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Federated learning and differential 
privacy for medical image analysis
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The artificial intelligence revolution has been spurred forward by the availability of large-scale 
datasets. In contrast, the paucity of large-scale medical datasets hinders the application of machine 
learning in healthcare. The lack of publicly available multi-centric and diverse datasets mainly stems 
from confidentiality and privacy concerns around sharing medical data. To demonstrate a feasible 
path forward in medical image imaging, we conduct a case study of applying a differentially private 
federated learning framework for analysis of histopathology images, the largest and perhaps 
most complex medical images. We study the effects of IID and non-IID distributions along with the 
number of healthcare providers, i.e., hospitals and clinics, and the individual dataset sizes, using The 
Cancer Genome Atlas (TCGA) dataset, a public repository, to simulate a distributed environment. 
We empirically compare the performance of private, distributed training to conventional training 
and demonstrate that distributed training can achieve similar performance with strong privacy 
guarantees. We also study the effect of different source domains for histopathology images by 
evaluating the performance using external validation. Our work indicates that differentially private 
federated learning is a viable and reliable framework for the collaborative development of machine 
learning models in medical image analysis.

Deep neural networks have achieved and established state-of-the-art results in many domains. However, deep 
learning models are data-intensive, i.e., they often require millions of training examples to learn effectively. 
Medical images may contain confidential and sensitive information about patients that often cannot be shared 
outside the institutions of their origin, especially when complete de-identification cannot be guaranteed. The 
European General Data Protection Regulation (GDPR) and the United States Health Insurance Portability and 
Accountability Act (HIPAA) enforce guidelines and regulations for storing and exchanging personally identifiable 
data and health data. Ethical guidelines also encourage respecting privacy, that is, the ability to retain complete 
control and secrecy about one’s personal information1. As a result, large archives of medical data from various 
consortia remain widely untapped sources of information. For instance, histopathology images cannot be col-
lected and shared in large quantities due to the aforementioned regulations, as well as due to data size constraints 
given their high resolution and gigapixel nature. Without sufficient and diverse datasets, deep models trained on 
histopathology images from one hospital may fail to generalize well on data from a different hospital (out-of-
distribution)2. The existence of bias or the lack of diversity in images from a single institution brings about the 
need for a collaborative approach which does not require data centralization. One way to overcome this problem 
is by collaborative data sharing (CDS) or federated learning among different hospitals3.

In this paper, we explore federated learning (FL) as a collaborative learning paradigm, in which models can be 
trained across several institutions without explicitly sharing patient data. We study the impact of data distribution 
on the performance of FL, i.e., when hospitals have more or less data, and IID or non-IID data. We also show 
that using federated learning with additional privacy preservation techniques can improve the performance of 
histopathology image analysis compared to training without collaboration and quantitatively measure the pri-
vacy using Rényi Differential Privacy Accountant4. We discuss its benefits, drawbacks, potential weaknesses, as 
well as technical implementation considerations. Finally, we use lung cancer images from The Cancer Genome 
Atlas (TCGA) dataset5 to construct a simulated environment of several institutions to validate our approach.

Federated learning (FL).  Federated learning algorithms learn from decentralized data distributed across 
various client devices, in contrast to conventional learning algorithms. In most examples of FL, there is a central-
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ized server which facilitates training a shared model and addresses critical issues such as data privacy, security, 
access rights, and heterogeneity6. In FL, every client locally trains a copy of the centralized model, represented by 
the model weights ω, and reports its updates back to the server for aggregation across clients, without disclosing 
local private data. Mathematically, FL can be formulated as:

where f (ω) represents the total loss function over n clients, and fi(ω) represents the loss function with respect 
to client i’s local data. The objective is to find weights ω that minimize the overall loss. McMahan et al.6 introduced 
federated averaging, or FedAvg (Algorithm 1), in which each client receives the current model ωt from the server, 
and computes ∇ fi(ωt), the average gradient of the loss function over its local data. The gradients are used to 
update each client’s model weights using stochastic gradient descent (SGD) as ωi

t+1 ← ωt − η∇fi(ωt) according 
to the learning rate η. Next, the central server receives the updated weights ωi

t+1 ← ω
n∑

i=1

ni
n ω

i
t+1 , where n is t + 1 

from all participating clients and averages them to update the central model, t + 1 ← i = 1 n the number of data 
points used by client i. To reduce communication costs, several local steps of SGD can be taken before com-
munication and aggregation, however, this affects the convergence properties of FedAvg7.

Other methods for FL have also been proposed. Yurochkin et al.8 proposed a Bayesian framework for FL. 
Claici et al.9 used KL divergence to fuse different models. Much work has also been done to improve the robust-
ness of FL algorithms. Pillutla et al.10 proposed a robust and secure aggregation oracle based on the geometric 
median using a constant number of calls to a regular non-robust secure average oracle. Andrychowicz et al.11 
proposed a meta-learning approach to coordinate the learning process in client/server distributed systems by 
using a recurrent neural network in the central server to learn how to optimally aggregate the gradients from 
the client models. Li et al.12 proposed a new framework for robust FL where the central server learns to detect 
and remove malicious updates using a spectral anomaly detection model, leading to targeted defense. Most of 
the algorithms cannot be directly compared or benchmarked as they address different problems in FL such as 
heterogeneity, privacy, adversarial robustness, etc. FedAvg is most commonly used because of its scalability to 
large datasets and comparable performance to other FL algorithms.

Federated learning in histopathology.  FL is especially important for histopathology departments, as it 
facilitates collaboration among institutions without sharing private patient data. One prominent challenge when 
applying FL to medical images, and specifically histopathology, is the problem of domain adaptation. Since most 
hospitals have diverse imaging methods and devices, images from a group of hospitals will be markedly different, 
and machine learning methods risk overfitting to non-semantic differences between them. Models trained using 
FL can suffer from serious performance drops when applied to images from previously unseen hospitals. Sev-
eral recent works have explored applications of FL in histopathology, and grapple with this problem. Lu et al.13 
demonstrated the feasibility and effectiveness of FL for a large-scale computational pathology studies. FedDG 
proposed by Liu et al.14 is a privacy-preserving solution to learn a generalizable FL model through an effective 
continuous frequency space interpolation mechanism across clients. Sharing frequency domain information 
enables the separation of semantic information from noise in the original images. Li et al.15 tackles the problem 
of domain adaptation with a physics-driven generative approach to disentangle the information about model 
and geometry from the imaging sensor6.

Differential privacy.  While FL attempts to provide privacy by keeping private data on client devices, it 
does not provide a meaningful privacy guarantee. Updated model parameters are still sent from the clients 
to a centralized server, and these can contain private information16, such that even individual data points can 
be reconstructed17. Differential privacy (DP) is a formal framework for quantifying the privacy that a protocol 
provides18. The core idea of DP is that privacy should be viewed as a resource, something that is used up as infor-
mation is extracted from a dataset. The goal of private data analysis is to extract as much useful information as 
possible while consuming the least privacy. To formalize this concept, consider a database D, which is simply a 

(1)min
ω∈R

f (ω) with f (ω) =
1

n

n∑

i=1

fi(ω),
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set of datapoints, and a probabilistic function M acting on databases, called a mechanism. The mechanism is said 
to be (ε, δ)-differentially private if for all subsets of possible outputs S ⊆ Range(M) , and for all pairs of databases 
D and D′ that differ by one element,

When both ε and δ are small positive numbers, Eq. (2) implies that the outcomes of M will be almost 
unchanged in distribution if one datapoint is changed in the database. In other words, adding one patient’s data 
to a differentially private study will not affect the outcomes, with high probability.

The advantage of DP is that it is quantitative. It yields a numerical guarantee on the amount of privacy that 
can be expected, in the stochastic sense, where lower ε and δ implies that the mechanism preserves more privacy. 
The framework also satisfies several useful properties. When multiple DP-mechanisms are composed, the total 
operation is also a DP-mechanism with well defined ε and δ19. Also, once the results of a DP-mechanism are 
known, no amount of post-processing can change the (ε, δ) guarantee20. Hence, while FL alone does not guarantee 
privacy, we can apply FL in conjunction with DP to give rigorous bounds on the amount of privacy afforded to 
clients and patients who participate in the collaboration.

The simplest way to create a DP-mechanism is by adding Gaussian noise to the outcomes of a deterministic 
function with bounded sensitivity21. This method can be used in the context of training a machine learning 
model by clipping the norm of gradients to bound them, then adding noise, a process called differentially private 
stochastic gradient descent (DP-SGD)22. McMahan et al.23 applied this at scale to FL.

Differential privacy for medical imaging.  Past works have noted the potential solution DP provides for 
machine learning in the healthcare domain. Kaissis et al.1 surveyed privacy-preservation techniques to be used 
in conjunction with machine learning, which were then implemented for classifying chest X-rays and segment-
ing CT scans24,25. In histopathology, Lu et al.13 reported DP guarantees for a neural network classifier trained 
with FL, following Li et al.26. Their treatment involved adding Gaussian noise to trained model weights, however, 
neural networks weights do not have bounded sensitivity making their DP guarantee vacuous. A meaning-
ful guarantee would require clipping the model weights before adding noise. We propose the more standard 
approach of DP-SGD, which clips gradient updates and adds noise, for use in histopathology.

Multiple instance learning (MIL).  MIL is a type of supervised learning approach which uses a set of 
instances known as a bag. Instead of individual instances having an associated label, only the bag as a whole has 
one27. MIL is thus a natural candidate for learning to classify WSIs which must be broken into smaller repre-
sentations due to size limitations. Permutation invariant operators for MIL were introduced by Tomczak et al.28 
and successfully applied to digital pathology images. Isle et al.29 used MIL for digital pathology and introduced a 
different variety of MIL pooling functions, while Sudarshan et al.30 used MIL for histopathological breast cancer 
image classification. Graph neural networks (GNNs) have been used for MIL applications because of their per-
mutation invariant characteristics. Tu et al.31 showed that GNNs can be used for MIL, where each instance acts 
as a node in a graph. Adnan et al.32 demonstrated an application of graph convolution neural networks to MIL in 
digital pathology and achieved state of the art accuracy on a lung sub cancer classification task.

Method
Our proposed method (local to each client) consists of two steps, bag preparation and Multiple-Instance Learn-
ing (MIL). In the first step, we extract multiple patches from the full-resolution WSI and create a mosaic (set) 
of patches. In the second step, we formulate the representation learning of WSIs as a set learning problem by 
applying a MEM model, an attention based MIL algorithm proposed by Kalra et al.33. The MEM model is locally 
trained through DP-SGD to provide quantitative privacy bounds, and the local MEM models are centrally 
aggregated through FedAvg. In this section, we discuss the bag preparation step and MIL. An overview of the 
proposed method is visualized in Fig. 1.

Bag preparation.  A patch selection method proposed by Kalra et  al.35 is used to extract representative 
patches (called mosaics) from each WSI. A sample WSI and its mosaic is illustrated in Fig. 2. The steps involved 
in creations of a mosaic are: (1) removal of non-tissue regions using colour thresholding; (2) grouping the 
remaining tissue-containing patches into a pre-set number of categories through a clustering algorithm; and 
(3) randomly selecting a portion of all clustered patches (e.g., 10%) within each cluster, yielding a mosaic. The 
mosaic is transformed into a bag X = x1, ..., xn for MIL, where xi is the feature vector of the ith patch, obtained 
through a pre-trained feature extractor network. We use a DenseNet model for the feature extractor34. Each 
patch in the mosaic has size 1000 × 1000 pixels at 20× magnification (0.5 mpp resolution).

MIL method.  We used the MEM model proposed by Kalra et al.33 to get a single vector representation of 
all feature vectors of patches in a mosaic. MEM consists of memory units composed within a memory block. 
A memory block is the main component of MEM and produces a permutation invariant representation from 
a input sequence. Multiple memory blocks can be stacked together for modeling complex relationships and 
dependencies in set data. The memory block is made of memory units and a bijective transformation unit shown 
in Fig. 3. A memory unit transforms an input sequence into an attention vector. A higher attention value rep-
resents a higher “importance” of the corresponding element of the input sequence. Essentially, it captures the 
relationships among different elements of the input. Multiple memory units enable the memory block to capture 
many complex dependencies and relationships among the elements. Each memory unit consists of an embed-

(2)Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S] + δ.
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Figure 1.   The proposed federated learning algorithm to train a MEM model33 for WSIs (disease) classification 
among multiple hospitals. Each client in FL is represented by a blue rectangle. Each client, first transforms their 
local WSIs into mosaics (sets of representative patches). The patches in each mosaic are converted to feature 
vectors using a DenseNet model34. Finally the sets of feature vectors are classified using a MEM model. A shared 
central MEM model is trained using FedAvg6 among multiple clients (mimicking hospitals). Furthermore, 
DP-SGD22 is used for training the central MEM model with strict privacy bounds.

Figure 2.   Illustration of a sample WSI and its mosaic extracted using the approach in Kalra et al.35.
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ding matrix Ai that transforms a f-dimensional input vector x j to a d-dimensional memory vector ui j according 
to

where ρ is some non-linearity. The memory vectors are stacked to form a matrix Ui = [ui0, ..., uin] of shape (n d). 
The relative degree of correlations among the memory vectors are computed using cross-correlation followed 
by a column-wise softmax and then taking a row-wise average,

 
The pi is the final output vector (1 n) from the ith memory unit Ui, as shown in Fig. 3. The purpose of each 

memory unit is to embed feature vectors into another space that could correspond to a distinct “attribute” or 
“characteristic” of instances. The cross correlation of the calculated attention vectors highlights instances which 
are highly suggestive of those attributes. Memory vectors are non-normalized as the magnitude may play an 
important role during the cross correlation.

In summary, a memory block is a sequence-to-sequence model, i.e., it transforms a given input sequence 
X = x1, ..., xn to another representative sequence X̂ = x̂1, . . . x̂m . A memory block contains m memory units, each 
of which takes sequential data as an input and generates an attention vector. These attention vectors are subse-
quently used to compute the final output sequence. By design, the output sequence is invariant to element-wise 
permutations of the input sequence as needed for MIL.

Experiments and discussion
We validated the performance of FL for the classification of histopathology images using a simulated distributed 
environment and also using real-world hospital data. Previous studies have mostly experimented with a fixed 
number of clients having similar distributions of data1,13,36. Since real-world data is not necessarily IID, it is 
important to study the effect of non-IID data on the performance of FL, specifically FedAvg. Furthermore, we 
provide a privacy analysis of the method through the differential privacy framework, suggesting that FL can 
outperform non-collaborative training while maintaining a strong privacy guarantee.

In the first experiment series, we vary the number of clients, with each client representing one hospital. To 
make our simulated environment better approach the non-IID real-world data, each client can have a different 
number of patients and a different distribution of cancer sub-types. In the second experiment series, we calculate 
the privacy bound of differentially private FL using real-world hospital data. We used the available attributes 
in TCGA to divide the dataset across the tissue origin site (hospital) and created four client datasets as shown 
in Table 2.

(3)uij = ρ(xjAi),

(4)
Si = column-wise-softmax

(
UiU

T

i

)
,

pi = row-wise-average(Si).
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Figure 3.   Schematic of a MEM model used for the classification of WSI mosaics. X is an input sequence 
containing a number n of f -dimensional vectors. (a) The memory block is a sequence-to-sequence model 
that takes X and returns another sequence X̂ . The output X̂ is a permutation-invariant representation of X. A 
bijective transformation model (an autoencoder) converts the input X to a permutation-equivariant sequence C. 
The weighted sum of C is computed over different probability distributions pi from memory units. The hyper-
parameters of a memory block are (1) the dimensions of the bijective transformation h, and (2) the number 
of memory units m. (b) The memory unit has Ai, a trainable embedding matrix that transforms elements of X 
to a d-dimensional space (memories). The output pi is a probability distribution over the input X, also known 
as attention. The memory unit has a single hyper-parameter d, i.e. the dimension of the embedding space33 (* 
represents learnable parameters).
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Lung cancer dataset—LUAD vs LUSC classification.  Lung Adenocarcinoma (LUAD) and Lung Squa-
mous Cell Carcinoma (LUSC) are two main sub-types of non-small cell lung cancer (NSCLC) that account for 
65–70% of all lung cancers37. An automated classification of these two main sub-types of NSCLC is a crucial step 
to assist pathologists for more informed diagnoses37,38. We obtained 2580 hematoxylin and eosin (H&E) stained 
WSIs of lung cancer from TCGA​39, comprising about two TB of data. The images were split into two groups of 
1806 training, and 774 testing samples WSIs33. We transformed each raw image into a mosaic35, and then into a 
bag of features X using a pre-trained DenseNet34. From the data, we carried out two experiment series by vary-
ing the parameters of FedAvg, or by varying the data distributions across clients. These experiment series are 
discussed as follows.

Experiment series 1—effect of number of clients and data distributions.  We studied the effect of 
IID and non-IID distributions on the performance of FedAvg by randomly dividing the training images without 
replacement among different clients (hospitals). We also varied the number of clients (n) while keeping the total 
number of images fixed. IID data is generated by uniformly dividing each cancer sub-type, i.e. LUAD and LUSC, 
among different clients. For each cancer sub-type, a probability distribution is created by assigning a random 
value to each client and then dividing it by the total sum. Subsequently, images are divided among different cli-
ents by sampling from the probability distribution. FL achieves superior performance for both IID and non-IID 
distributions of data compared to non-collaborative training. FL performs comparably to centralized training 
for reasonably sized datasets (n = 4, 8). Results are summarized in Table 1 and Fig. 4. The number of training 
samples for each client model is in Fig. 5.

We compared the performance with and without FedAvg for each setting. In total we tested 16 experimental 
settings in Table 1. In each of the experiments, the server model trained using FedAvg outperformed the models 
trained using local client datasets, showing the advantage of collaboration. As the total dataset is divided into 
smaller partitions for more clients, both client and server model performances deteriorate. We used SGD opti-
mizer with learning rate = 0.01. The local epoch for each client was set to 1 and the server model was trained for 
250 communication rounds. We visualize the relative improvement of FedAvg in Table 1.

Table 1.   Evaluation on different data distributions. Centralized accuracy denotes the accuracy when the data 
is centralized. The accuracy without FL is the mean and standard deviation of accuracy values across multiple 
clients without any collaboration. The accuracy with FL is the mean and standard deviation of the central 
model trained at the end of FL evaluated on each client dataset.

Data distribution Number of clients n

Accuracy

Without FL With FL Centralized

IID

4 0.731 ± 0.03 0.824 ± 0.02

0.848 ± 0.02
8 0.620 ± 0.06 0.780 ± 0.05

16 0.570 ± 0.03 0.726 ± 0.06

32 0.527 ± 0.02 0.641 ± 0.09

Non IID

4 0.682 ± 0.10 0.824 ± 0.01

0.848 ± 0.02
8 0.561 ± 0.08 0.823 ± 0.05

16 0.524 ± 0.03 0.750 ± 0.06

32 0.520 ± 0.03 0.550 ± 0.20
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A
cc

ur
ac

y

1.0 1.0

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.0
4 8 16 32

Number of Clients

(a) IID Data

0.0
4 8 16 32

Number of Clients

(b) Non-IID Data

Without FL
With FL

A
cc

ur
ac

y

Figure 4.   Comparison of the mean accuracy across clients versus the accuracy of the central model trained 
with FL for the fabricated clients (not the real hospitals). The accuracy is computed on two types of data 
distribution settings across clients—IID and Non-IID.
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Figure 5.   Visualisation of IID and non-IID distribution of data among client models.
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Experiment series 2—real‑world setting.  In the second experiment series, we considered the effect of 
distributional differences from different source hospitals, and a requirement to preserve privacy. Histopathology 
images can differ greatly, among others depending on the staining and imaging protocols of the source hospital. 
We selected seven hospitals from the TCGA dataset, four to act as clients in FL, and an additional three to pro-
vide externally collected data for model robustness testing. The distribution of images by hospital is described in 
Table 2. For each of the four clients, we divided their available images in an 80:20 ratio for training and internal 
testing datasets, respectively. Then we combined the images from the remaining three hospitals into a single 
external validation dataset to study the effects of distributions shifts on FedAvg.

In this experiment, we use Differential Private Federated Learning (DP-FL) to ensure data privacy. Differential 
Privacy (DP) was not considered in experiment series 1 since the objective was to study the effects of data size, 
distribution, and the number of clients on the performance of distributed learning/federated learning in general. 
In experiment series 2, we compared the performance of privacy-preserving FL training with both centralized 
training and non-collaborative training. In the FL training, the four hospitals act as clients collaborating to train 
one central model. Performance is evaluated on each client’s internal test set, as well as the external validation set. 
For comparison, we train a single model on the combined (centralized) training datasets which gives an upper 
bound on what could be achieved in the absence of privacy regulations. Finally, in the non-collaborative setting 
each client hospital trains their own model on only their own training dataset. We used DP-SGD to train the FL 
and combined models and computed the privacy guarantees (ε, δ) using a Rényi DP accountant4. It was observed 
that the MEM model was sensitive to DP-SGD hyper parameters. We used a vectorized Adam optimizer40 with 
the following hyper-parameter values22: epochs = 180, training set size = 705, batch size = 32, gradient clipping 
norm = 1.0, Gaussian noise standard deviation = 4.0, number of microbatches = 32, learning rate = 2 × 10−5. Abla-
tion study is provided in the Table 3.

As shown in Table 4, FL training achieves strong privacy bounds (ε = 2.90 at δ = 0.0001) with better perfor-
mance than non-collaborative training, comparable to centralized training. This demonstrates that FL could 
be effectively used in clinical settings to ensure data privacy with no significant degradation in performance. 
Results are shown in Table 4. FedAvg achieves comparable performance to centralized training without explicitly 
sharing private data with strong privacy guarantees. Due to distribution shifts, accuracy decreases on external 
validation for both Federated Learning and centralized training. Therefore, we experimentally demonstrate the 
Federated Learning can be used for medical image analysis in real-world setting without explicitly sharing data, 
while achieving similar performance to centralized training with data sharing.

Conclusions
There is a vast reserve of knowledge in mass archives of clinical data held by hospitals which remains mostly 
untapped due to many confidentiality and privacy concerns. In this work, we proposed differentially private 
federated learning as a potential method for learning from decentralized medical data such as histopathology 
images. Federated learning allows training models without explicitly sharing patient data and thus mitigates 
some confidentiality and privacy issues associated with clinical data. Differential privacy supplements this with 
quantitative bounds on the amount of privacy provided. We demonstrated the efficacy of federated learning (Fed-
Avg) with simulated real-world data, using both IID and non-IID data distributions. Private federated learning 
achieves a comparable result compared to conventional centralized training, and hence it could be considered 
for distributed training on medical data.

Table 2.   Source hospitals for test/train and external dataset and their data distribution.

Dataset type Source hospital (clients) LUAD images LUSC images Total

Train/test

International Genomics Consortium 189 78 267

Indivumed 94 117 211

Asterand 90 117 207

Johns Hopkins 121 78 199

External

Christiana Healthcare 169 54 223

Roswell Park 35 75 110

Princess Margaret Hospital (Canada) 0 52 52

Table 3.   Ablation study of DP hyperparameters (gradient clipping and noise multiplier).

Gradient clipping Noise multiplier Privacy budget (ε) Test accuracy External accuracy

1.0 4 2.90 0.815 0.740

1.5 4 3.26 0.759 0.719

2.0 4 3.89 0.765 0.732

1.0 6.0 2.34 0.832 0.737

1.0 2.0 10.01 0.782 0.748
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Data availability
The publicly available dataset of 30,072 WSIs from TCGA​39 (Genomic Data Commons GDC) was used for 
conducting this study.
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