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Abstract 
Gut microbiota forms a unique microecosystem and performs various irreplaceable metabolic functions for ruminants. The gut micro-
biota is important for host health and provides new insight into endangered species conservation. Forest musk deer (FMD) and alpine 
musk deer (AMD) are typical small ruminants, globally endangered due to excessive hunting and habitat loss. Although nearly 60 years 
of captive musk deer breeding has reduced the hunting pressure in the wild, fatal gastrointestinal diseases restrict the growth of captive 
populations. In this study, 16S rRNA high-throughput sequencing revealed the differences in gut microbiota between FMD and AMD 
based on 166 fecal samples. The alpha diversity was higher in FMD than in AMD, probably helping FMD adapt to different and wider 
habitats. The ß-diversity was higher between adult FMD and AMD than juveniles and in winter than late spring. The phylum Firmicutes 
and the genera Christensenellaceae R7 group, Ruminococcus, Prevotellaceae UCG-004, and Monoglobus were significantly higher in 
abundance in FMD than in AMD. However, the phylum Bacteroidetes and genera Bacteroides, UCG-005, Rikenellaceae RC9 gut group, 
and Alistipes were significantly higher in AMD than FMD. The expression of metabolic functions was higher in AMD than in FMD, 
a beneficial pattern for AMD to maintain higher energy and substance metabolism. Captive AMD may be at higher risk of intestinal 
diseases than FMD, with higher relative abundances of most opportunistic pathogens and the expression of disease-related functions. 
These results provide valuable data for breeding healthy captive musk deer and assessing their adaptability in the wild.

Key points   
• Alpha diversity of gut microbiota was higher in FMD than that in AMD
• Expression of metabolic and disease-related functions was higher in AMD than in FMD

Keywords  Musk deer · Gut microbiota · Dominant bacteria · Metabolic functions · 16S rRNA gene sequencing · Disease-
related functions
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Introduction

Gut microbiota and host evolve together, forming a com-
plex microecosystem within the gastrointestinal tract of 
animals, which functions in material metabolism, nutri-
ent absorption, immune regulation, resistance to patho-
gen invasion, and other host physiological processes 
(Nicholson et al. 2012). Gut microbiota is a complex and 
dynamically balanced ecological network, jointly main-
taining the gut environment homeostasis and the health 
of the host (Hua et al. 2020). Imbalanced gut microbiota 
causes partial host dysfunction and significant changes in 
the host immune response, seriously affecting host health 
and growth (Gagniere et al. 2016). Recent studies have 
demonstrated that gut microbial structure abnormalities 
are associated with mental disorders, intestinal, metabolic, 
and other diseases (Dinleyici et al. 2018; Qin et al. 2012; 
Fung et al. 2017; Valles-Colomer et al. 2019). Moreover, 
various intrinsic and extrinsic factors such as host genetics 
(Fan et al. 2021), genetic background (Korach-Rechtman 
et al. 2019), diet (Wang et al. 2019), age (O’Toole et al. 
2015; Guo et al. 2020a), seasonal change (Peddada  2017), 
and habitat environment (Barelli et al. 2020; Xiong et al. 
2021) greatly affect gut microbial community structure.

In herbivorous mammals, gut microbiota secretes exog-
enous cellulases and hemicellulases that convert plant 
biomass into absorbable nutrients and energy (Naas et al. 
2018). Ruminants possess a unique gastrointestinal micro-
biome and a specialized, compartmentalized digestive 
system consisting of the rumen, reticulum, omasum, and 
abomasum. The rumen is involved in microorganism fer-
mentation, food digestion, material, and energy metabolism 
(Matthews et al. 2019; Prajapati et al. 2016). Food first 
enters the rumen of ruminants, where rumen microorgan-
isms perform catabolism, and is further transferred into 
the reticulum for finer catabolism. Next, the omasum and 
abomasum degrade and convert the food into small mol-
ecules to provide energy and nutrients to the host (Enjal-
bert et al. 2017). The ruminant gut microbiota contains 
probiotics, opportunistic pathogens, and pathogens. The 
genera Bifidobacterium, Lactobacillus, and other benefi-
cial anaerobes dominate the ruminant gastrointestinal tract 
(Xu et al. 2018). These genera are mutual symbionts with 
the host, and their metabolites inhibit the propagation of 
opportunistic pathogens and hinder gut colonization by 
opportunistic bacteria (Lepczynska and Dzika 2019; Zhao 
and Qing 2021). The opportunistic pathogens are mainly 
facultative, non-dominant aerobic bacteria of the intestine 
(Sassone-Corsi et al. 2016). Under conditions such as com-
promised host resistance or an imbalanced gut microbiota, 
these opportunistic bacteria rapidly multiply and cause 
disease in the host.

For musk deers, gastrointestinal diseases caused by 
opportunistic bacteria are the main factors limiting the 
expansion of musk deer artificial breeding (Zhao et al. 
2011; Fan et al. 2018; Zhou et al. 2019). The forest musk 
deer (FMD, Moschus berezovskii) and alpine musk deer 
(AMD, Moschus chrysogaster) are two types of solitary 
small and threatened ruminants that inhabit forests and 
mountains of central and southwestern China. China har-
bors the most diverse musk deer resource, quantity, and 
yield (Sun et al. 2018). The musk secreted by the ven-
tral gland of the male musk deer is traditional Chinese 
medicine and a highly priced natural fragrance with lim-
ited supply. The limited musk supply has caused exces-
sive hunting and habitat fragmentation of the wild musk 
deer, whose population has decreased dramatically from 
approximately 3 million in the 1950s to 31,800 in 2009 
(Wu and Wang 2006; National Forestry and Grassland 
Administration 2009).

Both FMD and AMD are listed as endangered (EN) by 
the IUCN Red List and critically endangered (CR) by the 
Red List of Vertebrates in China (Wang and Harris 2015; 
Harris 2016; Jiang et al. 2016). In the late 1950s, China 
performed artificial FMD and AMD breeding, generating 
the largest captive population of musk deer species. This 
breeding relieved the resource pressure on wild populations 
and provided, to an extent, the traditional and natural musk 
resources (Huang et al. 2013; Fan et al. 2019). Artificial 
breeding of musk deer can also reintroduce provenance. For 
example, in 2017, 13 artificially bred FMD were released, 
for the first time, into the wild in Shaanxi Province, China 
(National Forestry and Grassland Administration 2017). The 
release was an important step in conserving endangered spe-
cies, recovering, and expanding wild populations. However, 
captive musk deer are more susceptible to dysbiosis-caused 
intestinal diseases with higher incidence and mortality rates 
than wild musk (Li et al. 2018). Therefore, studying captive 
FMD and AMD gut microbiota is beneficial for evaluating 
their current artificial rearing conditions and understanding 
the appropriate capacity of gut microbial changes for future 
musk breeding. However, the differences in gut microbial 
composition and function between different ages of FMD 
and AMD in different seasons are still lacking.

In this study, 16S rRNA gene sequencing estimated FMD 
and AMD gut microbiota composition and diversity under 
different taxonomic levels. The aim was to explore (i) the 
difference between gut microbiota diversity between cap-
tive FMD and AMD, (ii) the difference between dominant 
gut bacteria and opportunistic pathogens in and between the 
two species, and (iii) the differences of potential metabolic 
and disease-related functions between the two species. This 
study comprehensively and systematically investigated the 
differences in gut microbial composition and potential func-
tion between FMD and AMD in different seasons and ages, 
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providing a scientific basis for effective health management 
of captive musk deer.

Materials and methods

Sampled materials

A total of 107 fresh feces samples from captive FMD (57 
samples in late spring and 50 samples in winter) and 59 
samples from captive AMD (35 samples in late spring and 
24 samples in winter) were collected by the noninvasive 
sampling method in this study. The FMD farm is located in 
the remote gully of A’rou Township, Qilian County, Qinghai 
Province (100°21′ E, 38°7′ N) (Fig. 1a), with an altitude 
of 3,002 m. The annual mean temperature and annual pre-
cipitation are − 0.1 °C and 403 mm, respectively. The AMD 
farm is located in the Xinglong Mountain National Nature 
Reserve in Yuzhong County, Gansu Province (104°4′ E, 
35°49′ N), with an altitude of 2,171 m. The annual mean 
temperature and annual precipitation are 5.4 °C and 406 mm, 
respectively.

Before sampling, the individual enclosures of FMD 
and AMD were cleaned, and the individuals were kept in 
separate enclosures so that the fresh fecal samples could 

be collected from each individual the following morning. 
During the sampling process, fecal samples were collected 
shortly after a musk deer was observed defecating with ster-
ile disposable polyethylene gloves and put into sterile bags. 
After labeling, all samples were temporarily stored in the 
vehicle-mounted refrigerator (− 20 °C) and later transferred 
into the − 80 °C ultra-low temperature refrigerator in the 
laboratory for later DNA extraction.

DNA extraction and 16S rRNA gene sequencing

After pretreatment of fecal samples, total bacterial DNA was 
extracted using an E.Z.N.A.® soil DNA kit (Omega Bio-
tek, Norcross, GA, USA) according to the manufacturer’s 
instructions, and subsequently stored at − 20 °C for further 
analysis. The quality of DNA extraction was determined by 
1% agarose gel electrophoresis, and the concentration and 
purity of DNA in each sample were determined by Nan-
oDrop2000 instrument (Thermo Fisher Scientific, Waltham, 
MA, USA).

The extracted total bacterial DNA was used as the tem-
plate and universal bacteria primers 515F (5’-GTG​CCA​
GCMGCC​GCG​G-3’) and 907R (5’-CCG​TCA​ATTC-
MTTT​RAG​TTT-3’) were subjected to amplify the V4–V5 
region of the bacterial 16S rRNA genes. PCR reactions for 

Fig. 1   Diagram of sample collection of musk deer (a). Rarefaction curves of the 16S rRNA gene reads based on OTUs with Sobs index (b) and 
Shannon index (c)
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each sample were carried out in triplicate 20-μL reactions 
with 4 μL TransStart FastPfu buffer (5 ×), 2 μL dNTP mix 
(2.5 mM), 0.8 μL of each primer (5 μM), 0.4 μL TransStart 
FastPfu DNA polymerase, 10 ng sample DNA, and certi-
fied DNA-free PCR water up to 20 μL. PCR amplifications 
were performed on an ABI GeneAmp 9700 PCR system 
(Applied Biosystems, Foster City, CA, USA) according to 
the following procedures: 98 °C for 3 min (initial denatur-
ing), 27 cycles of 95 °C for 30 s (denaturing), 55 °C for 30 s 
(annealing), 72 °C for 45 s (extension), and 72 °C for 10 min 
(final extension).

Replicated amplicons were pooled and visualized by elec-
trophoresis in 2.0% agarose gel, and purified using Axy-
Prep DNA Gel Extraction Kit (Axygen Biosciences, Union 
City, CA, USA) according to manufacturer’s instructions. 
Subsequently, the purified amplicons were quantified by 
Quantus™ Fluorometer (Promega, Madison, WI, USA) and 
were pooled in equimolar amounts. The DNA library was 
prepared using the NEXTflex® Rapid DNA-Seq Kit (Bioo 
Scientific, Austin, TX, USA) and sequenced on the Illumina 
MiSeq PE300 platform (Illumina, San Diego, CA, USA) at 
the Shanghai Majorbio Bio-Pharm Technology Co., Ltd., 
Shanghai, China.

Operational taxonomic units (OTUs) clustering 
and taxonomic annotation

The raw sequencing data generated from Illumina MiSeq 
were pre-processed using Trimmomatic (version 0.39) to 
remove the known adaptor, specific primers, and low-quality 
ends (Bolger et al. 2014). We filtered bases with the average 
quality score below 20 in the tail of reads and set a sliding 
window of 50 bp. If the average quality score in the win-
dow was lower than 20, the back-end base was truncated 
from the window, the reads below 50 bp after quality con-
trol were filtered, and the reads containing ambiguous base 
were removed. According to overlap relationship between 
paired-end (PE) reads, paired reads were merged into a 
sequence with the minimum overlap length of 10 bp using 
FLASH (version 1.2.7) (Magoč and Salzberg 2011). The 
overlap region allowed a maximum mismatch ratio of 0.2, 
and sequences with no matches were discarded.

UPARSE software (version 7.1, http://​drive5.​com/​
uparse/) was used to cluster OTUs with 97% similarity cut-
off, and chimeras were identified and removed during the 
clustering process (Costello et al. 2009). The sequence with 
the highest frequency in each OTU was selected as the rep-
resentative sequence for further annotation in the process of 
assigning OTUs. Species classification was annotated for 
each sequence using ribosomal database project (RDP) clas-
sifier (http://​rdp.​cme.​msu.​edu/) (Wang et al. 2007), and the 
comparison threshold was set to 80% in the Silva database 
(Silva 138/16S) (Li et al. 2017). Based on the taxonomy 

assignment, all features that refer either to mitochondria, 
chloroplasts, or archaea were filtered, and the results were 
aligned to generate the final bacterial OTU table.

Bioinformatic analysis

The OTUs were annotated for species taxonomy, and the 
corresponding abundance information of each OTU anno-
tation results in each sample was counted. Before the sub-
sequent analysis, the normalized bacterial OTU table was 
generated by subsampling randomly based on the minimum 
number of sample sequences. Community bar charts and 
Venn charts were used to plot the abundance of each group 
of FMD and AMD using “stats” package of R software (ver-
sion 3.3.1, https://​www.r-​proje​ct.​org/) (Ji et al. 2017), and 
the unique bacteria phylum and genus were counted.

Similarities and differences among the microbial com-
munities between FMD and AMD were estimated using 
cluster heatmap analysis with the R software (packages 
“pheatmap”) (Perry 2016). Alpha diversity can reflect the 
diversity of gut microbial composition. At the OTU level, 
the observed richness (Sobs) index and Shannon index were 
calculated to measure the diversity of gut microbial compo-
sition with Qiime software (http://​qiime.​org/​scrip​ts/​assign_​
taxon​omy) (Caporaso et al. 2010). Then the Wilcoxon rank-
sum test was used to analyze the significant differences of 
the alpha diversity index among different groups with the R 
software (packages “stats”).

Comparative analysis of species diversity in community 
composition was conducted to explore the similarity or dif-
ference of community composition between different groups. 
Beta diversity analysis between different groups was per-
formed with principle coordinates analysis (PCoA) based 
on Bray–Curtis distances using the R software (packages 
“vegan”). Analysis of similarities (ANOSIM), a non-par-
ametric statistical test, was used to test the differences in 
relative abundance of dominant bacteria and opportunistic 
pathogens with a two-tailed test with the R software (pack-
ages “vegan,” anosim function) (Oksanen et al. 2019). The 
false discovery rate (FDR) was selected for multiple checks 
and corrections of P value with confidence interval of 0.95.

The metabolic functions and disease-related functions of 
bacterial communities were predicted using phylogenetic 
investigation of communities by reconstruction of unob-
served states (PICRUSt) software (Langille et al. 2013). 
Genome sequence data were compared with the Kyoto ency-
clopedia of genes and genomes (KEGG) database and the 
nonsupervised orthologous groups (EggNOG) database was 
used to complete gene functional annotation and classifica-
tion analysis (Cao et al. 2020). The Wilcoxon rank-sum test 
was used to analyze the significant difference in functional 
abundance between different groups.
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Results

Assessment of sequence data

After strict filtering and quality control of the raw reads, 
22,892,300 high-quality clean reads (average 137,905 
reads/sample) of FMD and AMD were obtained, generat-
ing an average reading length of 375 bp. The rarefaction 
curves of the Sobs and Shannon indexes smoothened with 
increased sequencing quantity (Fig. 1b, c), and Good’s 
coverage values were higher than 99%. Thus, the sequenc-
ing quantity reached saturation, and the data quality was 
reliable. Therefore, the sequencing data comprehensively 
reflected the gut microbial information in FMD and AMD 
under different seasons and ages.

A 97% similarity clustering identified 3,213 effective 
OTUs of FMD and AMD, and the effective sequences were 
extracted and screened based on the minimum sample. The 
OTUs were classified into 20 phyla, 33 classes, 83 orders, 
154 families, and 375 genera.

Gut microbial composition of FMD and AMD

Firmicutes and Bacteroidetes were the dominant bacterial 
phyla across seasons and ages, followed by Proteobacteria 
and Actinobacteria in musk deer (Fig. 2a).

The cluster heatmap of the top 50 relative abundances 
showed that the genera Bacteroides, UCG-005, Chris-
tensenellaceae R7 group, Rikenellaceae RC9 gut group, 
Alistipes, Ruminococcus, Prevotellaceae UCG 004, and 
Monoglobus were dominant in both FMD and AMD across 
seasons and ages (Fig. 2b). However, the genus NK4A214 
group was dominant in FMD, while Anaerostipes and Can-
didatus Stoquefichus were dominant in AMD. The listed 
dominant genera belong to the phyla Firmicutes and Bac-
teroides. Additionally, all the FMD and AMD bacterial 
genera clustered into one group. In late spring, FMD and 
AMD shared 18 bacterial phyla and 259 bacterial genera, 
while in winter, FMD and AMD shared 13 bacterial phyla 
and 215 bacterial genera (Fig. 2c).

Difference analysis of gut microbiota between FMD 
and AMD

The Sobs and Shannon indexes reflected the richness and 
diversity of gut microbiota in captive FMD and AMD. The 
FMD α-diversity was higher than AMD across seasons and 
ages, but the difference was insignificant (Fig. 2d).

The Bray–Curtis distance algorithm determined the 
distance between samples, and ANOSIM analysis tested 

the inter-group and intra-group differences between FMD 
and AMD.

PCoA showed that all the R values were > 0 (P = 0.001), 
indicating significant differences in the gut microbial com-
position of FMD and AMD in different seasons and ages. 
The inter-group differences were significantly greater than 
the intra-group differences (Fig. 2e, f). Adult FMD and 
AMD had higher β-diversity than juveniles, and the value 
was higher in winter than in late spring (Fig. 2g).

Analysis of dominant bacteria differences 
between FMD and AMD

The Wilcoxon rank-sum test showed that the phyla Firmi-
cutes and Bacteroidetes differed significantly between FMD 
and AMD (Fig. 3a). The relative abundance of the phylum 
Firmicutes in FMD was significantly higher than AMD 
(P < 0.05), while the phylum Bacteroidetes showed on the 
contrary a higher relative abundance in AMD than FMD. 
However, the relative abundance of Proteobacteria was 
lower in FMD than AMD during late spring but higher than 
AMD in winter, with no significant differences (Fig. 3b). 
In winter, Actinobacteria was significantly higher in FMD 
than in AMD.

At the genus level, the relative abundances of genera 
Christensenellaceae R7 group, Ruminococcus, Prevotel-
laceae UCG-004, Monoglobus, and NK4A214 group were 
significantly higher in abundance in FMD than in AMD. In 
contrast, the genera Bacteroides, UCG-005, Rikenellaceae 
RC9 gut group, Alistipes, and Candidatus Stoquefichus were 
significantly higher in abundance in AMD than in FMD.

Metabolic function difference analysis

Functional enrichment analysis using the KEGG database 
identified metabolic function as primary function for gut 
microbial genes in FMD and AMD. The enriched path-
ways include carbohydrate metabolism (9.62%), amino 
acid metabolism (7.19%), energy metabolism (4.27%), 
metabolism of cofactors and vitamins (4.22%), nucleotide 
metabolism (2.81%), lipid metabolism (1.80%), glycan bio-
synthesis and metabolism (1.67%), biosynthesis of other 
secondary metabolites (1.66%), metabolism of other amino 
acids (1.18%), and metabolism of terpenoids and polyketides 
(0.97%).

At level 1, the metabolic function was significantly 
enriched in AMD (with stronger enrichment in juvenile than 
in adult musk deer) than in FMD (Fig. 4a). At level 2, ten 
metabolic functions were more enriched in AMD than in 
FMD (Fig. 4b). The difference between juvenile FMD and 
AMD was higher than between adults.

Additional functional annotation using the EggNOG 
database also identified metabolic function as the primary 
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function, especially energy production and conversion 
(6.13%), carbohydrate (6.59%), amino acid (9.85%), nucle-
otide (3.82%), coenzyme (4.18%), lipid (2.60%), and inor-
ganic ion transport and metabolism (5.73%), respectively. 
The listed functions were more enriched in AMD (signifi-
cantly higher in juvenile than adults) than in FMD (Fig. 4c).

The KEGG database showed that gut microbiota with 
disease-related functions was significantly enriched in AMD 
than in FMD (Fig. 5e). The difference between juvenile 
FMD and AMD was higher than between adult musk deer.

Differences analysis of opportunistic pathogens 
and disease‑related functions

The relative abundance of opportunistic pathogens was less 
than 0.1% in both FMD and AMD (Fig. 5). In late spring, 
the relative abundance of the genera Erysipelatoclostridium 
and Parasutterella was significantly higher in abundance in 
juvenile FMD than in juvenile AMD. However, the genera 
Treponema, Oscillibacter, Corynebacterium, Clostridium 
sensu stricto 1, Clostridium sensu stricto 6, and Aerococ-
cus were significantly higher in abundance in juvenile 
AMD than in juvenile FMD (Fig. 5a). The genus Erysipela-
toclostridium was significantly higher in abundance adult 
FMD than in adult AMD. In contrast, the genera Treponema, 
Odoribacter, Clostridium sensu stricto 1, Corynebacterium, 
Parasutterella, and Clostridium sensu stricto 6 were signifi-
cantly higher in abundance in adult AMD than in adult FMD 
(Fig. 5b).

During winter, the relative abundance of the genera Ery-
sipelatoclostridium, Anaeroplasma, and Actinomyces was 
significantly higher in juvenile FMD than in juvenile AMD. 
On the contrary, the genera Treponema, Clostridium sensu 
stricto 1, Escherichia-Shigella, Parasutterella, Clostridium 
sensu stricto 6, and Aerococcus were significantly higher in 
abundance in juvenile AMD than in juvenile FMD (Fig. 5c). 
The genera Erysipelatoclostridium, Escherichia-Shigella, 
Corynebacterium, Actinomyces, and Aerococcus were sig-
nificantly higher in abundance in adult FMD than in adult 

AMD in winter. However, the genera Odoribacter, Strepto-
coccus, Treponema, Clostridium sensu stricto 6, Parasutte-
rella, and Bacillus had a significantly higher relative abun-
dance in adult AMD than in adult FMD (Fig. 5d).

Discussion

The 16S rRNA high-throughput sequencing technology is 
widely applied to study gut microbial structure and diversity 
of various endangered wildlife (Antwis et al. 2019; Wei et al. 
2019; Guo et al. 2020b). Endangered animals are generally 
hard to obtain because of their small population size, but 
their fecal samples are easier to collect without harming ani-
mals. Additionally, fecal samples represent the composition 
and function of microorganisms in the gut microbiota of 
hosts (Aguirre et al. 2015; Rounge et al. 2018). Collecting 
fecal samples from endangered wildlife through noninvasive 
means has become the best research method for conservation 
biology (Knutie and Gotanda 2018; Ning et al. 2020). More-
over, both artificial breeding and ex situ conservation are 
effective for maintaining and restoring endangered wildlife 
populations (Thitaram and Brown 2018; Wang et al. 2016; 
Willard et al. 1996). Artificial breeding relieves the hunting 
pressure on wild populations and provides valuable medici-
nal or raw materials while releasing captive, trained indi-
viduals into the wild (Comizzoli and Holt 2019; Silla and 
Byrne 2019). Thus, this approach is proven and important 
for conserving rare and endangered species. Varied feeding 
environments cause diversity and community differences in 
gut microbiota between captive and wild individuals. For 
example, gut microbial diversity, metabolic pathways, and 
cellulose-degrading enzyme activities decreased in captive 
compared to wild individuals. However, antibiotic resistance 
genes, heavy metal tolerance genes, the abundance of poten-
tial pathogens, and the risk of disease increased in captive 
compared to wild individuals (Wasimuddin et al. 2017; Chi 
et al. 2019; Gao et al. 2019). In this study, fecal FMD and 
AMD samples were obtained by noninvasive means. A 16S 
rRNA high-throughput sequencing determined the diversity 
and functional differences of gut microbiota between musk 
deer. Animal age and sex were controlled, and gut microbi-
ota of captive FMD and AMD was analyzed and compared.

Various factors affect the gut microbiota, including food, 
the most important source of energy and nutrition for both 
host and gut microbiota (Wu et al. 2011). The co-evolution 
of gut microbiota and host, the host genotype (Macke et al. 
2017), and genetic polymorphism shape gut microbiota, 
thus, influencing host susceptibility to disease (Kovacs et al. 
2011; De Filippo et al. 2010). Nevertheless, the composi-
tion and function of gut microbiota vary in different stages 
of the host life cycle, increasing in diversity and stability 
from birth to adult stages while decreasing from adult to old 

Fig. 2   Difference analysis of gut microbiota between FMD and 
AMD. a Histogram of relative abundance of individual bacterial 
phyla of musk deer. b Cluster heatmap analysis based on identifiable 
bacterial genera with relative abundance of top 50 for musk deer. The 
red, blue, orange, green, and black letters represented the phyla Fir-
micutes, Bacteroidetes, Proteobacteria, Planctomycetes, and Spiro-
chaetes, respectively. c Analysis of core and unique bacteria of musk 
deer at phylum (the left number) and genus (the right number) lev-
els by Venn plots. The black and red numbers represented late spring 
and winter, respectively. d Seasonal variation of α-diversity in gut 
microbiota of musk deer based on Sobs and Shannon indexes. PCoA 
analysis of gut microbial composition between juvenile (e) and adult 
(f) FMD and AMD. g ANOSIM analysis of gut microbiota between 
FMD and AMD in the same age and seasons. *P < 0.05 (Wilcoxon 
rank-sum test), **P < 0.01, and ***P < 0.001. ns, not significant

◂
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stages (O’Toole and Jeffery 2015). Male and female hosts 
have different feeding structures, food availability, immu-
nity, metabolite control, and hormone secretion, causing 
differences in the diversity and function of gut microbiota 
(Fransen et al. 2017; Johnson et al. 2020). Besides, seasonal 
variation changes food resources, habitat environment, 
developmental stage, and migration behavior, possibly all 
changing host gut microbiota (Baniel et al. 2021; Tong et al. 
2020; Shor et al. 2020).

Alpha diversity is the quantitative indicator of host gut 
microbial diversity, stability, and composition, and is an 
important evidence of the host health status (Shanahan 

2010). Higher alpha diversity indicates a complex and 
stable gut microbiota, less affected by food variation, 
and more resistant to external disturbances. Thus, higher 
alpha diversity is more conducive to host health because 
hosts can adapt and regulate their homeostasis (Ley et al. 
2006; Lang et al. 2018). This study showed that captive 
FMD had a higher alpha diversity than captive AMD of 
the same age and season, consistent with previous stud-
ies (Hu et al. 2017). FMD and AMD are different musk 
deer species. Hence, the gut microbial diversity from 
this study is inadequate for comparing the health status 
of both species under a captive environment. However, 
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Fig. 3   Difference analysis of dominant bacteria between FMD 
and AMD. a Differential analysis of Firmicutes and Bacteroidetes 
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(Wilcoxon rank-sum test), **P < 0.01, and ***P < 0.001. ns, not sig-
nificant

1332 Applied Microbiology and Biotechnology (2022) 106:1325–1339



1 3

previous studies showed that FMD has a larger suitable 
habitat than AMD (Jiang et al. 2020). FMD is the most 
widely distributed deer species with the highest popula-
tion in China, followed by AMD (National Forestry and 
Grassland Administration 2009). Musk deer breeding in 
captivity has taken over 60 years since the 1960s, but dif-
ferent studies hypothesize a higher alpha diversity in wild 
FMD than in wild AMD (Li et al. 2017). Therefore, higher 
alpha diversity of gut microbiota probably benefits FMD 
adaption to different habitats.

Gut microbiota is rich in genes for the metabolism of 
carbohydrates, amino acids, fats, cellulose, short-chain fatty 
acids (SCFAs), bile acids, and the synthesis of methane 
and vitamins (Sasaki et al. 2019). These genes synthesize 
enzymes and regulate biochemical metabolic pathways nec-
essary for metabolizing various substances for host suste-
nance (Tremaroli and Backhed 2012). Host metabolism is 
closely related to the growth and development of the host. 
As hosts age, the gut microecosystem gradually forms com-
plex digestive and metabolic functions. The diversity and 
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stability of the gut microecosystem ensure normal meta-
bolic function, nutrient digestion, and absorption by the 
host. However, imbalanced microbiota significantly alters 

the host metabolic and physiological processes, causing 
host susceptibility to diseases, especially metabolic disease 
(Torres-Fuentes et al. 2017).

disease-related

Fig. 5   Differences analysis of opportunistic pathogens between FMD and AMD for juveniles in late spring (a) and winter (c), and for adults in 
late spring (b) and winter (d). e Differences analysis of disease-related functions between FMD and AMD
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Dominant bacteria are key in metabolic function. This 
study showed that the phyla Firmicutes and Bacteroidetes 
were dominant, accounting for > 90% diversity in musk 
deer species across different seasons and ages. The above 
results are consistent with other results on the gut microbial 
composition in FMD, AMD, and other ruminants (Hu et al. 
2017; Zhao et al. 2019a, b; Fountain-Jones et al. 2020). In 
ruminants, the phylum Firmicutes promotes fiber and cel-
lulose degradation into volatile fatty acids, thus, facilitating 
food digestion, animal growth, and development (Wang et al. 
2018). In this study, the relative abundance of Firmicutes 
was significantly higher in FMD than in AMD, while Bacte-
roidetes was significantly higher in abundance in FMD than 
in AMD. The genera Bacteroides, UCG-005, Christensenel-
laceae R7 group, Rikenellaceae RC9 gut group, Alistipes, 
Ruminococcus, Prevotellaceae UCG 004, and Monoglobus 
were dominant in both FMD and AMD. Among these, the 
genera Christensenellaceae R7 group, Ruminococcus, and 
Prevotellaceae UCG 004 belong to Firmicutes. Studies have 
shown that the genus Ruminococcus produces numerous cel-
lulase and hemicellulase enzymes through fermentation in 
the rumen of ruminants (Matulova et al. 2008; La Reau et al. 
2016). These enzymes convert the dietary fiber in food into 
various nutrients needed by the host, and play a key role in 
food digestion and carbohydrate metabolism (La Reau and 
Suen 2018). The genus Christensenellaceae R7 group, also 
abundant in the rumen of ruminants, is very important to 
the structure and function of the host intestinal tract and is 
mainly involved in amino acid, peptide, and lipid metabo-
lism of the host (Waters and Ley 2019). The genus Prevo-
tellaceae UCG 004 degrades polysaccharides and produces 
SCFAs (Heinritz et al. 2016). Moreover, the genera Bacte-
roides, Alistipes, and Rikenellaceae RC9 gut group belong 
to Bacteroidetes. The genus Bacteroides improves ruminant 
metabolism by metabolizing bile acid, protein, and fat, and 
regulating carbohydrate metabolism. In comparison, the 
genus Alistipe metabolizes short-chain fatty acids. Both Bac-
teroides and Alistipe contain bile-tolerant microorganisms 
(David et al. 2014) and increase lipid metabolism by regulat-
ing the production of acetic acid (Yin et al. 2018). However, 
the genus Rikenellaceae RC9 gut group also metabolizes 
lipids (Zhou et al. 2018). Since both musk deer are typical 
ruminants, the identified dominant bacteria are critical for 
food digestion, nutrient absorption, and energy metabolism.

The relative abundance of genera Christensenellaceae R7 
group, Ruminococcus, Prevotellaceae UCG-004, and Mono-
globus were significantly higher in FMD than in AMD. In 
contrast, genera Bacteroides, UCG-005, Rikenellaceae RC9 
gut group, and Alistipes were more dominant in AMD than 
in FMD. Moreover, gene function annotation and prediction 
showed that the expression of metabolic function was higher 
in AMD gut microbiota than in FMD. FMD is the small-
est animal in the Moschidae family, and the body size of 

AMD is significantly larger than that of FMD (Wu and Wang 
2006). Consequently, AMD requires higher energy and 
substance metabolism for growth, development, and activ-
ity than FMD. Moreover, higher gut microbial metabolism 
is conducive for maintaining higher energy and substance 
metabolism in AMD.

Furthermore, the relative abundance of opportunistic 
pathogens and the expression of disease-related functions 
were significantly higher in AMD than in FMD, suggesting 
that captive AMD may be at greater risk of intestinal dis-
eases than FMD. For example, the genus Treponema is asso-
ciated with dysentery, which causes severe colon inflamma-
tion. Moreover, gout patients showed an increased relative 
abundance of genus Erysipelatoclostridium in their intes-
tinal tract (Shao et al. 2017). The genus Odoribacter may 
cause several intestinal diseases, such as colitis, necrotizing 
enteritis, and gastroenteritis (Meng et al. 2019). Most spe-
cies in Corynebacterium are opportunistic pathogens that 
cause endocarditis, bacteremia, and respiratory tract, urinary 
tract, and various other types (Aravena-Roman et al. 2012). 
Besides, the genus Parasutterella can cause chronic inflam-
mation (Peng et al. 2019). Altogether, the above potential 
pathogens may explain the high mortality of captive AMD.

In conclusion, this study systematically and comprehen-
sively analyzed the differences in gut microbial structure 
and function between FMD and AMD using 16S rRNA 
gene analysis of fecal samples from 166 captive musk deer 
in different seasons and ages. The results showed that the 
alpha diversity was higher in FMD than in AMD. There 
were significant differences in the gut microbial composi-
tion between both musk deer. The ß-diversity between adult 
FMD and AMD was higher than between juvenile individu-
als, and the value was higher in winter than in late spring. 
The species differences indicate that the relative abundance 
of the phylum Firmicutes and the genera Christensenel-
laceae R7 group, Ruminococcus, Prevotellaceae UCG-004, 
and Monoglobus were significantly higher in FMD than in 
AMD. In contrast, the phylum Bacteroidetes and the genera 
Bacteroides, UCG-005, Rikenellaceae RC9 gut group, and 
Alistipes were significantly higher in abundance in AMD 
than in FMD. The relative abundance of most opportunistic 
pathogens in AMD was significantly higher than in FMD. 
Additionally, the metabolic functions and disease-related 
functions of gut microbiota were significantly higher in 
AMD than in FMD. The combined metagenome and metab-
olomic results from this study are important for evaluating 
the artificial breeding environment and future reintroduction 
programs.
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