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Abstract

Behavioral models are central to behavioral neuroscience. To study the neural mechanisms of 

maladaptive behaviors (including binge eating and drug addiction), it is essential to develop and 

utilize appropriate animal models that specifically focus on dysregulated reward seeking. Both 

food and cocaine are typically consumed in a regulated manner by rodents, motivated by reward 

and homeostatic mechanisms. However, both food and cocaine seeking can become dysregulated, 

resulting in binge-like consumption and compulsive patterns of intake. The speakers in this 

symposium for the 2021 International Behavioral Neuroscience Meeting utilize behavioral models 

of dysregulated reward-seeking to investigate the neural mechanisms of binge-like consumption, 

enhanced cue-driven reward seeking, excessive motivation, and continued use despite negative 

consequences. In this review, we outline examples of maladaptive patterns of intake and explore 

recent animal models that drive behavior to become dysregulated, including stress exposure 
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and intermittent access to rewards. Lastly, we explore select behavioral and neural mechanisms 

underlying dysregulated reward-seeking for both food and drugs.
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Introduction

A large number of individuals worldwide are afflicted by binge eating or substance use 

disorders. However, successful pharmacotherapies remain limited, particularly for stimulant 

use disorder (1-3), despite many preclinical studies using animal models as a means to 

identify the neural mechanisms underlying these diseases. This may partially be due to 

animal models that have inadvertently focused on regulated food or drug consumption 

that is motivated by reward and/or homeostatic mechanisms. In contrast, binge eating 

and drug addiction are characterized by dysregulated reward seeking, with diagnostic 

criteria that includes over-consumption (e.g., bingeing, escalation), lack of control over 

consumption, and compulsive patterns of intake. Therefore, it is essential that behavioral 

neuroscientists develop and utilize behavioral models that specifically focus on dysregulated 

reward seeking. In this review, we discuss the parallels between food and drug seeking in 

terms of evidence of dysregulated patterns of intake, paradigms that drive the emergence of 

these dysregulated patterns, and the potential behavioral and neural mechanisms underlying 

dysregulated reward seeking.

1.0 Maladaptive patterns of reward seeking

1.1 Binge-like consumption

A widely distributed neurocircuitry throughout the brain regulates appetite in a highly 

sophisticated manner to ensure energy balance (4). When food intake is driven by hedonic 

or reward-based processes, satiety signals can be overruled and maladaptive patterns of 

intake can emerge, such as bingeing and escalation. The terms ‘binge’ and ‘escalation’ are 

both used to describe excessive intake or overconsumption (in a within- or between-subject 

comparison). While ‘escalation’ indicates an increase in daily intake over a longer access 

period (e.g., 6 or 24 hours) and typically involves intermittent intake during this access 

period, ‘binge’ indicates an increase in intake over a brief access period (e.g., 1 hour) and is 

typically characterized by continuous intake. However, the lengths of time used to define the 

access periods for binge or escalation vary across substances and studies.

In animal models, binge-like patterns of consumption of sugar have been associated with 

features of addictive behavior such as escalation of intake, consuming more than intended, 

increased anxiety-like behavior (e.g., ultra-sonic distress vocalizations), and somatic signs 

of withdrawal upon cessation of access (5). Furthermore, rats prone to diet-induced 

obesity show addiction-like behavior towards high-fat high-sugar food, including binge-like 

consumption and escalation of intake, and show addiction-like synaptic changes at nucleus 
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accumbens synapses that resemble those of rats who have self-administered drugs of abuse 

(6). Likewise, in the case of alcohol and drugs, consumption can escalate over time and 

become binge-like in nature. Binge eating and binge drinking share several important 

features including, by definition, preoccupation with and excessive consumption of the 

substance.

Although regulated patterns of cocaine intake are commonly observed with limited daily 

access to cocaine self-administration, dysregulated patterns are observed during continuous 

or long access. With limited access, rats typically self-administer cocaine in a stable 

manner that appears guided by satiety, with rats displaying consistent pauses after each 

infusion, modulating inter-infusion intervals according to dose, and achieving a consistent 

concentration of cocaine in the brain (7-10). However, with continuous or long access 

to cocaine self-administration, a dysregulated pattern emerges that is not directly guided 

by satiety, with rats displaying escalation of intake, alternating periods of bingeing and 

abstinence, and increased variability in inter-infusion intervals (11-13). Recent work has 

observed similar binge- and burst-like patterns of cocaine intake when rats have intermittent 

access to cocaine self-administration (discussed in more detail below), and this dysregulated 

pattern is strongly associated with enhanced addiction-like features such as increased 

motivation, relapse, escalation, and continued use despite negative consequences (14-18). 

Further, this pattern of cocaine consumption is more reflective of the temporal patterns of 

use in humans (reviewed in (19)).

1.2 Enhanced cue-driven seeking

Research from the past 20 years demonstrates that addictive behaviors are characterised by 

attentional biases towards reward-related stimuli (for review see (20). For example, when 

regular drinkers are exposed to the sight or smell of an alcoholic beverage or smokers are 

asked to hold a lit cigarette, they react with increased physiological arousal and subjective 

craving (see (21, 22). These processes have long been thought to be important in the 

maintenance of addictive behaviors and key precipitants of relapse. Reward-related cues 

have been proposed to acquire incentive-motivational properties which therefore have the 

capacity to alter the ways in which the cues themselves are attended to and perceived (23). 

It has been proposed that, through classical conditioning, reward-associated stimuli elicit the 

expectancy of reward availability, and this causes both attentional bias for these stimuli and 

subjective craving (24).

In binge eating and addiction disorders, and in animal models of these disorders, reward-

associated cues can acquire enhanced motivational properties. For example, obesity-prone 

rats show enhanced conditioned approach toward food cues, as well as enhanced cue-

triggered food seeking during a Pavlovian-to-instrumental transfer (PIT) task, in which 

instrumental responding is invigorated in the presence of a conditioned stimulus previously 

paired only non-contingently with food reward (25, 26). Similarly, repeated exposure 

to stimulants enhances the motivational properties of conditioned stimuli and facilitates 

expression of PIT for food rewards (27). Recent work shows that cocaine-exposed rats 

display maladaptive responding in a PIT task, such that the conditioned stimulus drives 

instrumental reward seeking (i.e., lever pressing), even when expectancy for food reward is 
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high and the conditioned stimulus should drive conditioned approach behavior instead (i.e., 

going to food cup), as is observed in non-cocaine-exposed rats (27). Finally, the ability for 

conditioned stimuli to drive reward-seeking behavior for drugs or sucrose ‘incubates’ with 

increasing periods of time during the first several weeks of abstinence and becomes stronger 

(reviewed in (28)).

1.3 Continued use despite negative consequences

A key characteristic of substance use disorder and disorders associated with dysregulated 

eating is continued behavior despite negative outcomes (29). For example, chronic cocaine 

use is associated with a range of negative health outcomes – particularly cardiovascular 

outcomes – as well as an increased risk of criminal prosecution, loss of employment and 

financial stress (30, 31). Eating disorders have the highest mortality rate of any psychiatric 

illness (32) and there are a range of consequences associated with compensatory vomiting 

(dental/oral cavities), as well as the feelings of disgust and discomfort associated with food 

overconsumption (29). In animal models of drug use, this phenomenon can be modeled by 

pairing drug delivery with an aversive outcome, such as footshock (33-36). Some rats exhibit 

a resistance to footshock-induced suppression of drug seeking, and thus might represent 

a population ‘vulnerable’ to developing dysregulated drug-seeking (36-38). Similarly, rats 

exhibit individual differences in intake when alcohol is adulterated with the bitter tastant 

quinine, and extended access to alcohol promotes quinine-resistance across the population 

(for review, see (39)). Finally, with feeding behavior, palatable food seeking is typically 

suppressed by presentation of a cue previously predictive of footshock; however, this cue-

suppression of feeding is not observed in rats following extended access to a so-called 

‘cafeteria diet’ consisting of high fat, high salt, and energy-dense foods (40) or following 

binge-like intake of sucrose (41).

1.4 Excessive motivation

Substance use disorder is often conceptualized as a syndrome of dysregulated motivation, 

evidenced by intense drug craving and compulsive drug seeking (as above; (42)). Similarly, 

eating disorders associated with excessive food intake (e.g. binge eating, obesity) likely 

reflect excessive motivation for palatable foods, including heightened craving elicited by 

food cues and contexts (also discussed above). Conventional studies have typically measured 

drug/food motivation using a progressive ratio schedule of reinforcement; however, this 

procedure is susceptible to differences in drug pharmacokinetics (making ‘motivation’ 

difficult to compare across reinforcers) and shifts in baseline consumption (tolerance) (43). 

To this end, behavioral economics has emerged as a powerful quantitative tool for measuring 

the motivational component of drug/food reward distinct from baseline intake (33, 43, 44). 

This approach examines the consumption of a reinforcer at several prices within a single 

session, where price is altered either by increasing the fixed ratio (FR) requirement to earn 

a reward (this approach is typical for food pellets), or by maintaining a FR1 schedule but 

progressively reducing the amount of reinforcer delivered across the session (e.g. for liquid 

food reward or intravenous drug infusions) (43, 45). By applying an exponential demand 

equation to consumption data (46), it is then possible to derive demand intensity (Q0), 

which is an estimate of consummatory behavior under unrestricted conditions (baseline 

intake), as well as demand elasticity (α), which is an index of how rapidly consumption 
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decreases with increasing price, such that high demand elasticity (high α values) reflect 

lower motivation to ‘work’ to maintain the preferred level of intake (and conversely, lower α 
values reflect higher motivation) (33, 43). Importantly, for most drugs and palatable foods, 

demand intensity and elasticity are orthogonal (43, 47), meaning that the motivational index 

(α) is not influenced by differences in baseline drug or food intake, thus eliminating any 

confound of tolerance (in the case of drugs of abuse) or higher body weight (for both 

drugs and food). Consistent with demand elasticity being an index of drug motivation, 

α correlates with several measures of craving and punishment-resistant responding, and 

paradigms that promote addiction-like behaviors are associated with significant reductions in 

demand elasticity (increased motivation) (33, 47). Moreover, behavioral economic measures 

determined via a hypothetical purchasing task are altered in patients with substance use 

disorder and obesity (48-50), further highlighting the utility of this approach for studying 

dysregulated motivation in clinical pathology.

The transition from controlled to dysregulated drug and food intake has often been attributed 

to a shift in baseline consumption (‘tolerance’). Indeed, in their seminal paper examining 

the development of cocaine addiction in rats, Ahmed & Koob (12) posited that the loss of 

control over drug intake, evidenced by a steady escalation of intake across repeated extended 

access sessions, reflected an upward shift in the ‘hedonic set point’ for cocaine. Similarly, 

animal models of binge eating and obesity often promote a phenotype characterized by a 

progressive increase in the total caloric intake across time (29, 51). Consistent with this 

view, increased drug use is a key diagnostic criterion for substance use disorder, and binge 

eating disorder is characterized by a perceived ‘loss of control’ over how much food is eaten 

(52). However, recent animal studies utilizing behavioral economics approaches, which can 

discern between preferred baseline intake (Q0) versus the motivation to maintain this level of 

intake (α), have provided a much more nuanced understanding of the extent to which shifts 

in hedonic/satiety set points contribute to dysregulated behaviors.

With respect to drugs of abuse, self-administration paradigms that promote persistent 

changes drug motivation (e.g. intermittent access, see Section 2.1 below) are characterized 

by dramatic decreases in demand elasticity (α) (17, 18). Consistent with this, demand 

elasticity (α) predicts a range of motivated drug behaviors, including punished drug 

responding and heightened relapse propensity, whereas demand intensity (Q0) does not 

(33, 47). In contrast, paradigms that promote shifts in the ‘hedonic set point’ (i.e. 

tolerance), including the long access model in which rats are given extended (typically 

6–12h/day) continuous access to drug (12), promote persistently increased demand intensity 

(Q0) without drastic changes in demand elasticity (18, 47). In clinical populations, both 

demand elasticity and intensity have predictive value with respect to addiction severity and 

outcomes. Low demand elasticity (high motivation) for drug is linked to poorer treatment 

outcomes and a greater likelihood of polydrug abuse (53, 54). In contrast, high demand 

intensity (Q0) is a strong predictor of ‘real world’ drug use and consumption (53, 55). 

Similarly, demand intensity and elasticity predict different aspects of dysregulated food 

behavior in humans; demand intensity (Q0) and elasticity (α) are both correlated with 

body mass index (BMI), whereas only demand intensity is correlated with dietary restraint 

and hunger for energy-dense snacks (56). Together, these studies indicate that different 
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components of dysregulated food/drug seeking are differently regulated by the hedonic/

satiety setpoint for the rewards vs. the motivation to achieve/maintain this satiety level.

2.0 Drivers of maladaptive patterns of reward seeking

There has long been interest in developing preclinical rodent models that promote the 

endophenotypes reflective of dysregulated food and drug seeking (29, 57). Such approaches 

have been instrumental for the identification and characterization of neural systems that 

contribute to substance use and eating disorders. Conventional approaches to promoting 

dysregulated behavior have typically focused on providing animals extended access to drugs 

of abuse or palatable food – these approaches are reviewed in detail elsewhere (57, 58). 

Here, we focus on novel approaches that have gained significant traction in both the drug 

and food literature over recent years, including the intermittent access model and stress 

exposure models.

2.1 Intermittent access

Conventional animal models of food and drug addiction have focused on increasing the 

amount of consumption in order to induce an addicted-like state (12). Emerging evidence, 

however, indicates that the development of dysregulated seeking is more critically linked 

to the temporal pattern of food and drug intake (15, 17), rather than total consumption, 

such that stronger addiction-like behaviors are observed following intermittent access 

to a reinforcer. Schedules of intermittent access vary across reinforcers and paradigms, 

but typically involve extended periods of access to food/drug on select days (e.g. every 

other day), brief access to drug/food in daily sessions (e.g. repeated 5 min bins of drug 

availability), or a combination of both, as outlined below.

In the case of food, rats given intermittent and brief access (30min; 2–3x week) to sweetened 

fat (vegetable shortening and sugar) exhibit greater escalation of fat intake compared to 

control rats with daily access (59, 60). Interestingly, rats on this schedule restrict their 

standard chow intake on non-access days to compensate for their binge-like intake of 

sweetened fat (51), and escalation of sweetened fat intake can be further exacerbated by 

caloric restriction prior to access sessions (59, 60). Similarly, rats given restricted daily 

access (12h) to a sucrose solution exhibit greater escalation and binge-like intake compared 

to those with unrestricted access (24h) (61).

In the case of drugs of abuse, Zimmer et al. (62) first described a novel model of intermittent 

cocaine self-administration, whereby rats are given brief (5 mins) access to cocaine every 

30mins during 6h sessions, resulting in a spiking pattern of brain-cocaine levels across the 

session. The authors argued that this pattern of intake better recapitulates human drug intake 

patterns compared to the more conventional long-access model, in which rats are given 

unrestricted access to cocaine over extended periods (6–12h). Using a behavioral economics 

approach, Zimmer et al. reported that intermittent access to cocaine was associated with 

higher Pmax levels, which reflects the highest price to maintain preferred cocaine intake 

on a behavioral economics schedule, as compared to continuous access for a long (6h) or 

short (1h) duration, and thus provided the first evidence indicating that the pattern of cocaine 

intake, rather than the amount, may determine the development of addiction-like behaviors. 
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Subsequent studies reported that intermittent access to cocaine increases the potency of 

cocaine at the dopamine transporter, resulting in increased release and uptake of dopamine 

in nucleus accumbens (63, 64), The intermittent-access model has gained significant traction 

in the years since, with several studies now showing that intermittent access to cocaine 

promotes greater escalation of cocaine intake, more profound and persistent decreases in 

demand elasticity (higher motivation) for cocaine, as well as higher levels of punished 

responding and cued/drug primed reinstatement, compared to other models, including the 

canonical long (extended) access model (16-18, 47, 65); similar effects are observed for the 

commonly abused opioid, fentanyl (66). Notably however, a recent study reported that rats 

with a history of intermittent access to cocaine exhibit a preference for a lever that facilitates 

social interaction over a cocaine-paired lever, and will achieve ‘voluntary abstinence’ under 

this schedule to a similar extent as rats that underwent long access cocaine sessions (67) 

(for other studies utilizing choice paradigms in the context of addiction, see (68-73)). 

Thus, the intermittent and long access models may be comparable in promoting select 

addiction-relevant endophenotypes. The intermittent-access model also leads to a bingeing 

or burst-like pattern of drug taking, with nearly all cocaine consumption taking place in first 

60–90 sec of each 5-min drug period (17, 74, 75). In male rats, the intermittent access model 

appears to have the most pronounced addiction-promoting effects in rats with low trait 

drug-seeking behavior. For example, rats prone to attributing incentive salience to discrete 

reward cues (sign trackers; STs) exhibit stronger baseline addiction behaviors compared 

to those that are goal-directed (goal trackers; GTs); following the cocaine intermittent 

access paradigm, these differences are eliminated, with GTs behaving more like STs (17). 

Similarly, rats with high baseline demand elasticity for cocaine (low willingness to work 

to maintain intake) are most prone to the addiction-promoting effects of the intermittent 

access paradigm (47). Overall, however, females appear more vulnerable to the effects of 

intermittent access, exhibiting extended burst-like cocaine intake patterns during the first 

2–3 min of each access bin and exaggerated changes in demand as compared to males (65).

Intermittent access is also a feature in 3-criteria models of addiction (76, 77), in which rats 

are tested for the expression of behaviors resembling core diagnostic criteria for addiction, 

including persistence of responding during a signaled period of cocaine nonavailability, 

motivation for drug as assessed on a progressive ratio schedule, and persistence of 

responding for drug when paired with an aversive outcome (footshock). Individual rats 

are considered ‘positive’ for an addiction-like criteria if their score falls within the top 

1/3rd of the distribution across all rats, and thus rats that are positive for each of the 3 

criteria are considered an ‘addicted’ subpopulation. In this approach, the persistence of 

responding criteria is generally assessed by allowing rats to self-administer drug in sessions 

with three longer drug-available periods (e.g. 40 mins) separated by shorter time outs (e.g. 

20 mins) (14, 76); thus, this schedule likely also promotes spiking patterns of brain-cocaine 

concentrations, albeit with different regularity compared to the Zimmer et al. model (78). 

Using this schedule, Belin et al (14) observed that burst-like self-administration of cocaine 

(5-infusion bursts with short-spaced intervals, but no overall difference in infusion number) 

was predictive of developing addiction criteria. These data indicate that bingeing patterns of 

intake may contribute to neuroadaptations that promote addiction (14).
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These findings for cocaine largely parallel those from the alcohol literature, where it was 

reported almost 50 years ago that rats given homecage access to alcohol on an every-

other-day schedule exhibited greater intake and preference for alcohol compared to those 

given continuous access over the same period (79). Variants to the every-other-day model, 

including a Monday-Wednesday-Friday schedule of alcohol access, as well as the so-called 

drinking-in-the-dark paradigm whereby access is given daily during the 12h active (lights 

off) period, have also been shown to reliably promote robust escalation of alcohol intake in 

both rats and mice (80–82). Overall, these findings indicate that the pattern of intake (binges 

and bursts), and not escalation of total intake, is necessary for the enhanced motivation that 

is indicative of addiction.

2.2 Stress

In modern society stress is typically the most common negative emotion experienced by 

individuals. It is well established, in both pre-clinical and clinical studies, that stress and 

negative affect can precipitate overeating behavior, as well as relapse to drug taking (83-85). 

Evidence also suggests that individuals who experience elevated levels of negative affect 

and increased impulsivity may be at risk for comorbid eating and drinking problems (86). 

Animal models that utilize stress to precipitate food and drug seeking behavior have strong 

face validity in this regard. Indeed, administration of glucocorticoids has been shown to 

stimulate drug taking and palatable food consumption in animal models (87, 88). Although 

stress has been demonstrated to drive reinstatement of drug seeking in both operant and 

conditioned place preference paradigms (reviewed in (89)), several studies showed that acute 

footshock stress does not reinstate food or sucrose seeking (90, 91). A more recent study 

by Chen and colleagues (92) reported that footshock reinstates palatable food seeking in 

female rats with a history of high-fat-high-sugar diet in the homecage during adolescence, 

indicating that stress may drive maladaptive reward seeking in particular.

Historically, studies of stress-induced binge eating have involved paradigms that use 

physical stressors such as tail pinch or footshock (e.g.(93)); however, these types of acute 

stressors often require a history of dietary restriction and have reduced face validity as 

compared to psychological stressors such as social stress or frustration (93, 94). Recently 

a model of psychological stress-induced binge eating was reported in female mice that did 

not require a history of caloric restriction (83), which circumvents this issue. Anversa and 

colleagues showed that female mice without any history of food restriction will consume 

up to 1.4g of highly palatable food (Reese’s and chocolate drops) in a 15min period when 

exposed to an acute frustrative episode. This is more than 50% of their daily chow intake in 

a 15min period and is 70% more than control mice that are given the same opportunity to 

consume the highly palatable food reward without the stressful experience (83).

Interestingly, while acute uncontrollable stress seems to sensitize animals to future insults, 

behavioral control over stress has the converse effect and promotes resilience against future 

insults, even uncontrollable stress (95). Uncontrollable stress (acute or chronic) has been 

shown to increase vulnerability to maladaptive behavior, including increased use of habitual 

response strategies (96, 97), impairments to medial prefrontal cortex (PFC) (98, 99), and 

sensitized reward/motivation for drugs (100-102). Conversely, previous experience with 
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behavioral control over stress has been shown to be protective in adult rats, promoting 

resilience over future uncontrollable stress through engagement of medial PFC (103, 104). 

Imaging studies in humans support this notion, showing that greater neural flexibility in 

ventromedial PFC was associated with active coping responses to acute stress, whereas 

lower flexibility in ventromedial PFC predicted binge alcohol intake and emotional eating 

(105).

3.0 Mechanisms underlying dysregulated reward seeking

3.1 Orexin (hypocretin) and motivation for drug and food

Several brain structures and neurotransmitter systems have been identified as playing 

differential roles in regulating demand intensity vs. elasticity for drugs of abuse and 

palatable foods. One such system that has received substantial recent attention is the 

hypothalamic orexin (hypocretin) system, to the point that there is currently significant 

interest in the development of orexin-based therapies designed to treat substance use 

disorders and a range of eating disorders characterized by dysregulated intake (106-108). 

Orexin peptides A and B are produced by a small (~4000 in rat) population of neurons in 

caudal hypothalamus that influence a broad range of behavioral and physiological processes 

via their actions at orexin receptors 1 and 2, which are distributed throughout the brain 

(109-112). A role for orexins in feeding was noted upon their discovery, with the observation 

that central infusions of the peptides promoted feeding in sated rats (orexis being the Greek 

word for appetite) (109). A general role for orexins in reward a was first demonstrated by 

Harris et al. (113), who reported that orexin neurons exhibit robust activation in response to 

a drug/food-paired context and that the magnitude of this activity was proportional to rats’ 

drug and food-seeking behavior.

In the 15+ years since, a significant body of evidence has amassed strongly implicating 

orexin signaling in drug-seeking behavior across all drugs of abuse tested, particularly under 

circumstances where high levels of motivation are required to earn a drug reward (for 

review see (114)). Many of these studies, however, relied on self-administration schedules 

that are dependent on drug dose, pharmacokinetics and baseline shifts in consumption (e.g. 

FR5, progressive ratio), making it difficult to identify precisely which behavioral factors 

the orexin system underlies (114). To this end, more recent studies utilizing the behavioral 

economics procedure have made it possible to more clearly dissect the orexin system’s role, 

with data arising from these studies broadly pointing to a specific role for orexin neurons in 

mediating drug valuation rather than baseline intake. For example, following intermittent 

access to cocaine or fentanyl, rats exhibit a persistent decrease in demand elasticity 

(α) for cocaine (higher drug motivation), but no change in Q0 values. These behavioral 

effects are paralleled by an increase in the number of orexin-immunoreactive neurons 

(18, 66), which is causally linked to rats’ motivation for cocaine, as demand elasticity 

(α) is normalized following shRNA-mediated knockdown of orexin-expressing neurons 

while baseline intake remains unaffected (18). Similarly, rats with higher endogenous levels 

of orexin-immunoreactive neurons exhibit lower demand elasticity (α; higher motivation) 

values compared to rats with lower orexin levels, but do not differ with respect to their 

baseline cocaine intake (Q0;(115)). The link between increased orexin cell numbers and drug 
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exposure has been replicated across several species, including mice and zebrafish, and drugs 

of abuse, including alcohol and morphine, although these studies have not directly examined 

the causal role of these increases in demand intensity vs. elasticity (116-118). Nonetheless, 

increased orexin cell numbers are also observed in human opioid users (116), suggesting 

that this phenomenon is of clinical significance. Following the transition to an intermittent 

access-induced ‘addicted state’, rats also exhibit hyperactivity of orexin neurons in response 

to drug-associated contexts (18), pointing to enhanced orexin system function (both in terms 

of numbers and activity) underlying dysregulated reward seeking in addiction. Currently, it 

remains unclear if orexin system function is upregulated only in response to drug-associated 

stimuli, or if this reflects a persistent enhancement of function regardless environmental 

conditions; the latter may explain in part the high comborbidity of sleep dysregulation of 

addiction, as the orexin peptides play an important role in maintaining wakefulness (119, 

120).

Studies utilizing orexin 1 receptor antagonists generally support a role for the orexin system 

specifically in mediating demand elasticity (α) for drugs of abuse, although there are some 

exceptions. For example, systemic blockade of orexin 1 receptor signaling increased demand 

elasticity (α; reduced motivation) for cocaine following both short- and intermittent-access 

self-administration conditions, without affecting demand intensity (Q0; (18)) – a finding that 

aligns with several demonstrations that orexin 1 receptor antagonists reduce high- (FR5, 

progressive ratio) but not low- (FR1) effort responding for cocaine (121, 122). However, one 

study reported that FR1 responding for cocaine is reduced by orexin 1 receptor blockade 

following long access to cocaine, indicating a potential role for orexin signaling in demand 

intensity following extended cocaine intake (123, 124), however as noted above, fixed 

ratio schedules of reinforcement are not optimized to disentangle preferred brain-drug 

concentrations and motivation to maintain them. Similar results were observed for fentanyl, 

with orexin 1 receptor antagonists increasing demand elasticity (reduced willingness to exert 

effort to maintain drug intake) without affecting demand intensity (125). In the case of 

the short-acting synthetic opioid remifentanil, however, orexin 1 receptor antagonists both 

increase demand elasticity and reduce demand intensity (126-128), and blockade of either 

orexin 1 and 2 receptors reduces low-effort (FR1) responding for heroin (129, 130). The 

reason(s) why the orexin system is uniquely involved in baseline intake of remifentanil and 

heroin are not clear and warrant further investigation, but may involve orexins’ actions at 

ventral pallidum (VP), as local infusions of SB reduce Q0 for remifentanil (127, 128); it is 

not known if this role extends to other drugs of abuse (e.g. cocaine) or if VP represents a 

locus where orexins uniquely act to regulate opioid intake (although note that orexins also 

act in VP to mediate sucrose ‘liking’ (131)). Together with evidence that orexin 1 receptor 

antagonists are also extremely effective at reducing relapse behavior across all drugs of 

abuse tested, these data have prompted interest in the potential utility of orexin-based 

therapies for the treatment of substance use disorder. Notably, two dual orexin receptor 

antagonists are currently FDA approved for the treatment of insomnia (suvorexant and 

Lemborexant), raising the interesting possibility that these compounds could readily be 

repurposed for substance use disorder (106-108). Indeed, one study reported that suvorexant 

is effective at reducing several relapse-related indices in patients with cocaine use disorder, 
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including cocaine craving (132), and several other studies in opioid-using populations are 

ongoing (107).

Similar to drugs of abuse, studies examining the role of orexin in feeding behavior 

have typically utilized behavioral procedures that do not permit examination of demand 

intensity vs. elasticity indices. Indeed, the majority of these studies involve either free 

or low-effort access to palatable food, which promotes an escalation of intake across 

sessions, in combination with pharmacological agents to block orexin signaling. In general, 

blockade of orexin 1 receptor signaling is highly effective at reducing binge-like intake 

of a range of palatable foods, including chocolate, sucrose, saccharine and fructose, and 

these compounds are also effective at suppressing cue-induced reinstatement of extinguished 

food seeking (133-140). Interestingly, just as drugs of abuse increase the number of orexin-

expressing neurons in hypothalamus, chronic exposure to palatable foods is associated 

with higher orexin numbers (141), although to date a causal role for this increase in 

food-related behaviors has not been tested. Although several studies have utilized the 

behavioral economics paradigm to examine demand for foods that are typically associated 

with dysregulated eating (142-144), only one study to date has utilized this procedure to 

examine orexin system function. In this study, demand values were examined for low-fat 

palatable, high-fat palatable, and chocolate sucrose in male and female rats. When demand 

intensity (Q0) was adjusted for bodyweight, female rats were found to have higher baseline 

intake across all food types, but did not differ with respect to their willingness to exert effort 

to maintain their preferred level of intake (demand elasticity;(45)). Systemic administration 

of an orexin 1 receptor antagonist had the greatest effects on demand intensity, significantly 

reducing baseline intake across all food types in both male and female rats. Orexin 1 

receptor antagonism also increased demand elasticity (decreased motivation) for low-fat 

palatable and chocolate sucrose pellets (and a trend was observed for high-fat palatable 

foods), indicating that the orexin system might be involved in mediating both the hedonic 

setpoint for palatable food, as well as the motivation to maintain preferred food intake 

levels. Importantly however, to date no study has examined whether paradigms that promote 

dysregulated feeding behaviors, such as intermittent/restricted access to palatable foods 

(51, 59, 61), alter demand intensity or elasticity for food and the potential role for the 

orexin system in these processes. Nonetheless, as with drugs of abuse, there is significant 

current interest in the use of orexin-based therapeutics for treatment of eating disorders 

characterized by high intake, such as binge eating disorder, with a number of clinical trials 

currently ongoing (e.g. ClinicalTrials.gov Identifier: NCT04753164).

3.2 Loss of control over habitual behavior

Enhanced habit formation has been heavily implicated in dysregulated reward seeking for 

drugs and food (145, 146). In particular, a loss of control over habits has been theorized to 

play a key role in addiction behaviors (147-153). While goal-directed behaviors are flexible 

and performed in direct pursuit of the reward outcome, habitual behaviors are automatic, 

less flexible, and performed in response to conditioned stimuli (discrete, environmental, or 

interoceptive). It is important to note that excessive goal-directed behavior has also been 

implicated in drug addiction (154-156), with supporting evidence that includes the presence 

of excessive reward motivation in drug addiction and binge eating (as discussed above). 
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Here, we review the evidence that increased habitual behavior is involved in dysregulated 

reward seeking, and explore roles for striatal and cortical systems in this process.

Many studies have shown increased habitual responding after exposure to drugs or acute/

chronic stress (reviewed in (153)). Increased habit formation has also been observed in 

obese individuals with binge eating disorders as compared to those without, and in rats 

prone to binge eating (146, 157-159). However, it is not clear that this increased habitual 

responding is necessarily maladaptive, or that it is the underlying mechanism of compulsive 

or dysregulated reward seeking. Habitual behavior is insensitive to changes in the value 
of the outcome, such that reward seeking assessed under extinction seeking is unaffected 

following devaluation via satiety (160, 161). However, habitual behavior is generally 

sensitive to changes in the outcome, such that reward seeking is reduced after experiencing 

the devalued outcome in the satiated state (151, 162, 163) or, presumably, introducing 

a negative consequence (e.g., footshock). Habits become maladaptive when they persist 

despite conditions that should normally elicit goal-directed control over behavior.

In the context of dysregulated drug and food seeking, reduced flexible control over 

habits has been associated with neuroadaptations in dorsomedial striatum (DMS) and 

dorsolateral striatum (DLS), which directly guide goal-directed and habitual responding, 

respectively (164, 165). Recent studies support a connection between dorsal striatum and 

maladaptive responding. In rats self-administering alcohol, continued seeking of alcohol 

despite footshock was associated with greater dependence on DLS to drive alcohol 

seeking (166). Selective ablation of fast-spiking interneurons in dorsal striatum reduced 

both punished alcohol responding and escalated consumption (167), while disruption of 

cholinergic signaling in DMS promoted habitual sucrose responding and maladaptive eating 

in mice (168). However, habitual behavior is not necessarily prerequisite for punishment-

resistant cocaine seeking in rats (156), and chemogenetic inhibition of DMS direct-pathway 

neurons was found to have no effect on high-risk addiction behaviors, including cocaine 

self-administration despite footshock, enhanced cocaine motivation, or responding during 

drug-unavailable periods (169). Therefore, dorsal striatum systems alone may not explain 

dysregulated reward seeking.

Reduced flexible control over habits might stem from impairments in the PFC systems that 

influence striatum signaling (148-151, 153, 170-175). Reduced PFC gray matter has been 

reported in individuals with stimulant dependence, and PFC ischemia has been shown with 

cocaine exposure in rodents (176, 177). The medial PFC is involved in top-down control and 

behavioral flexibility, including adaptive responding to conflict and stress (reviewed in (178, 

179)). Accordingly, in rats, punishment-resistant cocaine seeking has been associated with 

hypofunction of pyramidal neurons in PFC (180, 181). Likewise, experimental disruption of 

the prelimbic region of PFC increased punished responding for cocaine and sucrose (180, 

182, 183) and impaired the ability to withhold responding (184, 185), while optogenetic 

stimulation of prelimbic PFC decreased punished responding for cocaine in rats (180). 

Finally, in a mouse model of food addiction, continued responding for chocolate pellets 

despite footshock was associated with increased expression of dopamine D2 receptors in 

prelimbic PFC (186). Although some studies have shown that inhibition of medial PFC 

projections specifically to nucleus accumbens enhanced punished responding for chocolate 
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food and alcohol (186, 187), another showed that inhibition of this pathway reduced 

punished responding for alcohol (37). Therefore, further investigation is still necessary to 

determine the exact role of prelimbic PFC projections to dysregulated reward seeking.

While medial PFC may play an important role in top-down control over compulsive 

behavior, there is evidence that orbitofrontal cortex (OFC) may instead be associated with 

promoting compulsive behavior. In drug users tested after their last cocaine use or during 

craving, the OFC was hypermetabolic in proportion to the intensity of craving (188). 

However, gray matter reductions in OFC have been observed with obesity and cocaine 

addiction (189-191). In rats, methamphetamine self-administration despite footshock was 

associated with increased activity in an OFC-DMS circuit and decreased activity in a PL-

ventral striatum circuit (192). Similarly, in mice responding for optogenetic self-stimulation 

of dopamine neurons, continued responding despite footshock was associated with the 

strengthening of lateral OFC connections to dorsal striatum (193). Although repeated 

hyperstimulation of lateral OFC to dorsal striatum caused compulsive grooming behavior in 

mice (194), stimulation of medial OFC to ventral striatum suppressed compulsive grooming 

behavior (195), perhaps pointing to different roles for medial vs. lateral OFC.

Altogether, these data indicate that loss of control over habitual behavior plays an important 

role driving dysregulated consumption of food and drug rewards. Therapeutic treatment 

options will likely need to address how to restore flexible control over maladaptive habits. A 

recent study in humans explored ways to restore flexibility over habitual responding, using 

well-established associations between green/red and go/no-go, and found that introducing 

monetary reward to enhance motivation helped to disrupt the prepotent habitual responses to 

green/red colors (196). This type of performance-contingent feedback may be a useful tool 

in restoring goal-directed flexibility and may be a critical component underlying the success 

of contingency-management therapeutic programs (197, 198).

3.3 Enhanced incentive motivation from cues

Drug- and food-related cues have the capacity to elicit craving and increase consumption. 

It may be that people who are more susceptible to the motivational effects of cues have 

a higher risk of developing maladaptive patterns of consumption. Moreover, with repeated 

consumption it may be that drug and food cues acquire enhanced incentive salience through 

a classical conditioning process in vulnerable individuals, thus enabling and facilitating 

more problematic consumption patterns. In support of this, cocaine-associated stimuli have 

been shown to drive dopamine release in the dorsal striatum in individuals with cocaine 

addiction, and the level of cue-induced dopamine correlates with self-reports of craving 

(199). In rats that are susceptible to junk-food diet-induced obesity, enhanced cue-induced 

responding was observed even prior to the development of obesity, indicating that enhanced 

cue-driven motivation may be an important contributor to the development of obesity, 

rather than a consequence (26). These rats show lower expression of mu opioid receptor 

mRNA expression in striatal hedonic ‘hot-spots’, indicating that enhanced cue-induced 

‘wanting’ was not explained by enhanced sucrose ‘liking’. In comparison, a downregulation 

of striatal dopamine D2 receptor mRNA was observed following exposure to a junk-food 

diet regardless of the development of obesity (26).
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The nucleus accumbens is critically involved in the ability of reward-associated cues to exert 

a general motivational influence on responding (200). Neurons in the nucleus accumbens 

fire in response to such reward-associated cues that have acquired value through pairing 

with reward (201, 202), and PIT is affected by lesions of the core subregion (203). 

Accordingly, several studies have shown that neuroadaptations in the nucleus accumbens 

may underlie enhanced cue-driven reward seeking. Selectively-bred obesity-prone rats show 

enhanced cue-triggered food-seeking in a PIT task as compared to their obesity-resistant 

counterparts, and show increased expression of calcium-permeable AMPA receptors in the 

nucleus accumbens core (25). Similarly, increased expression of calcium-permeable AMPA 

receptors in nucleus accumbens has been shown to play a critical role in the incubation of 

cue-induced cocaine seeking after long-term withdrawal from cocaine self-administration 

(reviewed in (204, 205)), revealing parallels between the processes leading to obesity and 

addiction. In addition to triggering enhanced motivation, cue-induced activity in nucleus 

accumbens may drive stronger stimulus control of habitual responding, which is performed 

in response to conditioned stimuli. In support of this, contextual cues associated with 

methamphetamine or alcohol have been shown to enhance expression of habitual behavior 

(206, 207).

3.4 Gene expression changes in striatum

As highlighted in the sections above, there has been a significant shift towards modelling 

humanised addiction traits in animal models. This parallels a growing appreciation that 

vulnerability to dysregulated reward-seeking is multifactorial and engages distinct, albeit 

frequently-overlapping, circuits including systems that control goal-directed behavior, 

development of habits, motivation, value attribution and stress (155, 208, 209).

Studies employing addiction phenotyping using the 3-criteria model (described in detail 

in Section 2.1) (76) have primarily focused on hypothesis-driven mechanisms such as a 

loss or enhancement of synaptic plasticity in ventral striatum, or changes in dopamine 

receptor levels. For example, Kasanetz et al. (77) showed that long-term depression (LTD) 

is suppressed in the nucleus accumbens core of rats classified as 3-criteria animals. Brown 

et al.(6) showed a similar LTD impairment in rats prone to obesity, the extent of which 

predicted the degree of ‘addiction-like’ behavior observed towards highly palatable food. 

Moreover, trait impulsivity has been linked to increased propensity for the development of 

an ‘addiction’ phenotype to both cocaine (210) and food (211); impulsive animals display 

lower dopamine D2/3 receptor availability prior to cocaine self-administration and addiction 

phenotyping (212, 213), and changes in striatal dopamine receptor expression are linked 

with punishment-resistant food consumption in rats and obesity in humans (40, 214).

While these studies have identified a consistent pattern of dopamine signalling changes, 

how these changes manifest and are sustained across the addiction cycle including into 

withdrawal remains unclear. Furthermore, how changes affecting other neurotransmitter 

systems and associated signalling pathways is also an important consideration (215). 

Accordingly, the Dayas laboratory to assess gene expression changes in the dorsal and 

ventral striatum using a modified version of the 3-criteria addiction phenotyping procedure 

(216-220). These studies have primarily focused on genes involved in synaptic plasticity 
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(LTP and LTD) as well as dopamine signalling. An initial study reported significant 

suppression of gene expression in addiction-prone rats as compared to resilient animals 

in genes encoding activity-regulated-cytoskeletal protein (Arc), glyceraldehyde 3-phosphate 

dehydrogenase, dopamine receptor D1a, dopamine receptor D2, Gria1, Gria2, metabotropic 

glutamate receptor 1 (Grm1), metabotropic glutamate receptor 5 (GRM 5), mechanistic 

target of rapamycin (mTOR), phosphatidylinositol-3-kinase (PI3K), protein kinase C 

(PKC) and cGMP-dependent protein kinase II (PRKG2)(216). A notable feature of these 

findings was the similarity of gene expression changes in the dorsal and ventral striatum. 

Further, rather than large increases in gene expression, the data revealed a more subtle 

downregulation of gene expression. These findings are consistent with electrophysiological 

studies reporting a loss of LTP and LTD in parts of the striatum, most notably in nucleus 

accumbens. Indeed, Kasanetz et al. reported that only animals that were classified as 

vulnerable displayed enduring impairments in LTD (77).

To understand how these gene expression changes might be manifest and be sustained, 

Dayas and colleagues performed targeted qPCR for microRNA (miRNA) with known or 

predicted binding with candidate mRNAs. Specifically, these studies examined the role of 

non-coding regulatory miRNAs, which are~22 nucleotides in length and bind to the 3’ end 

of target mRNAs where they can act to inhibit translation and/or cause post-transcriptional 

gene silencing (221). Because of the importance of regulatory RNAs in synaptic plasticity, 

including regulation of mRNAs trafficked to synapses to control synaptic protein expression, 

miRNA expression profiles were assessed in the striatum of addiction-vulnerable versus 

resilient rats after the animals had completed a full ‘addiction cycle’, including testing 

for relapse-like behavior (219). These studies identified changes in ‘networks’ of miRNA 

involved in synaptic plasticity. Using bioinformatics, miR-431 was identified as a candidate 

for the regulation of the reductions in dorsal striatal Arc identified in a previous study (216); 

the expression of miR-431 was increased in the DMS and DLS of addiction-vulnerable 

animals, and luciferase assays revealed that miR-431 regulates Arc expression in vitro. 
miR-181a was also significantly increased in the DLS of addiction-vulnerable animals, and 

pathway analyses predicted likely interactions with molecules linked to Grm5 and calcium 

GluA2Rs. Finally, miR-101b was significantly increased in both the DLS and DMS, and is 

predicted to target addiction-relevant signalling pathways including MAPK1, PRKC, PP2a 

and genes encoding the guanine nucleotide-binding proteins.

In parallel studies using this addiction phenotyping model, Dayas et al. made more restricted 

striatal dissections, and found that expression of miR-212 in DMS was significantly lower 

in addiction-vulnerable animals post-relapse. Kenny and colleagues were the first to identify 

that miR-212 expression increased during extended access to cocaine self-administration 

–a model of loss of control over cocaine taking (222). They reported that viral-mediated 

over-expression of miR-212 in dorsal striatum during the drug-taking phase significantly 

reduced escalation of cocaine taking and returned pro-drug seeking molecular adaptations to 

control levels, whereas knockdown of miR-212 substantially increased cocaine consumption 

(222). To gain further insight into the biological significance of miR-212 changes across 

the addiction cycle, Dayas and colleagues applied a Bayesian modelling average approach, 

which integrated 23 separate drug-taking/seeking indices during early self-administration 

(e.g. burst responding, responding during non-drug available period, etc), to identify 
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relapse-prone rats early in the addiction cycle (i.e. prior to protracted abstinence) (220). 

Consistent with the original findings from Kenny and colleagues (222), miR-212 levels 

were increased in the DMS of vulnerable animals following self-administration, but not 

following extinction and relapse testing (220). Taken together these data suggest that 

miR-212 expression is increased during cocaine consumption to counteract drug-induced 

neuroadaptations, but over time, this protective mechanism is exhausted in addiction-

vulnerable individuals. Future work is needed to determine the consequences of miR-212 

alterations on electrophysiological properties and plasticity in the direct and indirect 

pathways of the basal ganglia. Answering these questions may guide the development of 

strategies to restore control over pathological habits wherever they emerge symptomatically, 

even beyond addiction.

These studies also identified that miR-137 displayed an opposite pattern of expression 

in the dorsal striatum compared to miR-212 of vulnerable animals post-relapse (220). 

Bioinformatics and functional analyses link miR-137 with synaptic plasticity relevant 

signalling pathways including LTD (223, 224). In preliminary studies, the Dayas lab 

has tested whether miR-137 gain of function affects addiction behaviors. Lenti-viral 

mediated over-expression of miR-137 in dorsal striatum had no major effect on levels of 

cocaine consumption but significantly increased indices of addiction including signaled 

non-drug-available levels of responding and cocaine-seeking under progressive ratio 

testing. Remarkably, relapse-like behavior, assessed 6 weeks after viral-transduction, was 

substantially increased by miR-137 over-expression. The focus now turns to understanding 

the cellular and molecular actions mediated by miR-137 to promote habit-based plasticity 

in the dorsal striatum. Of note, the role of miRNAs in dysregulated food-seeking behavior 

is, at present, entirely unexplored. Future research in this area would determine whether 

common changes in gene expression exist between maladaptive forms of reward-seeking for 

both drug and food.

Conclusions

Maladaptive patterns of reward seeking can emerge in a parallel manner for both food 

and drug rewards, and include binge-like intake, enhanced cue-driven seeking, continued 

use despite negative consequences, and excessive motivation. As reviewed here, there are 

likely multiple mechanisms that underlie these patterns of dysregulated reward seeking. 

Arguably, one of the main obstacles in identifying new therapeutic treatments is factional 

disagreements over the primary drivers of the maladaptive behavior that characterizes binge 

eating and substance use disorders. Here, we attempt to recognize, and encourage greater 

acceptance of, the multifactorial nature of addiction and to encourage future research to 

focus on commonalities in the underlying molecular/cellular substrates across drugs of abuse 

and non-drug rewards such as food.

An important factor emerging from recent research is the observation of significant 

individual differences in the risk for developing addiction-like behaviors in animals. Studies 

that determine riskvulnerable phenotypes across different stages of the addiction cycle 

are likely to reveal engagement of distinct brain circuits and molecular adaptations at 

temporally specific phases of the addiction cycle (e.g., binge/intoxification, withdrawal, and 
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relapse). Further, these studies are likely to reveal individual differences in the mechanisms 

underlying maladaptive behaviors, indicating that there are multiple pathways to developing 

dysregulated reward-seeking behavior. Understanding the circuits and mechanisms engaged 

across the addiction cycle and across individuals will be crucial to identifying therapeutic 

strategies designed to treat dysregulated reward seeking in binge eating and substance use 

disorders.
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Highlights

• Under certain circumstances, animals exhibit maladaptive patterns of intake 

for food and drugs

• We review recent animal models of stress exposure and intermittent access to 

rewards

• We also explore neural and behavioral mechanisms underlying dysregulated 

reward seeking
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