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Development and evaluation of an RT-qPCR for the identification of the SARS-CoV-2 
Omicron variant  
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The Omicron (B.1.1.529/BA.1) variant of concern (VOC) emerged in Southern Africa in November 2021, and rapidly overtook Delta (B.1.617.2) as 
the predominant SARS-CoV-2 variant globally [1]. The mutations in the Omicron spike rendered ineffective the monoclonal antibody therapies 
casirivimab/imdevimab (REGEN–COV, Regeneron) and bamlanivimab/etesevimab (Lilly) [2]. In addition, the surge in positive cases overwhelmed 
genomic sequencing capacity, resulting in delayed variant reporting. To inform monoclonal antibody selection and support epidemiologic surveil-
lance, we developed a reverse-transcription quantitative PCR (RT-qPCR) for the sensitive and specific detection of Omicron VOC. 

This assay targets an Omicron-specific Spike (S) insertion-deletion mutation (indel_211–214) found in the B.1.1.529/BA.1 lineage and BA.1.1 
sublineage, accounting for 99.9% of Omicron sequences in the U.S., and 96.6% of sequences worldwide as of 29 January 2022 [3]. The forward primer 
covers the deletion at amino acid position 211 (NL211I), while the probe interrogates the insertion at amino acid position 214 (ins214EPE) [4]. This 
indel_211–214 assay was combined in multiplex with envelope (E) primers/probe as internal control (Table 1) [5]. A limitation of this RT-qPCR is that 
the BA.2 and BA.3 Omicron lineages do not have indel_211–214 and only the E target would be detected. Though as of this writing, BA.2 and BA.3 
account for ~0.1% of Omicron sequences in the U.S., BA.2 increased substantially in other countries during the last three weeks of January 2022. 
Notably, 72.5% (18,030/24,863) of global BA.2 sequences are currently submitted from Denmark [3]. Depending on local/regional prevalence, as 
well as the potential for further spread, the addition of primers/probes targeting BA.2 and/or BA.3 lineage-specific mutations may be warranted [6]. 

Each 20 µL reaction using SuperScript III Platinum One-Step qRT-PCR Kit (Invitrogen) contained 10µL of 2X reaction mix, 0.4µL enzyme mix, 1µL 
primer-probe mix, 3.6µL nuclease-free water, and 5µL nucleic acid eluate. All experiments were conducted on a QuantStudio7 Pro real-time PCR 
instrument (Applied Biosystems). Cycling conditions were: 52 ◦C for 15:00, 94 ◦C for 2:00, and then 45 cycles of 94 ◦C for 00:15, 55.0 ◦C for 00:40, and 
68 ◦C for 00:20. Fluorescence thresholds were manually set at 2000 ΔRn for S:indel_211–214 (CY5) and 5000 for E (FAM). Thresholds were selected to 
fall in the middle of the exponential-phase of the amplification curve, though values may be adjusted to account for variation in baseline or maximum 
fluorescence. 

To determine analytical sensitivity, single-stranded DNA comprised of either the Omicron S or E target sequences (Table 2) were diluted to 10, 5, 4, 
3, and 1 copies/µL in buffer AVE (Qiagen). Twenty replicates at each dilution were tested. Probit regression analysis determined the 95% Lower Limit 
of Detection was 1.3 copies/µL [95% confidence interval (CI) 1.0 - 1.6] for S:indel_211–214 and 4.3 copies/µL (95% CI 3.8 - 5.1) for E. 

To determine clinical performance, total nucleic acids were extracted from 94 SARS-CoV-2 positive upper respiratory specimens in 300 µL 
transport media using the Chemagic Viral DNA/RNA 300 Kit automated on the Janus G3 Primary Sample Reformatter and Chemagic 360 extraction 
instrument (PerkinElmer). Specimens were collected December 8–23, 2021, consisting of a convenience set of 47 Omicron and 47 Delta variants 
confirmed by SARS-CoV-2 whole genome sequencing (WGS) (Supplemental Table 1) [7]. RT-qPCR was set-up using the Janus G3 PCR Workstation 
(PerkinElmer). 

The Omicron-specific RT-qPCR detected S:indel_211–214 and E in 100% (47/47; 95%CI: 95.1–100) of Omicron specimens. Similarly, S: 
indel_211–214 was not detected in 100% (47/47; 95%CI: 95.1–100) of Delta specimens. Initially, one Delta failed to amplify E, but amplification was 
observed upon repeat testing of the original eluate, as well as the re-extracted specimen. 

In summary, we describe an accurate RT-qPCR for rapid identification of the Omicron VOC (B.1.1.529/BA.1, BA.1.1), suitable for clinical decision- 
making, near real-time variant surveillance, and triage of samples for WGS. 

Table 1 
Primer and Probe Sequences.  

Name Sequence (5′ to 3′) Final concentration 

Omicron F Primer TTCTAAGCACACGCCTATTATAGTG 300 nM 
Omicron R Primer GGCAAATCTACCAATGGTTCTA 300 nM 
Omicron Probe CY5-CGTGAGCCAGAAGATCTCCCTCAG-BHQ2 100 nM 
E gene F Primer ACAGGTACGTTAATAGTTAATAGCGT 300 nM 
E gene R Primer ATATTGCAGCAGTACGCACACA 300 nM 
E gene Probe FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1 100 nM 

E, Envelope; F, Forward; R, Reverse; Cy5, Cyanine-5; FAM, 6-Carboxyfluorescein; BHQ, Black Hole Quencher. 
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Table 2 
Single-Stranded DNA Oligonucleotides.  

Name Sequence (5′ to 3′) 

Omicron ssDNA TTCTAAGCACACGCCTATTATAGTGC 
GTGAGCCAGAAGATCTCCCTCAGGG 
TTTTTCGGCTTTAGAACCATTGGTA 
GATTTGCC 

E gene ssDNA TTCGGAAGAGACAGGTACGTTAA 
TAGTTAATAGCGTACTTCTTTTTCTTG 
CTTTCGTGGTATTCTTGCTAGTTACACT 
AGCCATCCTTACTGCGCTTCGATTGT 
GTGCGTACTGCTGCAATATTGTTAACGTG 

E, envelope; ssDNA, single-stranded DNA. 
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