaches is the intensive computer-based knowledge necessary 
for application, we validated that the segmentation strategy could be 
quickly adopted with minimal training by novice users with no prior 
experience using the Amira software. The described segmentation 
method demonstrated significant benefits in throughput compared to 
conventional μCT analysis performed by manual contouring, and the 
approach also showed excellent internal consistency and inter-user 
reliability. Thus, we have established an automated approach to 
isolate individual small bones in complex structures, such as the hind
paw, for μCT analysis with the capacity for widespread adoption. 

2. Materials and methods 

2.1. Mouse models and micro-CT data collection 

All animal experiments were approved by the University Committee 
for Animal Resources at the University of Rochester. In vivo μCT datasets 
of the hindpaws (2 hindpaws/dataset) were acquired longitudinally at 
monthly intervals in male (n = 4; 2–8 month-old) and female (n = 4; 2–5 
month-old) C57BL/6 mice. The C57BL/6 mice used in this study were 
littermates to TNF-Tg mice (Douni et al., 1995-1996; Kontoyiannis et al., 
1999) originally obtained from Dr. George Kollias and maintained at the 
University of Rochester. The longitudinal measures of the females were 
terminated earlier than the males to compare with the TNF-Tg litter
mates in a separate study, where TNF-Tg females exhibit accelerated 
mortality at <6 months of age (Bell et al., 2019). 

For the μCT data collection, the mice were anesthetized with iso
flurane and placed on their left side in a Derlin plastic and clear acrylic 
tube. Adhesive tape was used to bind the hindpaws together and foam 
was placed above and below the hindlimbs to secure them. Micro-CT 
datasets were acquired using a VivaCT 40 (Scanco Medical, Bassers
dorf, Switzerland), and all in vivo scans were collected with the following 
imaging parameters: 55 kV, 145 μA, 300 ms integration time, 2048 ×
2048 pixels, 1000 projections over 180◦, resolution 17.5 μm isotropic 
voxels. Image collection for the hindpaws was completed in 30-45 min. 
A total of 44 in vivo datasets were generated. Two datasets were 
excluded from the study due to considerable animal movement during 
the scan, and one additional calcaneus bone was excluded due to 
incorrect localization of image acquisition. In total, 42 datasets (84 
hindpaws) were analyzed. 

2.2. Bone names and abbreviations 

The bone nomenclature was primarily derived from Bab et al. 
(2007), and a fully labeled bone atlas annotating each of the individual 
bones in the hindpaw is provided in Figure 1. In the naming process, the 
bones were named according to shorthand bone codes followed by L 
(left) or R (right) for the corresponding hindpaws (Supplementary 
Table 1). For the mouse hindpaw, we confirmed previous studies where 
the navicular and lateral cuneiform were found to be ubiquitously fused 
in C57BL/6 mice (Richbourg et al., 2017). However, we also noted that 
the intermediate cuneiform is variably fused with these bones as well, 
which was consistent between animals and even within a single animal 
where the left ankle may be unfused, while the right ankle is fused, for 
example. For the digits, 1–5 represent the digit number with 1 being the 
most medial digit and 5 being the most lateral digit. The metatarsals, 
proximal phalanges, and distal phalanges are numbered according to the 
digits. Note, the first digit does not have a distal phalange. A small re
gion of bone near the articulation of the distal phalanges and claw on the 
plantar surface variably segments as a separate material, and in these 
situations is added to the distal phalange. However, since this bony 
projection of the distal phalange near the claw articulation is spatially 
distinct from the majority of the distal phalange bone (hypodense space 
between objects), this was not considered a segmentation error. There 
are 2 sesamoid bones per digit (2 sesamoids × 5 digits = 10 sesamoids 
per hindpaw) located on the plantar surface near the articulation of the 
metatarsal and proximal phalange (MTP joint). On each digit, the odd 
numbered sesamoid is medial, while the even numbered sesamoid is 
lateral as the sesamoids are numbered from medial to lateral. In total, 
there are 30–31 bones per hindpaw (60–62 bones per dataset) depend
ing on the variable fusion of navicular/lateral cuneiform with the in
termediate cuneiform. There are also a few bones present in each dataset 
that were segmented, but not evaluated for analysis: 1) Tibia and Fibula 
(Abbreviation: FIBTIB; Segmented together as a single material, present 
in variable length depending on scan), 2) Extra Sesamoid (Abbreviation: 
FLOAT; Plantar surface near proximal end of metatarsal 5, appears 
“floating” below ankle), and 3) Claws (Abbreviation: CLAW; Segmented 
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together as a single material, 1 Claw per digit). The shorthand bone 
codes are defined in Supplementary Table 1, and in Supplementary 
Video 4 – Mouse Ankle Anatomy. 

2.3. Segmentation method 

To generate a minimally supervised, reliable, and efficient segmen
tation method for analysis of each individual bone in murine hindpaw 
μCT datasets, we utilized established watershed-based algorithms 
available through the Amira computer software. Well-defined bone 
borders are essential for accurate bone separation, and thus a three- 

dimensional median filter was applied to the original dataset to 
denoise the image (Fig. 2A). A set threshold (>2500 Hounsfield Units 
(HU)) was then used to define bone relative to the surrounding air and 
soft tissue, and a top-hat representation of the image (>750 HU, defining 
steep valleys or large changes in signal intensity between adjacent 
voxels) was subtracted from the thresholded label field. The subtraction 
of the top-hat representation removes large pores in the bone and gen
erates a binary mask of the bones (Fig. 2B). In all, placement of the 
watershed seeds, which are eroded versions of each individual bone 
identified as unique objects, is the most essential aspect of the seg
mentation process, and a variety of steps were used to create these 

Fig. 1. Visual representation of the individual bones in murine hindpaws. A fully segmented hindpaw is shown with each bone identified by color and annotated in 
the dorsal (A), plantar (B), medial (C), and lateral (D) viewpoints. Note that this particular hindpaw has separated navicular/lateral cuneiform and intermediate 
cuneiform bones that are variably fused in the hindpaws of C57BL/6 mice. A detailed description of the hindpaw anatomy is provided in Supplementary Video 4, 
while shorthand bone codes are defined in Supplementary Table 1. 
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watershed seeds to define and separate each distinct bone (Fig. 2C). 
Together, the original data, binary mask, and watershed seed data ob
jects expand the bone-specific markers to the edges of each individual 
bone for a complete segmentation of the hindpaw μCT dataset (Figs. 2D, 
E). 

Similar to the creation of the binary mask, the automated workflow 
for generation of the watershed seeds begins with the filtered dataset, 
application of a set threshold (>2500 HU), and subtraction of a top-hat 
representation of the image. However, in the case of the watershed 
seeds, the top-hat was set at a much lower threshold (>10 HU) to also 
capture shallow valleys with limited change in signal intensity between 
adjacent voxels. As a result, the only voxels that remain segmented are 

those regions of bone with relatively constant signal intensity, which 
primarily isolates the central portions of the cortices for the individual 
bones (Figs. 3A-C). To further specify the central portions of each bone, 
the segmentation is then eroded by 1 additional pixel (Ball, 3D) to create 
small, connected seeds scattered throughout the bones (Fig. 3D, red 
contours). The various connected seeds are then labeled as separate 
objects, while objects remain connected if they share at least one com
mon vertex (Fig. 3E; Connectivity: 26 Neighborhood in 3D). At this 
stage, many small objects (<500 pixels) remain that only define minute 
regions of particular bones, and thus these small objects are removed as 
the final step in the automated generation of the watershed seeds 
(Fig. 3F). Thus, these inputs to create the watershed seeds, together with 

Fig. 2. Watershed-based semi-automated segmentation of murine hindpaw micro-CT datasets. 3D rendering of the μCT data was performed, and representative 
images of the hindpaw bones are shown to demonstrate the semi-automated segmentation method. This method utilizes the original μCT data after application of a 
three-dimensional median filter for edge detection (A), a binary mask with a set threshold of 2500 HU (B), and bone-specific watershed seeds (eroded versions of the 
bone-specific labels) (C). Together, these inputs generate bone-specific segmentations that expand to the full volume of the bone using the “Marker Based Watershed 
Inside Mask” algorithms available in Amira software. The complete segmentations of the 31 possible bones present in the murine hindpaw are shown from the dorsal 
(D) and plantar (E) viewpoints, and the volumes of each individual bone were subsequently extracted for downstream analysis. 
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the filtered data (Fig. 3A) and the binary mask (Fig. 3G), generate the 
fully segmented dataset (Fig. 3H). 

However, the automated portion of the watershed seed placement 
contains errors in most cases. On average for datasets collected in vivo (n 
= 84 hindpaws), 79.2% (bones segmented correctly/total bones) of the 
individual bones were segmented accurately using the automated 
workflow, while analysis of ex vivo datasets (n = 6 hindpaws) improved 
the accuracy to 91.1% on average. These findings suggest that slight 
movements in vivo may affect the segmentation accuracy. In fact, spe
cific bones tended to be more prone to errors than others in analysis of in 
vivo datasets. While most bones were segmented accurately without user 
intervention, four bones (CUB, DP3, NAVLATINT (fused), and NAVLAT 
(separate)) demonstrated the highest error rates where these bones were 
accurately segmented in <50% of the hindpaws. The error rates for each 
of the individual bones are provided in Supplementary Table 2. 

Despite the potential for error with the automated workflow, we 
developed methods to quickly fix the mistakes and generate accurate 
seed placements for the average of 20.8% (6 bones/hindpaw) of bones 
that exhibited errors in each dataset. The two primary types of errors are 
connected (~15% of bones; 2+ bones segmented as 1 material) or split 
(~5% of bones; 1 bone segmented as 2+ materials). Connected errors 
can be identified by selecting a given material, and the seeds expand 
across bone borders to cover multiple bones (Figs. 4A-C), while split 
errors are noted by a material that does not define the entire expanse of 
the bone (Figs. 4D-F). Together, the bones segmented accurately using 
the automated workflow (Figs. 4G,H) and the corrected bone segmen
tations generate the final watershed seeds that produce the complete 
segmentation (Fig. 4I). 

The connected errors (Figs. 5A,B) can be fixed in two different ways: 
1) If the connected bones are only connected by a single vertex, the 

Fig. 3. Automated workflow for generation of bone- 
specific watershed seeds. To create the bone-specific 
watershed seeds in an efficient and reproducible 
manner, an automated workflow was developed and 
packaged as a convenient “Recipe” where all steps are 
embedded within a single module in Amira. To 
visualize the changes at each step in the recipe, a 2D 
section near the tarsal region of a representative 
hindpaw is shown, while the modules function on the 
full 3D dataset. The recipe requires the input of the 
dataset after application of a three-dimensional me
dian filter (A) and a binary representation of the bone 
(>2500 HU). A top-hat was then applied to identify 
local valleys in signal intensity, and a threshold >10 
HU was set to define the valley depth (B). The top hat 
segmentation was then subtracted from the binary 
representation of the bone to define only high- 
intensity regions with limited signal change in adja
cent voxels (C). The result was then eroded to further 
separate the intense regions of the individual bones 
(D), and the separate objects were then defined as 
individual materials with connected voxels sharing at 
least one common vertex (E). Small objects were then 
removed to isolate the larger connected materials 
defining the majority of the individual bones as the 
final step in the generation of the watershed seeds 
(F). An automated workflow was used to create the 
binary mask, which utilizes the same approach as 
shown in A-C, but with an increased threshold for 
valley depth at >750 HU in the top-hat step (G). The 
filtered dataset (A), watershed seeds (bone-specific, 
color-annotated contours) (F), and binary mask (blue 
contours) (G) were combined together in the “Marker 
Based Watershed Inside Mask” Amira module for the 
complete segmentation of the individual bones in the 
hindpaw (H), as described in Figure 2.   
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bones can be separated by selecting the individual seeds in 2D and 
generate new materials (Figs. 5C,D); or 2) New seeds are formed by the 
magic wand tool that selects connected voxels at a set threshold, and is 
able to similarly target the central regions of the bone with high signal 
intensity for separation from adjacent bones (Figs. 5E-H). Importantly, 
the final correction (Figs. 5I,J) requires the original erroneous and 
connected material to be deleted. On the other hand, split errors are 
simple to fix by naming the different split objects defining the particular 
bone as the same material name, which will then be automatically 
merged by the software to fix the error (Figs. 5K-M). As a last resort, the 
seeds can be placed manually using the brush tool by targeting the bone 
using 2D crosshairs and placing small seed points around the edges of 
the bone in each of the 3 planes of section with the bone target validated 
in 3D (Figs. 5N-Q). Once the segmentation process is complete, the user 
can extract each individual bone volume as a data table within Amira. 
Thus, we have developed various troubleshooting approaches to com
plete the final version of the watershed seeds for segmentation of the 
murine hindpaw μCT datasets using watershed algorithms in Amira. A 
detailed workflow for the watershed seed development, correction 
processes, and complete segmentation of the hindpaw datasets are 

provided in the Supplementary Methods and Supplementary Videos. 

2.4. Reproducibility and efficiency measures 

To correlate the semi-automated segmentation approach with con
ventional μCT analysis where individual bones are manually contoured, 
we evaluated the bone volume measurements from a subset of bones (n 
= 60 bones) across 6 different μCT datasets. An experienced Scanco user 
manually contoured these 60 bones, which represented the expected 
distribution of segmentation accuracy in the semi-automated workflow. 
The volume measurements derived from manual segmentation were 
then compared to these outcomes from the Amira software by linear 
regression and Bland-Altman agreement analyses. The experienced 
Scanco user also provided the segmentation time for each dataset where 
the manual contouring time for each bone was quantified. The total time 
necessary to segment an entire dataset was extrapolated by multiplying 
the segmentation time for a particular bone and the total number of 
bones in the associated bone compartment (i.e. tarsals, metatarsals, 
proximal phalanges, distal phalanges, or sesamoids). 

To evaluate the feasibility for a novice user (with no prior Amira 

Fig. 4. Semi-automated segmentation produces connected or split errors prior to user correction. During the automated watershed seed development, approximately 
15% of the seeds will be erroneously connected (A-C), 5% will be incorrectly split (D–F), and 80% will be correctly segmented without user intervention (G,H). After 
correction of the erroneous watershed seeds shown in B to C and E to F, the watershed seeds can then be used in the “Marker-Based Watershed Inside Mask” module 
for segmentation of the hindpaw, where the example bones are identified in the final segmentation by stars with corresponding colors (I). Note that in quantification 
of the error rate, all of the bones connected as in B are considered as individual errors (i.e. 3 bones connected means 3 errors), while the split bone as in E is 
considered a single error. 
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Fig. 5. Methods for correcting errors in the automated watershed seed placement. To demonstrate the approach for correcting the connected and split errors, the 
datasets shown in Figure 4 are used as examples. When connected errors occur as with the CUB, NAVLAT, and MED shown in 3D (A; red selection from left to right) 
and 2D (B; red filled in contours from top to bottom), there are 2 primary methods to fix these mistakes. First, the edges of the predominant watershed seeds of a 
specific bone may already be correctly split, but labeled as the same material because of a connected vertex in 3D. By clicking inside the seeds within a particular 
bone (C, i.e. MED), the bone may segment independently from the connected bones and can be added as a new and separate material (note red seeds converted to 
pink seeds) (D). However, if clicking within the bone-specific seeds does not separate the bones (E; CUB and NAVLAT remain connected with the red contours filled 
in), new seeds can be quickly generated using the magic wand tool. Starting with a mask of 4500 HU, click within the bone of interest and sequentially increase the 
mask by 250 HU until the bone separates (F; NAVLAT is selected as purple, while CUB is not selected as blue). The NAVLAT can then be added as a new and separate 
material then the process repeated for CUB (G) to create the new watershed seeds (H). Importantly, the material that represented the original, erroneously connected 
watershed seeds must be deleted to finalize the corrected watershed seeds as shown in 3D (I), and 2D (J). On the other hand, split errors, as in the example of the 2nd 
metatarsal (K; MET2), can be fixed by naming the two components of the bone as MET2, which will then be merged (L) to correct the error (M). As a last resort, the 
watershed seeds can be placed manually by visualizing the 2D crosshairs in the center of the bone to be segmented, and small dots placed around the bone using the 
brush tool in the XY (N), XZ (O), and YZ (P) planes. The crosshairs can also be visualized in 3D to confirm the identification of the bone being segmented (Q). The 
manual seed placement is also helpful in situations where the automated watershed seeds do not adequately segment the articulating surfaces of two bones and 
generate an unclearly segmented border. A detailed description of these correction processes is also provided in the Supplementary Methods and Supplementary 
Video 3. 
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experience) to adopt the semi-automated segmentation method, 3 pre
viously untrained graduate students were tasked with analyzing the 
same 6 datasets. In order to train the users on the segmentation method, 
5 training videos were developed (<2-h total, Supplementary Videos 
1–5). The novice users then analyzed the 6 datasets once for practice, 
and then analyzed the 6 datasets again to evaluate the segmentation 
time for each dataset. Analysis time for each dataset was defined from 
the application of the median filter to the final segmentation after 
double checking and fixing any errors. 

2.5. Training materials 

Novice users were provided 5 training videos (Supplementary Videos 
1–5, <2-hours total) and 6 practice datasets from the in vivo scans. The 
training videos cover the following topics: 1) Introduction to Amira, 2) 
Segmentation Process, 3) Correction Processes, 4) Mouse Ankle Anat
omy, and 5) Example Segmentation. The practice datasets represent 
hindpaws from 5-month-old mice (n = 4 male, n = 2 female), and were 
selected to demonstrate the range of potential segmentation accuracy 
before user correction. Thus, the training datasets include the following 
distribution of accuracy determined by percent of bones correct without 
user intervention: >85% (n = 2), 85–75% (n = 2), and < 75% (n = 2), 
with the average of 80.3% closely mirroring the accuracy across all 
datasets at 79.2%. The training videos (Supplementary Videos 1–5), 
Amira recipes, and an excel sheet indicating the expected volume 
measurements for each bone are provided in the Supplementary Mate
rials, while the training datasets can be found at the following reference 
(Kenney & Awad, 2021), doi: 10.17632/7sm9wznp6d.1). Together, all 
of these materials represent the same training materials provided to the 
novice users in this study. 

2.6. Image acquisition parameters 

To evaluate the effects of changing image resolution and integration 
time on the segmentation method, hindpaws were also harvested from 
9.5-month-old C57BL/6 males (n = 3 mice or 6 hindpaws). The hind
paws were fixed in 10% neutral buffered formalin, rocking for 24-h at 
room temperature. Sequential ex vivo μCT scans were performed on the 
hindpaws to directly compare changes in the volume measurements and 
segmentation accuracy of 9 different image resolution and integration 
time combinations. These combinations consisted of the following im
aging parameters: High (10.5 μm isotropic voxel size), medium (17.5 
μm), and low (35.0 μm) image resolutions; high (300 ms), medium (200 
ms), and low (120 ms) integration times. The standard parameters used 
for the development of this segmentation method were medium reso
lution and high integration time (17.5 μm; 300 ms). 

2.7. Computer and software specifications 

The segmentation workflow described in this study was performed 
on a computer running Windows 10 (Microsoft Corporation, Redmond, 
WA; operating system build: 19042.1288) with the following specifi
cations: Processor: Intel® Core™ i7-7700K CPU at 4.20 GHz (Intel, 
Santa Clara, CA); RAM: 52.0 GB; System type: 64-bit operating system; 
Graphics card: NVIDIA Quadro M4000 (NVIDIA, Santa Clara, CA). 
Amira software (v2020.2; ThermoFisher Scientific, FEI, Hillsboro, OR, 
USA) was used for the segmentation, with the following extensions: 
XImagePAQ (Modules: Interactive Thresholding, Interactive Top-Hat, 
Erosion, Labeling, Remove Small Spots, Marker Based Watershed In
side Mask, Recipe Player) and XRecipe (Module: Recipe Player). 

2.8. Statistics 

Linear regression, Bland-Altman agreement, and ANOVA statistical 
analyses were performed in GraphPad Prism (v9.1.0, San Diego, CA, 
USA). The intraclass correlation coefficients (ICCs) were calculated in 

SPSS (v.28.0.0.0; IBM, Armok, NY, USA) using a two-way mixed model 
and consistency type analysis. 

3. Results 

3.1. The semi-automated segmentation method provides reproducibility 
and efficiency benefits compared to conventional micro-CT analysis 

In order for the described semi-automated segmentation method to 
be utilized by others, we first had to confirm that the analysis: 1) pro
duced similar results to conventional μCT analysis, 2) demonstrated 
strong intra-user consistency, and 3) exhibited excellent inter-user 
reliability, especially when the analysis was performed by novice 
users. Linear regression (R2 = 0.94, p < 0.0001) and Bland-Altman 
agreement (− 0.038mm3 average difference) analyses demonstrated a 
strong correlation between the semi-automated Amira segmentation and 
the conventional Scanco manual contouring (Figs. 6A,B). Moreover, 
when an experienced Amira user analyzed the same 6 datasets twice for 
segmentation (360 bones/replicate), linear regression (R2 = 1.0, p <
0.0001) and Bland-Altman agreement (− 5.7 × 10− 5 mm3 average dif
ference) analyses also demonstrated strong internal consistency in the 
performance of the semi-automated segmentation approach (Fig. 6C,D). 

Following training in the semi-automated Amira method (Fig. 6E), 
segmentation time was quantified by both experienced and novice 
Amira users for comparison with the conventional manual segmentation 
in Scanco. Remarkably, both experienced (19.3 ± 5.34 min/dataset) and 
novice (User 1 = 37.4 ± 11.2, User 2 = 44.5 ± 15.9, User 3 = 40.5 ±
9.06 min/dataset) Amira users showed significantly reduced segmen
tation time compared to the conventional Scanco analysis (190.6 ± 30.4 
min/dataset). In addition, after relatively limited training and practice, 
all 3 novice Amira users showed no significant change in segmentation 
time compared to the experienced Amira user (Fig. 6F). The volume 
measurements between all 4 users (1 experienced and 3 novice) also 
demonstrated excellent inter-user reliability through ICC quantification 
(ICC > 0.9). The DP2–4 bones showed variation between users due to 
unidentified connected errors most common between the distal pha
lange and claw. In addition, the NAVLATINT exhibited poor inter-user 
reliability, which is intuitive given the variable fusion of these bones 
in C57BL/6 hindpaws (Table 1). Along with the excellent inter-user 
reliability overall, each of the novice users also demonstrated strong 
internal consistency in the volume measurements from the datasets used 
for practice and timing analysis (Supplementary Fig. 1). Thus, the pro
cess from no Amira experience to data segmentation could be completed 
in 1–2 days of practice, where high-throughput and reliable data anal
ysis can be performed thereafter. 

3.2. Volume measurements and segmentation accuracy depend on image 
resolution with minimal effects of integration time 

As the data analysis and validation of the semi-automated segmen
tation method was developed using set imaging parameters, we evalu
ated the performance of the segmentation approach when image 
resolution and integration time were modified. Representative images of 
the hindpaw tarsal region at 9 different combinations of image resolu
tion (high/medium/low) and integration time (high/medium/low) are 
shown, where medium resolution and high integration time represent 
the parameters used in the development of the semi-automated seg
mentation workflow (Fig. 7A). Modulation of image resolution demon
strated a significant effect on segmentation accuracy accounting for 
87.3% of the variance between conditions (p < 0.0001) with a signifi
cant difference in all comparisons of image resolution (p < 0.05) except 
one (high vs medium resolution at medium integration time). Thus, both 
increasing or decreasing image resolution significantly reduced the ac
curacy of the segmentation model, although the increase in error rate 
was more dramatic with reduced image resolution. Changes in inte
gration time also demonstrated a significant interaction between 
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conditions (p < 0.05), but only accounted for 0.74% of the variance with 
only one significant comparison (high vs low integration time at high 
resolution) (Fig. 7B). The increased errors with high resolution were 
associated with a higher proportion of split errors, while the increased 
errors with low resolution showed increased connected errors and bones 
completely missing from the final segmentation. On the other hand, 

changes in integration time demonstrated no appreciable change in the 
types of errors (Fig. 7C). For the volume measurements at a constant 
high integration time, increasing resolution showed a trend towards 
higher bone volumes (2.8% average difference) (Fig. 7D), and reducing 
resolution tended towards lower bone volumes (− 9.0% average differ
ence) (Fig. 7E) compared to the measurements of the standard medium 

(caption on next page) 
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resolution images. At constant medium resolution, medium integration 
time (− 0.76% average difference) (Fig. 7F) and low integration time 
(− 0.56% average difference) (Fig. 7G) exhibited limited change in bone 
volume measurements when compared to the standard high integration 
time. Overall, image resolution is essential for accuracy of the segmen
tation method and consistency in bone volume measurements, while 
modulation of integration time shows minimal effects on these outcome 
measures. 

4. Discussion 

In this work, we have developed and validated a high-throughput 
and user-friendly semi-automated segmentation method for each indi
vidual bone in the complex structure of the murine hindpaw with po
tential for widespread adoption in future μCT analysis. The novelty in 
the study is the establishment of an automated workflow that generates 
watershed seeds at an average of ~80% accuracy for in vivo and >90% 
accuracy for ex vivo hindpaw μCT datasets prior to minimal user su
pervision to quickly fix any errors using prescribed protocols. The 
minimally supervised generation of the watershed seeds is then applied 
together with the filtered data and a binary mask defining bone to 
expand the watershed seeds to the bone borders for accurate and 
reproducible segmentations using established watershed algorithms 
available commercially via Amira software. 

Importantly, this novel segmentation approach dramatically reduces 
the potential for inter-user bias and inaccuracies inherent with the 
conventional analysis methods of manual or density-based segmenta
tion. As manual segmentation places the responsibility on the user to 
accurately detect the edge across the bone volume, this process is both 
time-consuming and prone to user error (Iassonov et al., 2009; Diaz 
et al., 2021). On the other hand, the density-based approach relies on 

strict parameters for threshold selection to separate structures that may 
similarly introduce inaccuracies at the edges (Rathnayaka et al., 2011), 
and the stringent parameters make the adoption for comparable datasets 
difficult. Through the segmentation approach described in this work, a 
majority of the bones are segmented accurately without user interven
tion, which ensures agreement between users for these structures. Even 
when user corrections are required, the correction processes do not 
require a specific approach for watershed seed placement, but instead a 
variety of user-dependent methods can be employed to place the 
markers as the computerized watershed algorithms will automatically 
detect the bone edges regardless of minor differences between users. 
While a set threshold ought to be used for accurate comparisons within 
an experiment (Bouxsein et al., 2010), the semi-automated watershed 
segmentation approach also provides the flexibility to utilize any 
threshold selection on a wide range of structures with variable material 
densities as the set threshold is primarily used to constrain the seg
mentation processes to a binary representation of the data. 

In addition, one of the major benefits of the semi-automated water
shed segmentation approach is the remarkable increase in throughput 
compared to conventional analysis methods, even for novice users with 
no prior experience using the Amira software. We demonstrated that 
new users could adopt the method with excellent inter-user reliability 
and internal consistency after only 1–2 days of practice with a signifi
cant reduction in segmentation time per dataset compared to manual 
contouring. In fact, one of the primary benefits to this workflow in Amira 
is the potential for adoption without requiring the knowledge of any 
programming languages, which can be a barrier to many. However, we 
acknowledge that those with experience in alternative open-source 
software options, or with extensive knowledge in computer program
ming, may prefer to utilize this workflow on these platforms. For those 
users, Amira provides the capabilities of two-way exchange of data 

Fig. 6. The semi-automated segmentation method provides reproducibility and efficiency benefits compared to conventional micro-CT analysis. To validate the 
outcomes from the semi-automated segmentation approach, we compared these Amira-derived volumes to those of conventional manual contouring of bones using 
the Scanco system based on segmentation of 60 total bones from 6 representative datasets collected in vivo. From these 6 datasets, 10 representative bones were 
selected that were evenly distributed across the bone compartments (i.e. tarsals, metatarsals, proximal phalanges, distal phalanges, and sesamoids) and approximated 
the error rate for the dataset. Linear regression (A; R2 = 0.94, p < 0.0001) and Bland-Altman agreement (B; − 0.038 mm3 avg. difference, dashed lines represent 95% 
confidence intervals) analyses were performed between the volume measurements derived from an experienced Amira (semi-automated) and Scanco (manual, 
conventional) users. The experienced Amira user then analyzed the same 6 datasets a second time where linear regression (C; R2 = 1.0, p < 0.0001) and Bland- 
Altman agreement (D; − 5.7 × 10− 5 mm3 avg. difference) analyses between the replicates were performed on all bones (n = 360), which demonstrated excellent 
internal consistency in the volume measurements. Note the increased range of the 95% confidence intervals when the Amira segmentation is compared to Scanco (B) 
relative to the Amira replicate (D), suggesting the variability shown in B derives from the manual contouring process. To evaluate adoption of this method by new 
users of the Amira software, novice users were recruited and trained to analyze the same 6 datasets (E). Both experienced and novice Amira users showed a significant 
reduction in segmentation time compared to the conventional manual contouring in Scanco where data is presented as mean ± SEM (F). Statistics: Linear regression 
(A,C), Bland-Altman analysis (B,D), and One-way ANOVA with Tukey's multiple comparisons, **** p < 0.0001 (F). 

Table 1 
Intraclass correlation coefficients of bone-specific 
volume measurements identify common segmenta
tion errors. Four different users (1 experienced, 3 
novice) performed the semi-automated segmenta
tion method on the same datasets (n = 6 datasets =
12 hindpaws). The ICCs (C,k: Two-way mixed, 
average score) were calculated in SPSS for the vol
umes of all bones (n = 360 bones), each bone 
compartment (i.e. tarsals, metatarsals, proximal 
phalanges, distal phalanges, and sesamoids; n =
number of bones per compartment * 12 replicates of 
each bone), and each individual bone (n = 12 rep
licates of each bone). Together, 86.7% (26 total) of 
the individual bones showed excellent reliability 
between users (ICC ≥ 0.9), while the NAVLATINT 
and DP2–4 were bones with the greatest potential 
disagreement between users (orange rows). Note 
that the NAVLAT and INT were not included in the 
analysis, and when separated were added together 
to match the datasets with the bones fused as 
NAVLATINT. 
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objects with open-source programs to allow image processing external 
to the Amira software. In addition, we have provided an extensive 
description of the segmentation approach in the Methods and Supple
mentary Materials, and we encourage others to replicate and adopt this 
workflow in their preferred software options. 

The capacity for widespread adoption with this segmentation 
approach increases the potential to establish fully automated machine 
learning models that require no user input or time investment. In fact, 
recent advances and impressive utilization of machine learning models 
have demonstrated the utility of automated segmentations in analyzing 

specific organs (Zhou, 2020; Skourt et al., 2018) and regions of bone 
(Buie et al., 2007; Kohler et al., 2007; Newton et al., 2020; Hamwood 
et al., 2021). As the ability to train and validate machine learning 
models requires an abundance of previously segmented datasets, the 
high-throughput generation of these segmentations using the semi- 
automated watershed approach allows the development of these in
puts to be efficient and practical. However, even if fully automated 
machine learning processes are eventually established for the segmen
tation of complex structures such as the hindpaw, the adoption of these 
methods may be limited to those individuals with specialized skills in 

Compartment / Bones ICC (C,k)

All 1.0

Tarsals 1.0

Calcaneus 1.0

Cuboid 1.0

Medial Cuneiform 0.99

NavLatInt 0.35

Talus 1.0

Tibiale 1.0

Metatarsals 1.0

Metatarsal 1 0.99

Metatarsal 2 1.0

Metatarsal 3 1.0

Metatarsal 4 1.0

Metatarsal 5 1.0

Proximal Phalanges 1.0

Proximal Phalange 1 1.0

Proximal Phalange 2 1.0

Proximal Phalange 3 1.0

Proximal Phalange 4 1.0

Proximal Phalange 5 1.0

Distal Phalanges 0.90

Distal Phalange 2 0.24

Distal Phalange 3 0.68

Distal Phalange 4 0.60

Distal Phalange 5 1.0

Sesamoids 1.0

Sesamoid 1 1.0

Sesamoid 2 1.0

Sesamoid 3 1.0

Sesamoid 4 1.0

Sesamoid 5 1.0

Sesamoid 6 1.0

Sesamoid 7 1.0

Sesamoid 8 1.0

Sesamoid 9 1.0

Sesamoid 10 1.0
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Fig. 7. Volume measurements and segmentation accuracy depend on image resolution with minimal effects of integration time. As the semi-automated segmentation 
method was developed on datasets imaged using a single combination of medium resolution and high integration time (17.5 μm, 300 ms), we investigated the effects 
of modulating the resolution and integration time on the segmentation accuracy and volume measurements. Sequential μCT on ex vivo hindpaws (n = 6) was 
performed at 9 combinations (high/medium/low) of image resolution and integration time, as described in the Methods. Representative images are shown for all 
combinations of resolution and integration time in a 3 × 3 pattern (A). The error rates between all combinations were then evaluated with a significant interaction of 
resolution accounting for 87.3% of the variance between conditions (**** p < 0.0001). All comparisons between changing resolutions were significantly different (p 
< 0.05) except for one noted on the graph between high and medium resolution at medium integration time. Integration time also showed a significant interaction, 
but only accounted for 0.74% of the variance between conditions (* p < 0.05) driven by the single significant comparison noted between high and low integration 
time at high resolution. All other comparisons between integration times were not significantly different (B). The proportions in types of errors between the con
ditions were also compared, where high resolution datasets showed a propensity towards split errors (pink) and low resolution datasets showed increased connected 
(black) and missing (purple) errors where bones were completely unsegmented. Integration time showed minimal effect in types of errors (C). At a constant inte
gration time (high as standard), high resolution datasets tended towards increased bone volumes (D), while low resolution images tended towards decreased bone 
volumes (E) compared to the medium resolution datasets (dashed lines represent 95% confidence intervals). At a constant image resolution (medium as standard), 
medium (F) and low (G) integration time showed limited difference in bone volume measurements when compared to datasets imaged at high integration times. Note 
the increased range of the 95% confidence intervals when image resolution is modified (D,E) compared to changes in the integration time (F,G). Data is presented as 
mean ± SEM (B). Statistics: 2-Way ANOVA with Tukey's multiple comparisons (B) and Bland-Altman analysis (D-G). 
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computer programming, and ultimately reduce the widespread use of 
these tools. As demonstrated in this work, the described semi-automated 
watershed-based segmentation approach has the benefit of quick and 
easy adoption by new users without the need for extensive training, and 
thus these methods can be utilized widely and immediately. 

While the segmentation method was developed and validated using 
hindpaws as an anatomical model, the segmentation approach is not 
specific to the murine hindpaw and has the capacity to be applied to 
other complex structures of the mouse or other species. In fact, the 
workflow is flexible by modifying various settings within the steps 
described in Figure 3 to adjust the process for different structures with 
the primary consideration being the size of the bones. The segmentation 
approach was established on bones of a particular size that reside within 
the hindpaw of a mouse, within the range of approximately 0.2 (sesa
moids) – 3.5mm3 (calcaneus). While the current settings may be applied 
successfully to other structures without need for modification, the pri
mary steps to adjust if needed are the top-hat threshold (Fig. 3B) and 
pixel size for erosion (Fig. 3D) in the generation of the watershed seeds. 
Another consideration is the change in material density of bones or other 
structures that would require adjusting the threshold selection. In fact, 
the application of this workflow has been successfully tested on murine 
forepaws (unpublished data), and further application of this segmenta
tion method on forepaw datasets is an active area of investigation. 

To improve upon this work, users may develop alternative creative 
solutions to improve the accuracy and throughput of the described 
segmentation method for complex anatomical structures, such as the 
mouse hindpaw. For instance, we considered another approach for 
automated segmentation of the mouse hindpaws by exploiting the 
benefits of longitudinal scans for 3D registration and bone mapping from 
related datasets. Similarly, certain datasets could serve as anatomical 
models for overlay on experimental images to perform automated seg
mentation, similar to previous studies (Newton et al., 2020). However, 
the datasets used in this study proved to be too variable in paw place
ment where bones associated with highly mobile joints, such as the 
digits, demonstrated dramatic changes in location across timepoints and 
datasets. As a result, 3D registration models were unable to colocalize 
each bone in 3D space. For those only interested in the tarsal bones of 
the ankle, exclusion of the digits, tibia, and fibula from the datasets may 
allow for a reliable 3D registration process given the more rigid artic
ulations between the tarsal bones. Future studies may also consider 
alternative approaches to securing the hindpaws for in vivo datasets to 
retain the foot and ankle in a reproducible alignment. 

Moreover, in future studies the described semi-automated segmen
tation approach ought to be tested in hindpaws or other complex 
structures with notable pathology, such as bone erosions during 
arthritis. An important application of this work is the potential to 
discover novel bone-specific biomarkers through extensive analysis of 
μCT datasets that was not previously possible. Through the identifica
tion of these biomarkers, in silico experimentation with finite element 
modeling could be utilized to predict the implications of bone-specific 
injury and indicate potential bone stabilization strategies for therapeu
tic intervention. These types of experiments could evolve into investi
gation of gait analysis for animals with arthritis or weight-bearing 
conditions with bone-specific pathology for association with changes in 
ambulation. Investigation into bone-specific biomarkers in various 
conditions may also catalyze a focused analysis of treatment, time, and 
sex dependent effects to elucidate the related biomechanical mecha
nisms. While such findings would provide considerable pre-clinical 
benefit for future experimentation, there is also an important capacity 
for clinical translation. Identification of bone-specific pathology that can 
be visualized and monitored longitudinally may serve as valuable 

screening procedures or evaluation of treatment effectiveness in the 
clinic. Thus, adoption of this high-throughput segmentation approach 
provides many further possibilities for pre-clinical and clinical studies 
on bone homeostasis and pathology. 

Although the segmentation approach demonstrated excellent inter- 
rater reliability and accuracy for most bones analyzed, a select few 
bones were more prone to error. Namely, the NAVLATINT and DP2–4 
were the only bones with ICCs <0.9 (excellent reliability), and these 
bones corresponded to bones with the highest error rates (>50% of 
datasets with error across 84 hindpaws). As such, while the protocols for 
fixing errors are effective for some bones (i.e. CUB with >50% error rate, 
but ICC > 0.9), other bones may be more problematic and demonstrate a 
limitation of the segmentation method. 

We further investigated the imaging parameters for the acquisition of 
the μCT datasets to evaluate the role of image resolution and integration 
time on segmentation accuracy. While image resolution and integration 
time should typically increase or decrease together, we assessed theo
retical combinations of these parameters at high, medium, or low values. 
Our findings indicate that regardless of image resolution, integration 
time has minimal effect on segmentation quality. However, the accuracy 
of the segmentation method is dependent on image resolution at nearly 
all integration times. From the image resolutions we tested, we found 
that a 17.5 μm isotropic voxel size was optimal for segmentation accu
racy. Reducing the image resolution (increased voxel size) showed a 
significant reduction in segmentation quality with more connected er
rors and unsegmented bones, while increasing the image resolution 
(decreased voxel size) was similarly detrimental to the segmentation 
workflow with more split errors. Thus, future investigations using this 
workflow should consider image resolution as an integral aspect to the 
success of the described method. 

Given the dependence on the segmentation workflow on image res
olution and the benefit of longitudinal scans for evaluation of changes in 
bone volume, radiation dose to the animal ought to be considered for 
animal health and effects on outcome measures. As noted, since 
increasing image resolution typically coincides with increased integra
tion times, modulation of image resolution will exhibit non-linear 
changes in radiation dose to the animal. A previous study measured 
the proximal tibia of rats by μCT for 8-consecutive-weeks using higher 
resolution, integration time, and total scan time than used in our work. 
This study measured local CT dose, and concluded that the radiation 
dose was between 441 and 939 mGray (Gy) where 441 mGy was 
measured in the center of a cylinder phantom, 939 mGy was measured in 
the air, and the penetrance to the bone was considered between these 
values (Brouwers et al., 2007). Thus, the radiation dose in our study is 
perceived to be within or below this range for each scan at monthly 
intervals. In another well-controlled study where one limb of a mouse 
was imaged by μCT weekly and the contralateral limb served as a non- 
imaged control, the radiation-exposed limb was found to have signifi
cantly reduced bone volumes (Klinck et al., 2008). Thus, the radiation 
exposure in longitudinal studies must be accounted for when inter
preting the results of bone volume measures, especially when comparing 
between time points. Beyond the local environment of the bone being 
imaged, the potential harmful effects to the whole animal must also be 
carefully considered. In the VivaCT40 system (Scanco Medical) used for 
our study, the beam has been precisely collimated to minimize exposure 
to the animal beyond the imaging area. Shielding has also been strate
gically placed over potential areas of radiation leaks to avoid stray ra
diation exposure to the animal. Thus, similar precautions are 
encouraged to avoid or limit the potential detrimental effects of radia
tion exposure to animals involved in future studies. 

Beyond bone, application of similar segmentation strategies has the 
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potential to generate detailed structural segmentations of specific or
gans, or detailed structures within these tissues. For example, multiple 
automated or semi-automated approaches have been utilized to accu
rately identify the edges defining the aerated portions of lung by CT 
(Mansoor et al., 2015; Bell et al., 2018; Walsh et al., 2021), or sinus 
regions within the skull by magnetic resonance imaging (MRI) (Ander
sen et al., 2018). The common features of these structures include the 
necessity for accurate edge detection between air and adjacent tissue, 
while complicated by the similarity in density with the surrounding air. 
Although a binary mask was utilized for segmentation of bone in this 
study to avoid interaction between the exterior air and inner marrow of 
each small bone, the watershed algorithms do not require the use of a set 
threshold, and actually benefit from changes in material density for edge 
detection. Thus, development of strategies to place watershed seeds 
within interior aerated structures, surrounding tissue, and the exterior 
may offer the potential to generate accurate segmentations in a user- 
friendly manner. This approach is also not limited to CT analysis and 
could also be utilized for other imaging techniques, such as MRI, where 
changes in signal intensity are used to define particular structures. 
Altogether, the hindpaw segmentation approach described in this work 
has considerable potential to benefit multiple aspects of image analysis 
for μCT and other imaging modalities in various pre-clinical and clinical 
areas of investigation. 

5. Conclusion 

In this work, we generated a novel high-throughput semi-automated 
segmentation method for volume measurements of individual bones in 
murine hindpaws imaged by μCT using a watershed-based approach in 
Amira software. The segmentation strategy was shown to be user- 
friendly with quick adoption by new users and provided excellent 
intra- and inter-user reliability. Compared to conventional μCT analysis 
approaches, the described segmentation method also demonstrated 
remarkable throughput benefits for both experienced and novice users. 
In conclusion, this segmentation strategy has the potential for wide
spread adoption and the capacity to be applied towards the segmenta
tion of various additional complex structures in future studies. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bonr.2022.101167. 
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