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Abstract
Sustainable agriculture demands the balanced use of inorganic, organic, and microbial biofertilizers for enhanced plant 
productivity and soil fertility. Plant growth-enhancing rhizospheric bacteria can be an excellent biotechnological tool to 
augment plant productivity in different agricultural setups. We present an overview of microbial mechanisms which directly 
or indirectly contribute to plant growth, health, and development under highly variable environmental conditions. The 
rhizosphere microbiomes promote plant growth, suppress pathogens and nematodes, prime plants immunity, and alleviate 
abiotic stress. The prospective of beneficial rhizobacteria to facilitate plant growth is of primary importance, particularly 
under abiotic and biotic stresses. Such microbe can promote plant health, tolerate stress, even remediate soil pollutants, and 
suppress phytopathogens. Providing extra facts and a superior understanding of microbial traits underlying plant growth 
promotion can stir the development of microbial-based innovative solutions for the betterment of agriculture. Furthermore, 
the application of novel scientific approaches for facilitating the design of crop-specific microbial biofertilizers is discussed. 
In this context, we have highlighted the exercise of “multi-omics” methods for assessing the microbiome's impact on plant 
growth, health, and overall fitness via analyzing biochemical, physiological, and molecular facets. Furthermore, the role 
of clustered regularly interspaced short palindromic repeats (CRISPR) based genome alteration and nanotechnology for 
improving the agronomic performance and rhizosphere microbiome is also briefed. In a nutshell, the paper summarizes the 
recent vital molecular processes that underlie the different beneficial plant–microbe interactions imperative for enhancing 
plant fitness and resilience under-challenged agriculture.

Keywords Rhizosphere microbiome · Nutrient acquisition · Phytohormonal modulation · Quorum quenching · Innate 
immunity · Genome editing

Introduction

Various abiotic (drought, cold, salinity, alkalinity, floods, 
and mineral imbalance) and biotic stresses (imposed by 
pathogenic fungi, bacteria, and nematodes) adversely 

affects plant growth, development, and yield. In addition 
to agronomic and plant breeding approaches, plant growth-
promoting microbes are also gaining attention for improving 
crop productivity under abiotic and biotic stresses. The use 
of plant-growth promoting microbes has been promoted as 

 * Ajinath Dukare 
 ajinath111@gmail.com

1 ICAR-Central Institute for Research on Cotton Technology 
(CIRCOT), Mumbai, Maharashtra, India

2 ICAR-Central Potato Research Institute (Regional Station), 
Udhagamandalam, Tamil Nadu, India

3 ICAR-Indian Institute of Soybean Research (IISR), Indore, 
Madhya Pradesh, India

4 ICAR-Directorate of Medicinal and Aromatic Plant Research, 
Anand, Gujarat, India

5 ICAR-National Institute of Natural Fibre Engineering 
and Technology, Kolkata, West Bengal, India

6 ICAR- Directorate of Onion and Garlic Research, Pune, 
Maharashtra, India

7 ICAR-Indian Institute of Wheat and Barley Research, Karnal, 
Haryana, India

8 Present Address: Ecophysiology of Plants, Faculty 
of Science and Engineering, GELIFES-Groningen Institute 
for Evolutionary Life Sciences, The University of Groningen, 
Nijenborgh 7, 9747 AG Groningen, The Netherlands

http://orcid.org/0000-0002-6488-4920
http://crossmark.crossref.org/dialog/?doi=10.1007/s13205-022-03115-4&domain=pdf


 3 Biotech (2022) 12:57

1 3

57 Page 2 of 33

one of the main strategies to alleviate such stresses as they 
can modulate host physiological and molecular responses 
to alleviate stress-induced cellular injuries. Plant micro-
environments, chiefly the rhizosphere and rhizoplane, are 
abundantly occupied by diverse soil microbial communities 
with varying functional aspects. The rhizosphere, which is 
the narrow zone of soil surrounding plant roots, can con-
sist of up to  1011 microbial cells per gram of root and more 
than 30,000 prokaryotic species (Bhardwaj et al. 2014). 
The rhizosphere microbiome includes all those microbial 
members, which colonizes the rhizosphere and are involved 
in the symbiotic, neutral and pathogenic interactions with 
the host plants. Plant-rhizosphere microbiome (PRM) 
interaction in the rhizosphere is two-directional, in which 
microbes also acquire nutrients from the carbon-rich com-
pounds released in the form of root secretions (Olanrewaju 
et al. 2019). The structural and functional abundance of 
rhizospheric microbes is mainly attributed to the root exu-
dates accumulated as rhizodeposits (Zhalnina et al. 2018). 
Rhizodeposits include substances leached from sloughed-off 
root cells, mucilages, volatiles, soluble lysates, and exudates 
(Weston et al. 2015; Musilova et al. 2016). Different organic 
(such as polysaccharides, monosaccharides, organic acids, 
amino acids, phytohormones, and phenolics) and inorganic 
compounds (water, ions, electrons, and ubiquitous H +) are 
the major components of rhizodeposits (Gupta et al. 2020). 
The successful establishment, effective root colonization, 
and benefits to plants by the specific microbiota mainly 
depend on the rhizodeposits (Schmidt et al. 2014; Weston 
et al. 2015; Musilova et al. 2016). Moreover, the pattern 
of organic compound utilization, chemotaxis behavior, and 
synthesis of proteins and lipopolysaccharides (LPSs) deter-
mine the fate of rhizosphere competence by specific microbe 
(Lugtenberg and Kamilova 2009). Rhizodeposit influences 
overall rhizospheric processes and stimulate interactive met-
abolic cross-talk, linking different biosynthetic pathways and 
networks in the successful PRM interactions.

The rhizosphere colonizing plant growth-promoting 
rhizobacteria (PGPR) is a viable option for increasing per-
formance and yield (Liu et al. 2020) under adverse environ-
ment. Upon rhizosphere colonization, PGPR triggers a broad 
array of biochemical, physiological, and molecular altera-
tions in host plants via activating numerous metabolism and 
development-linked metabolic pathways (Bharti et al. 2016). 
PGPR support the growth and resilience of crops via the 
acquisition of plant nutrients, a transformation of the una-
vailable soil nutrients to plants accessible form, curtailing 
pathogens activities, priming plant immunity via eliciting 
host defense pathways, and mitigation of abiotic and biotic 
stresses (Meena et al. 2017a, b; Gouda et al. 2018). Under 
abiotic stresses, many benefits offered by the diverse PGPR 
can be utilized by understanding the biochemical, molecu-
lar, and physiological facets involved in their root zone 

enrichment and favoring plant growth and fitness (Hassani 
et al. 2018). Henceforth, understanding the PRM interrela-
tionships and factors helpful in recruiting the useful micro-
biome have been a foremost researchable area for the last 
several years (Compant et al. 2019). A better perceptive of 
the dynamic interactions of the plant-microbiome-environ-
ment axis will smooth the progress of the knowledge-guided, 
precision-delivery of the plant microbiome to stimulate 
plant growth and health under a specific set of environ-
ments. Using recent genetic studies, including “multi-omic” 
approaches (metagenomics, transcriptomics, metaproteom-
ics, and metabolomics), high throughput sequencing (HTS), 
and next-generation sequencing (NGS), the functional and 
structural aspects of rhizosphere microorganisms have been 
elucidated (Meena et al. 2017a, b; Basu et al. 2018). Genome 
modification technologies like CRISPR/Cas9 have rapidly 
progressed and made it possible to acquire precise genetic 
information and decipher the molecular facet of PRM inter-
actions (Knott and Doudna 2018). The CRISPR/Cas9 tool 
could further help augment details of microbiome-mediated 
improved crop productivity, disease tolerance, and resilience 
(Zaidi et al. 2019).

With this background, the present review aimed to decode 
the critical mechanisms of PGPR and other plant beneficial 
rhizosphere microbiome enhancing plant growth and health 
and gain precise information on how these microbiome 
impacts plant development via modulation of host plants 
biochemical, physiological, and molecular responses under 
suboptimal growth conditions. Furthermore, we have also 
narrated the possible use of modern scientific tools such as 
CRISPR/Cas9-mediated genome modification and nanotech-
nology to improve the performance of the crop and associ-
ated beneficial microbiome, respectively.

Metabolites mediated signaling network 
and communication systems in the PRM 
interactions

Rhizosphere microbiome mediated signaling 
communication with host plants

Different signaling molecules of microbial origin initiate 
rhizosphere microbe to plant interactions. Microbially pro-
duced peptidoglycan, chitin, flagellin, exopolysaccharides 
(EPS), hormones, volatile organic compounds (VOCs), 
antibiotics, and extracellular enzymes are signaling mol-
ecules. These molecules are vital in establishing microbial 
interplay with the host plants via activation of complex 
metabolic pathways and gene regulatory networks (Romera 
et al. 2019). Microbial signaling molecules have an explicit 
and preserved chemical structure/pattern, termed microbe-
associated molecular patterns (MAMPs). The MAMPs are 
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recognized by plant pattern recognition receptors (PRRs). 
Subsequently, a host defense system gets elicitated via phy-
tohormonal (salicylic acid (SA), jasmonic acid (JA), and 
ethylene (ET)) based modulation of signaling cascade net-
work (Offor et al. 2020; Sharifi and Ryu 2018; Romera et al. 
2019. Among the MAMPs, flagellin, chitin, and EPS are the 
well-known signaling compounds ensuring their cross-talk 
with host plants (Jelenska et al. 2017; Lawrence et al. 2020; 
Kawaharada et al. 2015).

The EPS produced by PGPR aids in allowing mutual-
ity between nitrogen-fixing rhizobia with its host, e.g., the 
symbiosis of Mesorhizobium loti strain R7A with Lotus 
japonicus initiates only after the firm binding of EPS with 
the host receptor (Kawaharada et al. 2015). Further, rhizo-
bium unable to synthesize EPS cannot penetrate the root 
and form a nodule (Kawaharada et al. 2015). Accordingly, 
many strains of succinoglycan producing Sinorhizobium 
meliloti Rm1021 establish nodulation and symbiosis with 
alfalfa roots (Costa et al. 2018). Furthermore, the role of 
Nod and Myc factors (secreted by rhizobia and AM fungi, 
respectively) as signaling molecules in a symbiosis PRM 
interaction is well reported (Venturi and Keel 2016). Cer-
tain metabolites produced by PGPR are involved in inter-
species communication and ascertaining the intraspecific 
interplay. For instance, bacterial and fungal VOCs may alter 
root metabolism, physiological and hormonal pathways, and 
biomass production in the host plants via direct and indirect 
ways (Schulz-Bohm et al. 2017). The biosynthesis of cer-
tain VOCs relies on the GacS/GacA two-component regula-
tory system, as recently demonstrated in a few rhizobacteria 
(Cheng et al. 2016; Ossowicki et al. 2017). Rhizosphere col-
onizing and VOC (2, 3-butanediol) secreting Bacillus strain 
noticeably improves growth and development and primes 
innate immunity against the pathogen in Arabidopsis thali-
ana (Venturi and Keel 2016). Furthermore, many pathogen 
biocidal antibiotic compounds (such as diacetyl phloroglu-
cinol (DAPG), siderophore, cyanide, pyrroles, pyrrolnitrin, 
phenazines, quinolone and iturins, bacillomycin, fengycins, 
surfactins, and hydrolytic enzymes) indirectly promote 
plant growth via activation of phytohormonal based signal-
ing pathways (Navarro et al. 2019). Upon sensing microbial 
signaling molecules, host plants depict several biochemical 
and physiological responses such as cell wall lignifications, 
deposition of suberin, and callose in tissue (Mhlongo et al. 
2018). Likewise, microbially synthesized hormones may 
also function as plant signaling compounds. The findings 
of Salas-Marina et al. (2011) showed that root coloniza-
tion of A. thaliana by Trichoderma viride starts with the 
exchange of indole acetic acid (IAA)-related indole involved 
in the activation of systemic resistance against phytopatho-
gens. In brief, the findings of the above representative stud-
ies reveal the pivotal roles of various signaling metabolites 
in establishing intercommunication with the host plant. 

Following recognition and establishing a relationship with 
the specific microbe, host plants exhibit enhanced growth, 
metabolism, and development along with innate immunity. 
Such gathered information is pivotal in harnessing the PRM 
interaction in a beneficial way for agriculture.

Host plant mediated signaling interaction 
with rhizosphere microbes

The presence of vast microbial diversity in the rhizosphere 
indicates the potential role of phytosecretion in two-way 
PRM interactions. These phytochemicals selectively chemo-
attract the specific microbial group in the rhizosphere. Till 
now, the role of very few plant secreted compounds in alter-
ing the structural assemblage and functional aspects of the 
rhizosphere microbiome have been reported. Perhaps, the 
best-elucidated signaling network in PRM interplay is in 
legumes with N-fixing rhizobia. In legumes-rhizobia sym-
biosis, legume roots release flavonoid compounds (2-phenyl-
1,4-benzopyrone derivatives) that induce the transcription 
of rhizobial Nod factors genes. Nod genes encode lipo-
chitooligosaccharides (LCOs), a chitin core made up of β1, 
4 linked polymer of N-acetylglucosamine (GlcNAc), also 
known as nodulation factors (Rosier et al. 2018). Bacterial 
LCOs are perceived by the LysM receptor (lysin motif-
containing receptor-like kinase family) present in legume 
roots, which later stimulate a well-exemplified signal cas-
cade involved in the root nodulation (Rosier et al. 2018). 
Similarly, an LCO-kind signaling compound (Myc-LCOs) 
has been recently demonstrated in arbuscular mycorrhizal 
fungi (AMF) too. Notably, some roots exudate molecules 
may function as sensing signals for AMF. For example, str-
igolactones (SLs), a carotenoid-derivative phytohormone in 
rhizodeposits facilitate host plants mutualism with rhizobia 
and AMF (López-Ráez et al. 2017). Further, SLs may also 
modify root architecture, especially during phosphorus defi-
ciency, enhance lateral root branching, and improve nutrient 
accessibility (Andreo-Jimenez et al. 2015). More recently, 
the role of cutin monomeric units as a specific class of plant 
signaling molecule in their mutual interaction with AMF has 
been demonstrated. Two loci responsible for cutin monomer 
production, RAM1, which encodes a GRAS domain tran-
scription factor, and RAM2, which encodes an acyltrans-
ferase (both required for root colonization by AMFi), have 
been identified in mutants Medicago truncatula-AMF sym-
biosis studies (Venturi and Keel 2016). Some crop-specific 
phytochemicals can also substantially help recruit specific 
microbial groups in their rhizosphere. This phenomenon 
has been observed in specific crop-rhizosphere microbe 
interactions.

For instance, citric acid and fumaric acid released from 
cucumber and banana roots explicitly attracted Bacillus 
amyloliquefaciens SQR9 and B. subtilis N11, respectively 
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(Zhang et al. 2014). The heteroaromatic secondary metab-
olite benzoxazinoids secreted by maize roots favorably 
recruits unique bacterial and fungal genera in the rhizos-
phere (Cotton et al. 2019). In response to specific root exu-
dates such as arabinogalactan, PGPR indirectly benefits 
the host plant by controlling the root pathogens (Xie et al. 
2012). Apart from these, distinct plant metabolites may 
also function precisely in the legume-rhizobia symbiosis 
(Abdel-Lateif et al. 2012), AMF network branching and its 
expansion (Akiyama et al. 2005), biofilm formation (Yuan 
et al. 2015), and pathogen suppression (Liu et al. 2014). 
Therefore, we can conclude that the identification and per-
ception of plant signals by PGPR is the foremost step in 
establishing beneficial/harmful PRM interactions. Accord-
ingly, plants can be genetically altered to synthesize specific 
signaling compounds to recruit the valuable groups of PGPR 
in agriculture.

Microbe to microbe signaling network 
in the rhizosphere

Microbe to microbe signaling exchange and communica-
tion within the root microbiome community mainly occurs 
through the quorum sensing (QS) mechanism. QS-based 
intraspecific microbial interactions control the expres-
sion and regulation of specific gene functions in a popula-
tion density-dependent mode (Podile et al. 2008). The QS 
begins with the extracellular release of auto-inducers (act 
as signal molecules) into the surrounding environment. In 
Gram-negative bacteria, two components of the S regula-
tory system are transcriptional activator protein (R protein) 
and the autoinducer molecule (AI). Conversely, N-acyl 
homoserine lactones (AHLs) primarly function as AI in 
some other Gram-negative bacteria. The AI-2 is a boron-
containing universal QS signal molecule in diverse Gram-
negative and Gram-positive bacteria (Rosier et al. 2018). 
The AHL synthesizing organisms are primarily involved in 
root colonization, intra-kingdom communication system, 
and influencing root microflora (Lugtenberg and Kamilova 
2009). Few strains of gram-negative rhizobacteria, e.g., 
Burkholderia spp. and Stenotrophomona smaltophilia may 
communicate through Diffusible-signal factor (DSF) as a 
signaling compound (Ryan et al. 2015). Many Gram-positive 
bacteria residing in the root-soil zone use peptides as QS 
signaling molecules; these molecules probably perform dif-
ferent roles both at the intra- and interspecies communica-
tion level (Venturi and Keel 2016). Besides these, numerous 
fungi interact with bacterial species via the secretion of mul-
tiple QS molecules such as γ-butyrolactone, γ-hepta-lactone, 
farnesol tyrosol, and dodecanol (Bukhat et al. 2020). Besides 
the well-known role of QS molecules in microbial commu-
nication systems and gene expression regulation, they are 
also vital in the symbiotic PRM interactions, plant root and 

growth promotion, abiotic and biotic stress response, immu-
nity priming, and hormonal and related metabolic modu-
lation (Bukhat et al. 2020). Furthermore, they can modu-
late various phenotypic behaviors in rhizobacteria, such as 
rhizosphere competence, conjugation, biosynthesis of lytic 
enzymes, and secondary metabolites. Likewise, certain 
bacteria can quench auto-inducer signals produced by root 
pathogens, leading to their growth suppression and virulence 
inhibition (Morello et al. 2004).

The production of VOCs is a vital attribute of many 
microorganisms. They are usually small molecules 
(100–500 Da) such as alkenes, ketones, benzenoids, alco-
hols, aldehydes, terpenes). Microbial VOCs also play vital 
roles in microbe-microbe and plant–microbe interplay in 
the rhizosphere (Bitas et al. 2013). They act like chemical 
weapons by showing antimicrobial activity; otherwise, they 
can interfere and affect other QS-based communication sys-
tems (Bitas et al. 2013; Schmidt et al. 2015). Additionally, 
microbial VOCs can function as intra- and interspecies sig-
nals to coordinate gene expression and influence microbial 
behaviors such as virulence, biofilm formation, and stress 
tolerance (Bitas et al. 2013). Inter and intra communication 
network in rhizosphere microbiome-plant interaction has 
been given in Fig. 1.

Rhizosphere microbiome mediated enhanced 
plant health and resilience under abiotic and biotic 
stresses

Root and soil allied microbes provide essential host func-
tions that contribute directly to plant fitness, productivity, 
and resilience to biotic and abiotic stresses. Such micro-
biome, directly and indirectly, impacts plant performance 

Plant-microbe based signaling
Reshaping of rhizomicrobiome,
Stimulates helpful symbiosis, 

mutualism (PRRs, signal receptors)
Induction of desirables traits in 

rhizomicrobiome etc.,

Microbe-Plant signaling
Includes signal recognition 

(MAMP s), elicitation of host 
defense (SAR, ISR), alteration of 
plant gene expression, hormonal 

balance(SA, JA, ET) and 
activation of stress response 

Microbe-Microbes signaling in rhizosphere
QS molecules (AHLs, DSF, AL-2 peptides, pyrones) 

for population density based microbial 
communication, release of antimicrobial compounds, 

VOCs and phytohormones (IAA, cytokinins)

Rhizobium

Mycorrhiza

PGPR

PGPF

Fig. 1  Inter and intra communication network in rhizosphere microbi-
ome-plant interaction
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and productivity. Numerous plant-PGPR interactions and 
many benefits offered by rhizosphere inhabiting PGPR to 
host plants have been depicted (Fig. 2).

Rhizosphere microbiome enhancing the uptake 
of nitrogen (N)

In the environment, bioconversion of atmospheric N into 
plants usable ammonium  (NH4

+) is mediated by the nitro-
genase enzyme complex present in symbiotic and asso-
ciative mutualistic N-fixing microbes, called diazotrophs 
(Dellagi et al. 2020). Almost 70% of land N generated in 
 NH+

4 are derived from legume-rhizobia symbiosis and can 
provide up to 90% of N required by legume crops (Fowler 
et al. 2013; Lehnert et al. 2018). In addition, associative 
N-fixing bacteria also provide N nutrition to plant. The 
promising bacterial genera are Azotobacter, Pseudomonas, 
Azospirillum and Herbaspirilllum, Bacillus, Burkholderia, 
Achromobacter, Klebsiella, Gluconobacter, and Acetobacter 
(Saritha and Kumar 2019; Dellagi et al. 2020). Usually, the 
associative N fixers are less efficient in N fixation than leg-
ume root nodulating bacteria. However, their N fixing ability 
could be enhanced by genetic engineering (gene mutation 
or introgression of constitutive promoters) to regulate the 
production and secretion of  NH4

+ (Ambrosio et al. 2017), 
as reported in wheat (Santos et al. 2017).

Indirectly, rhizobacteria increase plant N bioavailability 
by modulating root surface area and morphology. In sup-
plying N, some rhizobacteria may alter the host root min-
eral uptake and translocation systems (Calvo et al. 2019). 
For instance, rhizosphere colonizing Bacillus activated the 
expression of genes implicated in  NH4

+ and nitrate  (NO3) 
assimilation in A. thaliana (Calvo et al. 2019). A substantial 
increase in the transcript levels of  NO3 transporters (NRT1 
and NRT2) and  NH4

+ transporter (AMT1), accompanied 
by elevated N absorption and plant growth, was observed. 
Biological N fixation and its uptake involve biochemical, 
molecular, and physiological components, especially under 
challenging environmental conditions. The specific role of a 
unique non-coding (nc) RNA molecule at the post-transcrip-
tional stage and modulation of numerous physiological pro-
cesses have been described (Fan et al. 2015). This ncRNA 
aids in the N-fixing activities of rhizobacteria under various 
abiotic conditions. Their presence in the bacterium Pseu-
domonas stutzeri A1501 had given insights into the regula-
tory pathways of the dinitrogenase enzyme complex under 
a challenging environment (Zhan et al. 2016). The ncRNA 
present in the core bacterial genome (NfiS) modulates the 
expression of different gene clusters, including nitrogen-
fixing genes (nif). NfiS trigger the expression of regulatory 
cascade genes such as global nitrogen activator (RpoN), 
RNA polymerase sigma factor (RpoS), nif-specific activa-
tor (NtrC), and transcriptional promoter of all nif operons 

Fig. 2  Schematic diagram 
showing plant-beneficial micro-
biome interactions and key 
benefits offered by rhizosphere 
colonizing microbiome to the 
host plants. Plant associated 
microorganisms directly or 
indirectly contribute to plant 
growth and support mainly 
through (A) acquisition of 
nitrogen (N) via its biological 
fixation and mineralization of 
organic sources, (B) supply of P 
nutrition through solubilization 
and mineralization of soil P, (C) 
production of phytohormones 
and stress-responsive growth 
hormones, (D, E) direct growth 
suppression of phytopathogens 
and activation of host defense 
system, and (F) production of 
siderophore for the acquisition 
of soil iron and competitive sup-
pression of plant pathogens
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(Nif A) genes and post-transcriptional regulation of dini-
trogenase nifK mRNA (Zhan et al. 2016). Besides, several 
other rhizobial genes include groEL (heat shock protein), 
otsA (trehalose-6-phosphate synthase), clpB (chaperone), 
and rpoH (transcriptional regulator), which function in the 
survival, stress tolerance, and symbiosis with a legume (da-
Silva et al. 2017). Several vital genes encoding heat shock 
proteins (HSPs) were identified in Bradyrhizobium japoni-
cum and S. meliloti induced legume root nodules. Under 
water-deficit stress, gene MtCAS31 (Medicago truncatula 
cold-acclimation-specific 31), protecting the leghemoglobin 
MtLb120-1 from thermal denaturation, was only found in 
M. truncatula root nodules and was absent in the mutant 
genotype (Li et  al. 2018b). Rhizobia with altered gene 
functions for specific genes show improved N fixing abil-
ity and host plants' survival under harsh agro-environment 
conditions. Tsyganov et al. (2020) reported that expression 
of metallothionein genes (PsMT1 and PsMT2) from pea in 
Rhizobium leguminosarum improved tolerance to Cd tox-
icity and nodules development. Symbiotic N fixation by 
salt loving rhizobia is pivotal in balancing plant requisite 
for N under salt stress conditions. Salt-tolerant PGPR such 
as Bradyrhizobium sp., actinomycetes sp., and soil bacilli 
(Bacillus and Paenibacillus graminis) accelerate the activity 
of enzymes linked with glutamine synthetase/glutamine oxo-
glutarate aminotransferase (GS/GOGAT) pathways (required 
for the integration of  NH4 + into amino acids) under salt 
stress (Santos et al. 2018). Under apigenin (flavonoid) and 
salt stress, the proteome profile of Rhizobium tropici CIAT 
899 revealed the molecular responses with the identifica-
tion of several candidate proteins associated with bacterial 
adaptation to environmental conditions and nodulation pro-
cess (Maximiano et al. 2021). Several proteins implicated in 
N compound transport and metabolism appeared differen-
tially plentiful, emphasizing the ability of these stresses to 
stimulate metabolic changes favoring the establishment of 
favorable PRM association.

Usually, heavy metals hamper legume growth, rhizobial 
nodulation, dinitrogenase activity, and N fixation perfor-
mance (Fagorzi et al. 2018). The presence of heavy metals 
(Cu(II) and Zn(II)) reduced dinitrogenase activity and nod-
ule formation in Medicago lupulina. In contrast, whereas 
co-inoculation of M. lupulina with Rhizobium radiobacter 
and Ensifer meliloti mitigated heavy metal stress and con-
siderably improved dinitrogenase activity and plant bio-
mass (Jian et al. 2019). Many PGPR, including rhizobium 
strains, depicts different levels of tolerance to several abiotic 
stresses. For example, several PGPR strains (Rhizobium spp. 
strain UFSM-B74, Bradyrhizobium spp. strains UFSM-B53 
and UFSM-B54, and Burkholderia spp. strain UFSM-B33/
UFSM-B34) isolated from Macroptilium atropurpureum and 
Vicia sativa are tolerant to alkaline (pH = 9.0) and acidic 
(pH < 3.0) (Ferreira et al. 2018). These strains also show 

differentially tolerance capacity to high metal concentrations 
in the order of Cr > Cd > Zn > Ni > Cu. Recently, the role of 
legume plants specific protein in a symbiotic relationship 
with the rhizobium, especially under abiotic stress condi-
tions, has been demonstrated. Using genome-wide analysis 
and expression profiling, Boubakri et al. (2021) revealed 
the presence of distinctive isoforms of H-type thioredoxins 
(Trxs) family proteins in Phaseolus vulgaris (Pv), associated 
with symbiotic N-fixing performance of Rhizobium galli-
cum 8a3 and abiotic (salt and oxidative) stresses response. 
RT-qPCR analysis showed that PvTrxh genes were highly 
expressed in the nodule primordium (NP) during nod-
ule organogenesis. Moreover, specific PvTrxh isoforms 
(PvTrxh3 and h5) were highly upregulated in inoculated 
plants and their expression patterns in NP correlated posi-
tively with N-fixing efficiency. On the contrary, distinctive 
PvTrxh isoforms were upregulated in plant leaves under salt 
and drought stress (Boubakri et al. 2021).

Rhizosphere microbiome in the supply 
of phosphorous nutrition

Many PGPR can convert different unaccessible forms of 
soil P to the plant-available forms through the solubiliza-
tion and mineralization process. Inorganic sources of soil 
P(iP) are solubilized by the species of Achromobacter, Agro-
bacterium Azotobacter, Beijerinckia, Bacillus, Burkholde-
ria, Erwinia, Flavobacterium, Microbacterium, Rhizobium, 
Pseudomonas, Serratia, and fungi (Aspergillus, Penicillium, 
Fusarium, Chaetomium, and Cephalosporium) (Sharma 
et al. 2013; De Boer et al. 2019). In solubilizing iP, rhizo-
bacteria discharge proton H + to their outer surface for cation 
uptake (Rodríguez and Fraga 1999). They can also release 
extracellular organic acids (acetic, lactic, isobutyric, oxalic, 
citric, succinic, gluconic acid, and 2-ketogluconic acid) 
(Zhao and Zhang. 2015; Naraian and Kumari 2017). Once 
diffused exterior to the cell surface, the carboxyl (COOH) 
and hydroxyl (OH) residue solubilize iP by providing metal-
binding proton and anion (Chhabra et al. 2013).

In bacteria, the pyrroloquinoline quinone (PQQ), a cofac-
tor of the glucose dehydrogenase enzyme (Ge et al. 2015; 
Chen et al. 2016), is encoded by the pqq operon. The pqq 
operon consisting of core genes (such as pqqA, pqqC, pqqD, 
and pqqE) are vital for the bacterial P solubilizing ability 
(Li et al. 2014; Oteino et al. 2015; An and Moe 2016). iP 
solubilization involves the differential expression of numer-
ous microbial genes. Through transcriptomic analysis, Zeng 
et al. (2017) demonstrated that the 46 genes linked with cell 
growth and P-solubilization in Burkholderia multivorans 
WS-FJ9 was differentially regulated in response to different 
levels of external P. Particularly, genes encoding glycerate 
kinase (linked with glucose metabolism), 2-oxoglutarate 
dehydrogenase (involved in organic acids production), and 
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histidine protein kinase PhoR (implicated in the signaling 
process) were overexpressed under P deficiency (Zeng et al. 
2017). Stress-tolerant PGPR effectively solubilizes P and 
improves plants health by modulating gene regulation pro-
files under adverse growth conditions. Upon inoculation, 
the salt-tolerant P solubilizing PGPR Pseudomonas kore-
ensis MU2 upregulated the salt-responsive genes (GmST1, 
GmSALT3, and GmAKT2) in soybean plants (Adhikari et al. 
2020). Bacterial inoculation leads to the improved P and 
silicate (Si) uptake, antioxidant system, and salt stress toler-
ance by lowering the  Na+ ion influx by 70% and increasing 
 K+ uptake by 46%. Bacteria can also enzymatically convert 
soil organic P into iP during the mineralization process. 
Under salinity stress, some PGPR strains can modulate the 
expression of certain key genes related to phosphate trans-
port and improve  PO4 in host plants (Mishra et al. 2021). In 
salt-tolerant PGPR, genes related to organic acid produc-
tion and phosphatase activity were over-expressed, leading 
to the increased solubilization of iP. For instance, inocu-
lation of the bacterium Pseudomonas putida MTCC 5279 
showed enhanced acidic phosphatase activity under salinity 
and P-starved conditions (Srivastava and Srivastava, 2020).

The soil P mineralization is chiefly catalyzed by (a) non-
specific acid phosphatases, predominantly represented by 
acid and alkaline phosphatases (phosphomonoesterases), 
which hydrolyze phosphodiester and phosphoanhydride 
bonds, (b) phytases (Myo-inositol hexakisphosphate phos-
phohydrolases), capable of converting phytate into iP frac-
tion, and (c) C–P lyases and phosphonatases, able to slice 
C–P bond of organophosphonates (Sharma et al. 2013; Jain 
and Sapna 2016; Alori et al. 2017). Certain strains of Enter-
obacter, Serratia Citrobacter, Rhizobium, Pseudomonas, and 
Proteus are potent phytase producers (Kumar et al. 2016). 
Using genetic engineering, phytase encoding genes were 
overexpressed in a few roots colonizing proteobacteria to 
mineralize orthophosphate from phytate and make it avail-
able for growth of the A. thaliana plants (Shulse et al. 2019). 
The study concluded that DNA synthesis strategy could be 
helpful to design PGPR strains with novel P-metabolizing 
capabilities. Phosphatase synthesizing phosphobacteria, i.e., 
Klebsiella spp. strain RC3 and RCJ4, Stenotrophomonas 
spp. RC5, Enterobacter spp. RJAL6 and Serratia spp. RCJ6 
can effectively provide P nutrition and support plant growth 
under P deficiency and aluminum toxicity conditions (Barra 
et al. 2018). In addition to PGPR, the particular rhizobial 
strain also solubilizes unavailable soil iP for plant uptake. 
In addition, bacteroids formed in root nodules also require P 
for their metabolism. The high-affinity phosphate transporter 
PstSCAB is well-known for enhancing the symbiotic effi-
cacy of the Sinorhizobium fredii-soybean (Hu et al. 2018). 
Under the P-starvation conditions, phoCDET genes encode 
the ABC-type transport system in Sinorhizobium meliloti, 
leading to enhanced uptake of iP and increased N fixation 

activity (Jaiswal et al. 2021). In P-limited soils, rhizobia 
solubilize soil iP via production of gluconic acid under the 
control of the PQQ genes (Yadav et al. 2020). In rhizobia, 
the gene gcd encoding quinoprotein glucose dehydrogenase 
(PQQGDH) is crucial for the release of organic anions to 
solubilize iP (Jaiswal et al. 2021). Thus, given the central 
roles of P in both plant and rhizobacterial metabolism, 
screening for P-solubilizing traits in N-fixing rhizobia can 
be a rational approach for mitigating the adverse effects of 
P stress on plants.

Improved soil potassium and minor plants nutrients 
by rhizospheric microorganisms

Several rhizosphere microorganisms facilitate plant uptake 
of soil K. Bacterial species such as Bacillus mucilaginosus, 
Bacillus edaphicus, Pseudomonas spp. Acidothiobacillus 
ferrooxidans, Bacillus circulans, Paenibacillus spp., and 
Burkholderia spp. are well recognized K solubilizing bac-
teria (KSB) (Sheng 2005; Liu et al. 2012). As discussed 
by Etesami et al. (2017), KSB solubilizes soil K mineral 
by different mechanisms, including: (i) lowering the pH, 
(ii) increasing chelation of the cations bound to K mineral, 
and (iii) acidolysis of the nearby area. Rhizosphere inhab-
iting KSB modulates host plants' molecular, biochemical, 
and physiological aspects, especially under challenging 
conditions. Recently, KSB solubilizing and other plant 
growth-promoting (PGP) traits holding bacterium Bacillus 
amyloliquefaciens B11 improved chlorophyll, sugar, amino 
acid, SA, proline, and antioxidant activities of pepper plants 
under salinity and drought stress (Kazerooni et al. 2021). 
Furthermore, differential gene expression was observed, 
including the up-regulation of XTH genes and downregula-
tion of WRKY2, PTI1, BI-1, and binding immunoglobulin 
protein (BiP) genes. Using growth characteristics, enzyme 
activity, and gene expression analysis, Feng et al. (2019) 
revealed the positive impacts of KSB and photosynthetic 
bacterial inoculation on the superior performance of anti-
oxidant enzymes and their expression related genes (SOD, 
CAT, APX, and PPC) in maize plants under salinity stress. 
These results indicate that these bacteria can effectively 
increase maize productivity in saline-alkali soil (Feng et al. 
2019).

Besides, soil microbes also make bioavailability of other 
trace elements such as iron (Fe), zinc (Zn), sulfur (S), and 
Si to the plants (Adesemoye et al. 2009; Hafeez et al. 2013). 
Microbially produced iron-chelating siderophores, glu-
conate, or the derivatives of gluconic acids, e.g., 2- keto-
gluconic acid, 5-keto-gluconic acid, and other organic acids 
facilitate the mineralization of these minor elements (Tariq 
et al. 2007; Saravanan et al. 2011). The siderophore-medi-
ated uptake of Fe is the most encountered mode adopted by 
rhizobacteria in supplying soil Fe to plants (Kramer et al. 
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2020). Microbial siderophores such as enterobactin, pyo-
verdine, and ferrioxamines (produced by bacteria), and fer-
richrome (produced by fungi) chelates ferric ion  (Fe3

+) and 
reduce it to the soluble ferrous ion  (Fe2

+) inside the cyto-
plasm. The siderophore pyoverdine-producing bacterium, 
Pseudomonas fluorescens C7R12, regulates the expression 
of about 2000 genes associated with Fe acquisition, growth, 
and priming host immunity in A. thaliana (Trapet et al. 
2016). Gene expression profile revealed that the several Fe 
uptake linked genes were up-regulated. Converselly, host 
defense-related several genes such as transcription factors 
ERF, MYB, WRKY, SA gene (such as AT5G24210, encoding 
lipase class 3 family protein), and an abscisic acid (ABA)-
related gene, encoding lipid transfer protein LTP3, were 
down-regulated (Trapet et al. 2016). Several PGPR can boost 
the nutrient availability and mineral density in the edible 
portion of the crop. As reported by Sathya et al. (2013), 
19 different PGP actinobacteria drastically increased seed 
mineral density for Fe, Zn, calcium (Ca), Cu, manganese 
(Mn), and magnesium (Mg) in chickpeas. The qualitative 
RT-PCR analysis revealed that the increased mineral con-
centrations were possibly due to the synthesis of microbial 
siderophore, as genes encoding siderophore were highly 
expressed (up to 1.4 to 25-fold). Soil microbiome also trig-
gers nutrient uptake and transport in the plants. The crucial 
roles of the mineral transporters system in the translocation 
of soil nutrients from shoot to grains have been reported. 
For example, Zn-and Fe regulated transporters like family 
proteins (ZIP), mainly concerned with the Zn and Fe-regu-
lated transporter (ZRT/IRT), translocate these micronutrients 
in wheat (Evens et al. 2017), maize (Xu et al. 2010), and 
rice (Ishimaru et al. 2005). Using the qRT-PCR approach, 
the role of Zn-solubilizing bacterium Enterobacter cloa-
cae ZSB14 on the modulation of genes encoding ZIP in 
rice under Fe toxicity and poor conditions was revealed 
(Krithika and Balachandar 2016). Following bacterial inocu-
lation, OsZIP1 and OsZIP5 genes were up-regulated, while, 
OsZIP4 gene was down-regulated, leading to the assimila-
tion and metabolism of Zn in the plant shoots and roots. 
Similarly, under Zn deficiency, inoculation of barley with 
roots colonizing AMF, Rhizophagus irregularis significantly 
and consistently up-regulated expression of the HvZIP13 
gene encoding ZIP transporters in the roots (Watts-Williams 
and Cavagnaro 2018). Subsequently, positive regulation of 
this gene resulted in the augmented uptake of Zn in grain 
and straw. Legume crops also benefit from the microbiome 
facilitated enhanced mineral uptake. Gopalakrishnan et al. 
(2016) demonstrated the potential of different rhizobacte-
rial strains such as Pseudomonas plecoglossicida SRI-156, 
Brevibacterium antiquum SRI-158, Bacillus altitudinis SRI-
178, Enterobacter ludwigii SRI-211, E. ludwigii SRI-229, 
Acinetobacter tandoii SRI-305, and Pseudomonas monteilii 
SRI-360 in improving accessibility of minerals in chickpeas 

and pigeon pea. Following inoculation, legume grains exhib-
ited improved mineral contents, e.g., Zn (up to 23 and 5%), 
Fe (up to 18 and 12%), Ca (up to 22 and 11%), copper (up 
to 19 and 8%), and Mn (up to 2 and 39%) in chickpea and 
pigeon pea, respectively. These studies sum up the functions 
of various PGPR in the bioaccessibility of numerous soil 
nutrients to the plants. These findings could assist in the 
design and development of microbial inoculants to alleviate 
the nutrient deficiency of soil and plants.

Rhizosphere microbiome mediated phytohormones 
production and plant growth regulation

Diverse rhizosphere microbiome synthesizes key phyto-
hormones to support plant growth, metabolism, and overall 
development. Different phytohormones directly modulate 
cellular, biochemical, physiological, and morphological 
processes involved in plant development (Shah and Dav-
erey 2020).

Auxins

Among the phytohormones, auxins represent one of the 
most predominantly occurring and recognized hormones. It 
is well known that the IAA/auxin as phytohormone is pro-
duced by almost 80% of the rhizosphere inhabiting PGPR. 
Among PGPR, Azospirrilum spp., Azotobacter spp., Aero-
monas spp., Burkholderia spp., Enterobacter spp., Pseu-
domonas spp., and Rhizobium spp., are the main PGPR 
capable of IAA synthesis (Hariprasad and Niranjana 2009; 
Rajkumar et al. 2012; Park et al. 2017a, b). IAA is synthe-
sized from the tryptophan (as a precursor molecule via the 
tryptophan-independent pathway (Spaepen and Vanderley-
den 2011); primarily utilize the indole-3-pyruvate (IPyA) 
pathway (Ma et al. 2011). In the IPyA pathway, the indole-
3-pyruvate decarboxylase enzyme converts IPyA to the 
indole-3-acetaldehyde, an intermediate precursor of IAA. 
In addition to IAA, some PGPR may deliver more than one 
kind of growth modulation compound to their host plant, 
e.g., indole-3-lactic acid, indole-3-acetaldehyde, indole-
3-acetamide, and indole-3-ethanol (Spaepen and Vander-
leyden 2011; Patten et al. 2013).

Usually, plants synthesize IAA/ auxin when exposed 
to different environmental signals such as temperature, 
heavy metals, and pathogen infection (Zhao 2018). To 
enhance the drought response, auxins modulate the ROS 
metabolism, root structure, metabolic equilibrium, and sev-
eral ABA-responsive genes (such as DREB2A, DREB2B, 
RD22, RD29A, RD29B, and RAB18) (Shi et al. 2014). In 
recent studies, Zhang et al. (2020a, b) demonstrated that 
exogenous IAA treatment significantly mitigated drought 
stress in white clover via differential expression profile of 
auxins and drought-linked genes. For instance, smoisture 



3 Biotech (2022) 12:57 

1 3

Page 9 of 33 57

deficit stress-linked several genes (bZIP11, DREB2, MYB14, 
MYB48, WRKY2, WRKY56, WRKY108715, and RD22) and 
auxin-responsive genes (GH3.1, GH3.9, IAA8) were upregu-
lated, while genes responsible for leaf senescence (SAG101 
and SAG102) and auxin responding (GH3.3, GH3.6, IAA27) 
were down-regulated (Zhang et al. 2020a, b). Further, auxins 
upregulate the expression of IAA8 that is responsible for the 
formation of the lateral roots, and downregulate the expres-
sion of the Sl-IAA27 gene implicated in growth and root 
developmental activity. Auxin-responsive gene TaSAUR75 
enhances the expression of genes AtRD26 and AtDREB2, 
which are crucial in plant growth and development during 
moisture-stressed conditions (Guo et al. 2018). Briefly, auxin 
is involved in the abiotic stress mitigation via activation of 
other stress-linked hormones and the production of ROS.

Certain rhizobacteria can sufficiently synthesize IAA 
by utilizing its precursor molecules from root exudate 
compounds accumulated in the rhizosphere. As reported 
by Liu et al. (2016), cucumber rhizosphere bacterium B. 
amyloliquefaciens SQR9 produced bountiful IAA by uti-
lizing rhizodeposit tryptophan and offered benefits to host 
plants. Further, the tryptophan transport (Csa024547) and 
IAA biosynthesis genes were over-expressed in the host 
plant (Liu et al. 2016). The elevated level of IAA exerts 
stimulating effects on the growth, biomass, and yield in 
many crops under normal as well stressed conditions, e.g., 
wheat growth promotion by B. licheniformis HSW-16 under 
salt (Singh and Jha 2016) and similarly by Enterobacter spp. 
strain NIASMVII (Sorty et al. 2016) increased biomass in 
Trifolium repens by Pseudomonas putida and Bacillus mega-
terium (Marulanda et al. 2009), and grain yield in chick-
pea by Serratia spp. (Zaheer et al. 2016). Furthermore, 
IAA synthesizing PGPR may elicit a plant defense system 
to alleviate the abiotic stress-induced adverse effects. As 
observed in Vinca rosea plants, the IAA-synthesizing bac-
terium, B. megaterium, promote plant growth and ameliorate 
nickel stress through activation of metabolic biosynthesis 
pathways related to antioxidative enzymes (catalase (CAT), 
superoxide dismutase (SOD), peroxidase (PO), and ascor-
bate peroxidase (APO), phenolics, and flavonoid (Khan 
et al. 2017). Along with IAA, salt-tolerant, organic acid, 
and EPS producing PGPR strains, Bacillus aryabhattai 
ALT 29, and Arthrobacter woluwensis ALT43 mitigated 
the salinity stress and increased plant growth, chlorophyll, 
and biomass in soybean under NaCl (80 mM, 160 mM, and 
240 mM) stress (Khan et al. 2021). Overall improvement 
in plants performance was due to regulation of endogenous 
phytohormones, antioxidants, ion uptake, and gene expres-
sion (GmFLD19 and GmNARK) under salinity (Khan et al. 
2021). The synthesis of auxin/IAA is a familiar trait in many 
Rhizobium species. Rhizobia alters the concentration of 
auxins in the roots and nodules, thereby leading to strong 
alterations in the root system structure, such as improved 

growth and the number of lateral roots. These structural root 
alterations may influence root nodulation and nodulation 
efficiency under normal as well as stressed environments 
(Concha and Doerner, 2020). A recent study by Tulumello 
et al. (2021) showed that rhizobium bacterium Rhizobium 
alamii GBV030 promote plant growth and minimize the 
adverse effects of moisture stress on rapeseed growth. Phy-
tostimulation by rhizobium is possibly due to the synthesis 
of phytohormones, regulating the hormone balance of the 
host plant, or the production of biomolecules improving the 
plant availability of soil nutrients (Olenska et al. 2020).

Cytokinins

Cytokinins are another class of phytohormones synthesized 
by many soil microbiomes. The prominent bacteria synthe-
sizing cytokinins are Azotobacter spp., Rhizobium spp., Pan-
toea agglomerans, Rhodospirillum rubrum, P. fluorescens, 
Bacillus subtilis, and Paenibacillus polymyxa. On average, 
almost 90% of rhizobacteria produces cytokinin-like plant 
growth stimulatory compound in vitro. Several bacteria 
colonizing roots of Coleus forskohlii, such as Pseudomonas 
stutzeri MTP40, Pseudomonas putida MTP50, and Steno-
trophomonas maltophilia MTP42 secrete plant growth-
promoting cytokinin molecules (Patel and Saraf 2017). The 
exact modes of cytokinin biosynthesis in bacteria are not 
precise. However, the crucial role of isopentenyl transferase 
(encoded by an ipt gene) in the cytokinin biosynthesis path-
way is reported. This enzyme converts isopentenyl moiety 
from dimethylallyl diphosphate (DMAPP) to adenosine 
monophosphate (AMP), an initial step in cytokinin bio-
synthesis. Bacteria can also initiate cytokinin synthesis by 
transferring isopentenyl moiety from 1-hydroxy-2-methyl-
2(E)-butenyl 4-diphosphate (HMBDP) to AMP (Wong et al. 
2015).

In A. thaliana plants, cytokinin-based signaling drives 
primary root growth, supports plant growth, and alters 
root architecture (Naulin et al. 2020). Also, cytokinin is 
an essential growth hormone in adapting plants to vari-
ous environmental conditions (drought, temperature, salt, 
osmotic, and nutrient stress) (Cortleven et al. 2019). Cyto-
kinins can augment plants tolerance limits against osmotic 
stress (Karunadasa et al. 2020). For instance, trans-zeatin, 
cytokinins obtained from the root of A.thaliana, guard the 
plant against photoperiod-induced stress conditions (Frank 
et al. 2020). Under osmotic stress, cytokinins synthesis 
reduces ROS-induced damages, lipid peroxidation, defer 
leaf senescence, thereby improving stress tolerance (Gujjar 
and Supaibulwatana 2019). Further, up and down-regulation 
of cytokinins enhance plant tolerance under moisture deficit 
conditions. During the abiotic stress, cytokinins biosynthetic 
gene, ISOPENTENYL TRANSFERASE, is overexpressed, 
leading to improved antioxidant activity, root growth, and 
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drought tolerance capability of plants (Xu et al. 2016). Dur-
ing moisture deficiency, the plant shows a substantial build-
up of cytokinins in root tissues due to a decreased activity of 
CYTOKININ OXIDASE/DEHYDROGENASE (Havlová et al. 
2018). Therefore, we can conclude that cytokinins activate 
numerous signaling reactions, secretory proteins, and anti-
oxidants to cope with harsh conditions.

Several PGPR can enhance levels of cytokinins con-
centration in soil solution and thereby, the growth promo-
tion of plants growing there. Similar to cytokinins applied 
exogenously, plants inoculated with cytokinins producing 
bacteria support plant growth similarly (Liu et al. 2013). 
For instance, the increased root and shoot dry biomass of 
Platycladus orientalis by cytokinins producing Bacillus 
subtilis was reported by Liu et al. (2013). Plants exposed 
to challenging agricultural environments may also benefit 
from cytokinins-producing bacteria. Cytokinins synthesiz-
ing bacterium Bacillus aryabhattai strain SRB02 augment 
soybean growth and development under the abiotic-stressed 
environment (Park et al. 2017a; b). Some bacteria-produced 
cytokinins perform a dual role in nutrient supply and prim-
ing host immunity in response to biotic and abiotic stresses 
(Akhtar et al. 2020). The priming host immunity against 
pathogen was reported in the A. thaliana-cytokinins produc-
ing Bacillus megaterium interaction system (Grosskinsky 
et al. 2016). Under drought stress, cytokinins producing 
Bacillus sp. significantly increased cytokinins content in 
both shoots and leaves, accompanied by increased biomass 
and root sink strength (Arkhipova et al. 2007). A similar 
delay in drought-incited senescence was noticed in alfalfa 
plants inoculated with cytokinins-synthesizing bacterium 
Sinorhizobium meliloti (Xu et al. 2012). The over-production 
(up to five times) of cytokinins can be achieved via trans-
formation through the expression of the Agrobacterium IPT 
gene. Under drought conditions, cytokinins producing Azo-
tobacter chrococcum lead to the accretion of stress response 
hormone, which degrades stress induced ROS, thereby miti-
gating the adverse effect of drought (Grover et al. 2011). 
Recently, the cytokinins producing bacterium Methylobac-
terium oryzae considerably increased plant growth, physi-
ological traits, and drought tolerance in lentils (Jorge et al. 
2019).

Gibberellins

Gibberellins (GA) can mitigate abiotic stress and affect other 
physiological processes of plants. In plants, GA plays a vital 
role in lowering the adverse effects of abiotic stress-induced 
injuries. In salt-affected rice plans, the exogenous application 
of GA up-regulates lipid biosynthesis (Liu et al. 2018). Upon 
exposure to zinc oxide nanoparticle stress, GA application 
has reduced the accumulation of zinc and ROS, resulting in 
superior photosynthesis, biomass, nutrient quality, and grain 

yield in wheat (Iftikhar et al. 2019). GA enhances tolerance 
to temperature-induced stress by changing the cell wall and 
plastid structure in tomato plants (Gamel et al. 2017). Some 
studies have shown that the reduced GA levels increase 
drought tolerance in plants via inhibiting plant growth and 
development. Several genes, such as the AtGAMT1 gene and 
SlDREB, can be overexpressed to generate the inactive GA 
or downregulate GA biosynthetic genes (Yadav et al. 2020). 
The lower level of plant GA promotes the drought toler-
ance in tomatoes by restricting internode elongation and leaf 
expansion. Such plants usually have smaller leaves and high 
stomatal intensity, which helps in lowering the transpiration 
rate (Yadav et al. 2020). So, we can say that GA negatively 
regulates the moisture deficit stress compared to other plant 
hormones.

The production of gibberellins (GA)-like substances have 
been reported in Azospirillum spp., Acetobacter diazotrophi-
cus, Bacillus spp., Herbaspirillum seropedicae, and Rhizo-
bium spp. (Nagel et al. 2018). Around 136 different chemi-
cal structures of GA have been identified. Rhizobacteria 
predominantly synthesize gibberellic acid (GA3) as the 
primary GA-like substance. In bacteria, the GAs biosynthe-
sis pathway begins from the geranyl–geranyl diphosphate 
(GGPP) as a starting compound and involves a sequence of 
reactions catalyzed by several cellular enzymes (Nett et al. 
2017; Salazar-Cerezo et al. 2018). The exact functions of 
GA in synthesizing microbes are not precise; however, they 
probably act as a signaling molecule during mutualism with 
host crops, e.g., in Rhizobiaceae-legumes symbiotic associa-
tion (Nett et al. 2017). Numerous reports have confirmed 
that microbial-produced GA positively impacts plant growth 
and development. For instance, promotion of root growth by 
different Azospirillum strains (Revolti et al. 2018), increased 
shoot length and biomass in rice and oriental melon by GA 
and IAA synthesizing Enterococcus faecium LKE12 (Lee 
et  al. 2015), increased growth and salinity tolerance in 
tomato by GA4 producing Sphingomonas sp. LK11 (Halo 
et al. 2015) was correlated positively to the different GA 
produced by the rhizobacteria. The promotion of tomato 
growth in salinity was correlated positively with decreased 
lipid peroxidation, PO, CAT, PPO, and enhanced activity of 
glutathione (Halo et al. 2015). GA producing Leifsonia xyli 
strain SE134 sustain the growth of tomato and most pos-
sibly trigger plant resistance to Cu (II) induced stress (Kang 
et al. 2017). The increased GA synthesis was accompanied 
by elevated glutamic acid, glycine, phenylalanine, threonine, 
proline, and arginine, which substantially influenced plant 
biomass (Kang et al. 2017). Further, the total polyphenol and 
flavonoid correlated with reduced SOD activity, the most 
probable mechanism in Cu (II) stress mitigation (Kang et al. 
2017). Similarly, a wide array of GAs (GA1, GA3, GA5, 
GA8, GA19, GA24, and GA53) producing bacterium Bacil-
lus tequilensis SSB07 increases plant length and biomass 
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under high-temperature stress (Kang et al. 2019). The bac-
terium B. tequilensis SSB07 imparts heat stress resistance 
mainly via phytohormonal modulation and upregulation of 
JA and SA under elevated temperature (Kang et al. 2019). 
Besides stress alleviation, phytohormone-producing rhizo-
bacteria enhance plants performance and development. For 
instance, GA, auxin, and cytokinins producing bacteria 
Pseudomonas aeruginosa PM389, Pseudomonas aeruginosa 
ZNP1, Bacillus endophyticus J13, and Bacillus tequilen-
sis J12 mitigated the adverse effects of drought stress on 
plants, as confirmed by the increased fresh and dry weight 
and water content in A. thaliana plants (Ghosh et al. 2019).

Abscisic acid and ethylene

ABA is another stress-induced compound of microbial 
origin that modulates plant roots hydraulic conductivity, 
biochemical/physiological processes, and transcription fac-
tors of many stress-responsive genes. Plants build up ABA 
in stress conditions that elicit a response to cope with the 
adverse environmental conditions. Plant exposed to moisture 
deficiency synthesize ABA in their roots and translocate to 
the upper portion to trigger drought adjustment mechanisms 
such as growth diminution and stomatal closure (Qi et al. 
2018). Further, ABA activates the expression of several 
stress-responsive genes that mitigates the negative impacts 
of suboptimal conditions. For instance, ABA-activated 
SnRK2s, implicated in the phosphorylation of the type-A 
ARR5, aids in the enhanced stress response of plants(Huang 
et al. 2018). Several overexpressed genes such as IbARF5 
up-regulate ABA biosynthetic genes (IbZEP, IbNCED, 
and IbABA2) and confer drought tolerance in transgenic 
A.thaliana (Kang et al. 2018). Further, the positive regu-
lation of REL1 directs the ABA biosynthetic pathway to 
modulate moisture deficit stress in plants (Liang et al. 2018). 
Additionally, SAPK2 is the primary regulator of ABA-
mediate development processes in several plants. SAPK2 
is involved in the upregulation of the expression of numer-
ous stress-linked genes, including OsOREB1, OsRab16b, 
OsLEA3, and OsRab21, and OsbZIP23, during stress 
induced by abiotic factors (Lou et al. 2017). These stress-
regulated genes may be a probable target for the plant’s 
genome engineering to make them more stress adaptive.

Regarding microbe-mediated stress management, rhizos-
phere and soil-inhabiting many ABA-producing bacteria can 
lower the adverse impact of abiotic stresses on plants. For 
instance, the rhizobacterium Dietzia natronolimnaea STR1 
guarded wheat plants against salinity stress by inducing 
over-expression of ABA-responsive genes, ion translocation, 
and antioxidants production (Bharti et al. 2016). Several 
genes associated with ABA signaling cascade (TaABARE, 
and TaOPR1), transcription factors (TaMYB and TaW-
RKY), stress-generation (TaST; T. aestivum Salt-Tolerant), 

and SOS1 and SOS4 (Salt Overly Sensitive) pathway, and 
ion transporters (TaNHX1, TaHAK, and TaHKT1) were 
over-expressed. In addition, bacterial-induced osmolyte 
and antioxidative enzymes such as CAT, PO, APO, Mn 
superoxide dismutase (MnSOD), and glutathione per-
oxidase (GR) imparted salt tolerance (Bharti et al. 2016). 
Cold stress adaptive psychrophilic Bacillus spp. (CJCL2, 
RJGP41) harbor genes implicated in signal transduction 
pathways, antioxidants synthesis, and sugar-ABC trans-
porters, lipid peroxidation, proline synthesis (Zubair et al. 
2019). Bacterium-induced overexpression of these genes in 
wheat plants enhanced their tolerance to cold stress (Zubair 
et al. 2019). The bacterium also modulated the expression 
of genes encoding auxin, cytokinin, alpha expansion, and 
ethylene (ET) under cold stress. At the molecular level, 
especially microRNAs (miRNAs), non-coding molecules 
that regulate the expression of many transcriptional and 
post-transcriptional genes, are essential in the sustenance of 
plants under many abiotic stresses (Shriram et al. 2016). For 
instance, abiotic stress amelioration and a significant gene 
expression pattern in chickpeas inoculated with the ABA-
synthesizing bacterium P.putida MTCC5279 were correlated 
with the expression of different miRNAs molecules (such 
as miR159, miR166, miR169, miR172, and miR396, etc.). 
This suggests a possible role of miRNAs in stress mitiga-
tion (Jatan et al. 2019). Likewise, various plant hormones 
synthesizing rhizobacteria such as Pseuodomonas stutzeri, 
Stenotrophomonas maltophilia, and P. putida increase plants 
growth and performance under saline stress (Patel and Saraf 
2017). The LOX2 gene encoding lipoxygenase that regulates 
stress-related JA biosynthesis pathway was over-expressed 
(Patel and Saraf 2017).

Plants exposed to harsh abiotic and biotic stress condi-
tions experience a higher accumulation of ET hormone. 
The ET causes several cellular and biochemical injuries in 
the plants exposed to adverse environmental conditions. In 
such situations, the ACC deaminase-producing rhizobacte-
ria irreversibly convert the precursor of ET hormone, ACC, 
into less harmful compounds such as α-ketobutyrate and 
ammonia. Some specific rhizobacterial compounds, such 
a rhizobitoxine, an enol-ether amino acid (2-amino-4-[2-
amino- 3-hydroxypropoxy]-Trans-3-butenoic acid), com-
petitively inhibits the ACC synthetase and thereby reduce 
ET induced stress injuries (Singh et  al. 2015). Several 
reports have confirmed that plants inoculated with PGPR 
producing ACC synthetase have longer roots and improved 
resistance levels to fungal and bacterial pathogens, as well 
as to waterlogging conditions. Under salt and heavy metal 
stress, rice plants inoculated with the ACC deaminase 
secreting Pseudomonas stutzeri A150 showed improved 
plant growth and tolerance to stress tolerance (Han et al. 
2015). This ability was lacking in the bacterium mutant for 
the acdS gene, encoding ACC deaminase (Han et al. 2015). 
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Likewise, ACC deaminase possessing Streptomyces spp.
GMKU 336 enhanced saline tolerance in rice plants by 
modulating differential gene expression in the host plants. 
Possibly, genes encoding antioxidant enzymes (Cu/ZnSOD1, 
CATb), osmotic balance (BADH1), calmodulin (Cam1-1), 
Na + transporters (NHX1, SOS1), and acdS biosynthesis 
were over-expressed in the bacterium (Jaemsaeng et al. 
2018). Recently, Orozco-Mosqueda et al. (2019) generated 
a series of mutants of the PGPR Pseudomonas sp. UW4 to 
assess the precise functions of ACC deaminase and treha-
lose in conferring salinity tolerance in tomato plants. The 
newly generated strains included treS (a mutant with reduced 
synthesis of trehalose), acdS/treS (a mutant with reduced 
synthesis of trehalose and ACC deaminase), OxtreS  (a 
mutant with an overproducer of trehalose), and acdS  (a 
mutant lacking ACC deaminase activity). Interestingly, 
tomato plants inoculated with the wild-type strain showed 
increased root length, dry biomass, and chlorophyll. Con-
versely, the acdS and treS mutants could not offer host plants 
any benefits (Orozco-Mosqueda et al. 2019). Despite all this 
available information, our understanding of biochemical, 
physiological, and molecular facets of PRM interactions 
mediated by microbial hormones and metabolites remains 
limited. This area holds immense potential for discoveries 
on how phytohormones synthesizing phytomicrobiome offer 
key host functions.

Other mechanisms adopted by PGPR to improve 
plants tolerance under the challenging 
environmental conditions

In addition to the above-discussed modes, PGPR may also 
impart stress tolerance through the production of EPS/
biopolymer, accumulation of biocompatible osmolytes, and 
ion homeostasis (Paul et al. 2017). Many facets of the plant 
microbiome have been explored to minimize the adverse 
impact of unfavorable environment on the host plant via 
modulating molecular, biochemical, and physiological 
responses (Paul et al. 2017; Vejan et al. 2016). Many chal-
lenging environmental conditions alter the root microbial 
community and boost plant metabolism (Sangwan and 
Dukare 2018; Liu et al. 2020).

Drought causes a net decrease in plant and microbiome 
biomass. However, some types of microbe do better under 
moisture deficit-induced harsh conditions. Arid areas dom-
inating drought-adapted bacteria in the plant microbiome 
include members from the Proteobacteria, Bacteroidetes, 
and Firmicutes phyla (Soussi et al. 2016). Similarly, actino-
bacteria or some monoderms are abundantly present in the 
rhizosphere and/or endosphere (Ham et al. 2018; Xu et al. 
2018). This signifies the presence of co-adaptive strategies 
between the microbiome and host plant for ameliorating 
stress effects and improving nutrient uptake, metabolism, 

and overall development. Apart from whole microbial cells, 
specific metabolites of microbial origin can also aid in mak-
ing plants more resistant to moisture deficit conditions. For 
example, an EPS synthesized and secreted by rhizobacteria 
are high moisture (more than 95%) holding matrixes that 
improve plants tolerance by modulating cellular metabolism 
in dry conditions (Gouda et al. 2018). Plants exposed to EPS 
significantly accumulate stress-responsive osmolytes such as 
proline, amino acids, and trehalose. The EPS synthesizing 
bacterium Pseudomonas PS01 alleviated the negative impact 
of salinity stress in A. thaliana by modulating stress-respon-
sive genes' expression levels (Chu et al. 2019). As observed 
in the Panicum maximum plants, microbe-mediated stress 
alleviation was due to the improved cell membrane stability 
and enhanced synthesis of photosynthetic pigments (Tiwari 
et al. 2018). Different stress-responsive metabolites (such as 
proline, abscisic acid, glycine, trehalose, and betaine) main-
tain membrane permeability, enzyme integrity, and protein 
functionalities and improve plants' stress tolerance (Manju-
natha et al. 2019; Agami et al. 2016). Similarly, plants have 
several genes encoding stress-responsive proteins (such as 
PO, SOD, CAT, nitrate reductase, and GR), phenolic and fla-
vonoids compounds, and non-enzymatic metabolites, which 
are usually up-regulated (El-Esawi et al. 2019; Egamberdi-
eva et al. 2019). Under the higher salt stress, higher produc-
tion of stress-responsive osmolyte metabolite, ectoine, was 
reported in Halomonas sp. SBS 10 (Kushwaha et al. 2019), 
further, ectoine biosynthesis genes were highly expressed. 
Stress mitigation in plants can also be achieved by the VOCs 
synthesized by the rhizosphere microbiome. For instance, B. 
subtilis GB03 synthesized VOC down-regulated the HKT1 
(high-affinity K + transporter 1) gene expression in roots 
and up-regulated in shoots of A. thaliana, thereby reducing 
Na + accumulation and improving stress tolerance (Saritha 
and Kumar 2019). Thus, rhizosphere microbiome displays 
promising effects to impart abiotic stress tolerance. There-
fore, they can be used as agronomic management compo-
nents in crop cultivation under a wide array of adverse envi-
ronmental conditions. With some more recent representative 
studies, the functional attributes and mechanistic approaches 
portrayed by rhizosphere microorganisms in enhancing plant 
health and resilience is given in Table 1.

Rhizosphere microbiome alleviate 
pathogen‑induced biotic stresses

Mitigation of fungal pathogen‑induced biotic stress

Under pathogen challenged conditions, antagonistic rhizo-
bacteria retains control over the phytopathogens mainly 
by: (1) competing for restricted nutrients (especially Fe) 
and space; (ii) preventing virulence through antifungal 
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compounds and volatile biocidal metabolites; (iii) synthesis 
of cell wall degrading enzymes, and (iv) indirectly by induc-
ing systemic defenses in host plants (Dukare et al. 2020a).

Siderophore-producing rhizobacteria effectively compete 
with pathogenic fungi for limited Fe nutrients and make 
them inaccessible. This process results in pathogens inhi-
bition via hindering fungal germination, metabolism, and 
virulence (Dukare et al. 2019). Several rhizosphere microor-
ganisms produce many antimicrobial antibiotics (Dukare and 
Paul 2020). In producing bacteria, their biosynthesis occurs 
either from a ribosomal origin or by non-ribosomal pep-
tides synthetases or polyketide synthases enzyme (Ramadan 
et al. 2016; Li et al. 2020). Most well recognized antifungal 
antibiotic substances include phenazine-1-carboxylic acid, 
DAPG, pyoluteorin, pyrrolnitrin, cepaciamide A, butyrol-
actones, subtilin, subtilisin, iturin, and surfactin (Goswami 
et al. 2016; Ramadan et al. 2016). Many microbial strains 
capable of controlling phytopathogens often harbor genes 
encoding antifungal antibiotics biosynthesis pathways. 
Using a transposon (Tn) mutant library, biocontrol genes 
and traits (swimming motility, siderophore biosynthesis, 
and other antifungal compounds) in P. fluorescens NBC275 
(Pf275), a bacterial antagonist of pepper gray mold disease 
was revealed (Dutta et al. 2020). The genes encoding the chi-
tin‐binding protein (gbpA) and pyoverdine (pvdI and pvdD) 
biosynthesis remarkably contributed to their biocontrol 
potential (Dutta et al. 2020). The iturin is another important 
group of antifungal lipopeptides predominantly produced by 
certain Bacillus species. Iturin hampers pathogens growth 
by creating pores in the cell membrane and is followed by 
extensive leakage of cytoplasmic potassium ions. Among 
the iturin family, Iturin A has four open reading frames, itu 
D, itu A, itu B, and itu C. The expression products of the itu 
D gene play a crucial role in biocontrol activity (Ali et al. 
2014). Besides, rhizobacterial originated metabolites such 
as hydrogen cyanide, ammonia, alcohols, sulfides, ketones, 
aldehydes cyclic lipopeptides, polyketides, and phenylpyr-
role also show antifungal activity (Ramadan et al. 2016; 
Fouzia et al. 2015).

The latest advances in strain improvement techniques 
have made it possible to genetically alter the beneficial 
microorganisms to overproduce antibiotics and valuable bio-
active compounds. In the recent past, an array of genomic 
engineering approaches, including precursor engineering, 
biosynthetic genes clusters (BGC) amplification, deletion 
of competing pathways, engineering of transcriptional/
translational machinery, and manipulation of pathway-spe-
cific regulators have been developed for the bacterial strain 
improvement (Li et al. 2019). For instance, using the time-
course transcriptome analysis, Li et al. (2018a) identified the 
chain of antibiotic-responsible promoters with a transcrip-
tion profile under the optimal conditions. These responsive 
promoters can efficiently optimize the expression of native Ta
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actinorhodin (ACT) and heterogeneous oxytetracycline 
(OTC) BGCs in  the bacterium Streptomyces coelicolor, 
leading to the substantial improvement in production titers 
of ACT (by 1.3 fold) and OTC(1.9 fold), compared with con-
stitutive promoters (Li et al. 2018a2018a). Furthermore, dif-
ferent dynamic metabolic regulation techniques/approaches 
can effectively improve the production capacity of target 
compounds by balancing microbial growth and biosynthesis 
of specific metabolites (Li et al. 2019). Site-specific recom-
bination (SSR) is another widely used technique for strain 
improvement, combinatorial biosynthesis, and heterologous 
expression of whole BGCs in numerous human and indus-
trial bacterial species (Baltz 2012; Stark 2017; Merrick et al. 
2018). In actinobacteria, SSR that are mainly derived from 
bacteriophage systems such as 8BT1, 8C31, and TG1 was 
used to develop cell factories through multi-copy amplifica-
tion of BGCs or target genes (Baltz 2012). For instance, the 
antibiotic goadsporin was significantly increased (by 2.3-
fold) by a gradual introduction of two additional copies of 
the 8C31 and TG1 integration systems based on goadsporin 
BGC (Haginaka et al. 2014). Finally, the advancements in 
genome sequencing, multi-omics, and genome editing tool 
are paving the way for enhanced production of targeted com-
pounds in useful microbes.

Rhizobacteria producing extracellular hydrolytic enzymes 
(such as chitinase, glucanase, and cellulose) hampers patho-
gen growth by mycoparasitism (Dukare et al. 2020b). Bac-
terial chitinases belong to the glycosyl hydrolases family 
and possess the chitin-binding domain in carboxyl or amino-
terminal (Hamid et al. 2013). The presence of the chiA gene 
encoding chitinase in Serratia marcescens and Serratia 
plymuthica are crucial in their ability to control plants dis-
eases. Chitinase encoding genes (such as ech42, nag1, chi33, 
and chi18-13) allow attachment to fungal hyphae and cause 
mycoparasitism (Hamid et al. 2013). Similarly, β-1, 3-glu-
canase of Paenibacillus spp. and Streptomyces spp. inhib-
ited the growth of F. oxysporum, whereas Bacillus cepacia 
adversely hampered the pathogenicity of Sclerotium rolfsiii 
and Rhizoctonia solani (Compant et al. 2019). Root nodu-
lating rhizobium can also act as a biocontrol agent of phy-
topathogens. For example, the pathogen suppression activity 
of Rhizobium japonicum against the soil-borne pathogens 
Fusarium solani and Macrophomina phaseolina, en etio-
logical agents of soybean root rot was demonstrated (Al-Ani 
et al. 2012). Seed treatment with R. japonicum significantly 
improved germination and reduced soybean root rot index. 
Co-inoculation of rhizobia or AMF substantially reduced 
disease severity and incidence of red crown rot in soybean 
under low level of P condition (Gao et al. 2012). Further-
more, root exudates of soybean in the presence of inocu-
lated rhizobia and AMF significantly hampered pathogen 
growth and reproduction. qRT-PCR studies revealed that 
the pathogen defense-related (PR) genes in roots, especially 

PR2, PR3, PR4, and PR10, were overexpressed, leading to 
enhanced plant protection (Gao et al.2012). In addition to 
direct mechanisms, certain volatile compounds produced 
by rhizobium are reported to suppress the invading bacte-
rial pathogens of plants. As reported by López-Lara et al. 
(2018), the volatile metabolite methyl ketone 2-tridecanone 
(2-TDC) produced by rhizobium S. meliloti affected surface 
motility and biofilm formation in the bacteria. Furthermore, 
this chemical adversely obstructed several plant–bacteria 
associations (hampered alfalfa nodulation by rhizobia) and 
the incidence of tomato bacterial speck disease caused by 
Pseudomonas syringae (López-Lara et al. 2018). Genome 
sequencing studies have revealed the presence of several 
genes in rhizobia that are mainly contributing to its bio-
control potential. Rhizobium sp. strain 76 isolated from the 
hyphosphere of the wilt-causing agent Fusarium oxysporum 
f. sp. cucumerinum (Foc) migrated along with pathogen 
hyphal growth and reduced the disease incidence by 49%. 
The whole-genome sequencing analysis of this bacterium 
revealed several genes linked to biocontrol functions. The 
size of the whole genome was 5,375,961 bases, with two 
chromosomes and one plasmid and containing 5094 genes 
76 (Sun et al. 2020).

Quorum quenching mediated suppression 
of bacterial phytopathogens

Quorum quenching (QQ) causes degradation of the AHLs 
signaling molecules and monitors bacterial phytopathogen 
population density. QQ adversely affects the bacterial popu-
lation's biofilm formation and virulence ability (Rehman and 
Leiknes 2018). The QQ involves the expression of QS signal 
degradation (qsd) operon encoding fatty acyl-CoA ligase 
QsdC and lactonase QsdA implicated in the degradation of 
acyl chain molecules and lactone ring (Barbey et al. 2018). 
The QQ is mediated via QQ enzymes and QS inhibiting 
molecules. The AHLs degrading many potato rhizospheric 
bacterial genera such as Pseudomonas, Bacillus, Rhodococ-
cus, Ochrobactrum, and Delftia suppress bacterial pathogen, 
Pectobacterium carotovorum subsp. carotovorum mainly by 
degrading its lactone ring (Cirou et al. 2007). Furthermore, 
soil actinobacteria such as Micromonospora, Streptomy-
ces, and Rhodococcus inhibit the AHL signal of Chromo-
bacterium violaceum CV026 (Devaraj et al. 2017). Some 
bacteria can deactivate molecules related to the AHL family. 
Zhang et al. (2020a, b) reported that QQ bacterium Acineto-
bacter sp. XN-10 degraded AHL family molecules by dehy-
droxylation and hydrolysis. Subsequently, key intermediates 
produced compounds such as pentanoic acid, N- cyclohexyl-
propanamide, and methyl ester attenuated the pathogenicity 
of P. carotovora subsp. carotovora in carrot, Chinese cab-
bage, and potato. Some other cellular molecules can function 
as QQ compounds in bacteria. For example, the esterase 
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enzyme in rhizobacteria such as Stenotrophomonas malt-
ophilia and Pseudomonas aeruginosa contributed to their 
QQ ability against solanaceous bacterial causing patho-
gen Ralstonia solanacearum (Achari and Ramesh 2018).

Certain bacteria such as Lysobacter enzymogenes LeM-
omL have been genetically engineered to over-express QQ 
proteins to over-express QQ proteins, which subsequently 
reduced soft rot causing bacterial pathogen in carrot and 
Chinese cabbage (Wang et al. 2019). Similarly, potato and 
tobacco transformed with Bacillus gene aiiA encoding lac-
tonases exhibited a superior tolerance to Erwinia caroto-
vora (Dong et al. 2001). Similar to AHLs, DSF as a QS 
molecule in pathogens is deactivated by rhizobacteria. DSF 
degrading bacterium Pseudomonas sp. strain HS-18 carries 
genes such as dig A, dig B, dig C, and dig D that encode 
for fatty acyl-coenzyme A ligase. Expression of these genes 
in Xanthomonas campestris pv. Campestris diminished the 
surplus production of DSF molecules and thereby reduced 
its virulence. These showed that DSF-dependent gram-neg-
ative bacterial pathogens could be transformed as biocontrol 
agents via the insertion of the dig genes (Wang et al. 2020a, 
b).

The suppression of plant‑parasitic nematodes 
by rhizospheric microorganisms

Many strains of rhizobacteria are capable of inhibiting root 
invading plant-parasitic nematodes ( PPNs) either through 
direct antagonism or altering feeding sites, killing vermi-
form stages, reducing their hatching and gall formation, and 
indirectly by priming host immunity (Elhady et al. 2018; 
Mhatre et al. 2019; Zhou et al. 2019; Topalović et al. 2020). 
The roles of the rhizosphere microbiome in suppressing 
PPNs have shown. For instance, maize and tomato rhizo-
sphere inhabiting microbiome significantly hindered the 
reproduction and penetration ability of root-knot nematode 
(RKN), Meloidogyne incognita, and root-lesion nematode, 
Pratylenchus penetrans (Elhady et al. 2018). Developing a 
suppressive soil by enriching with the nematicidal and plant-
useful rhizosphere microbiome may efficiently control PPNs 
infection (Zhou et al. 2019). Rhizobacteria, mainly Pasteuria 
spp., are among the most promising obligate parasites of 
many PPNs, are the most abundant microbes of nematode 
suppressive soils (Mhatre et al. 2020). Pasteuria penetrans, 
one of the predominant nematode parasitic bacteria, para-
sitized juveniles and killed almost 83% of the second-stage 
of RKN juveniles (Botelho et al. 2019). Further, certain 
strains of Pseudomonas and Bacillus native to suppressive 
soils parasitize eggs of PPNs. Kluepfel et al. (2002) studied 
the bacterium Pseudomonas sp. BG33R and identified five 
genes responsible for egg toxicity to the ectoparasitic nema-
tode, Mesocriconema xenoplax infecting peach trees. Types 
of farming practices may alter the structural composition and 

functional aspects of rhizosphere microorganisms regard-
ing PPNs suppression. Accordingly, Harkes et al. (2020) 
demonstrated that microbial groups from taxa such as Bur-
kholderiaceae, Enterobacteriaceae, and Pseudomonadaceae 
in the rhizosphere of organically grown Pisum sativum sig-
nificantly reduced the population of RKN, Meloidogyne chit-
woodi (Harkes et al. 2020). The soil bacterium Klebsiella 
pneumonia made soybean plants more immune against cyst 
nematode (Heterodera glycines) through regulation of ISR 
metabolic pathways related genes such as PR (PR1, PR2, 
and PR5) proteins and plant defensins (PDF1.2) (Liu et al. 
2018). Khanna et al. (2019) demonstrated that some rhizo-
bacteria could modulate defense pathways and metabolites 
in the host tomato plants. They reported that bacteria such 
as Pseudomonas aeruginosa and Burkholderia gladioli elic-
ited ISR and suppressed RKN mainly due to the enhanced 
production of phenolic, osmoprotectants, organic acids, 
enzymatic, and non-enzymatic antioxidants. Some microbes 
may benefit the host by direct killing of PPNs and through 
priming host defense. For example, the bacterium, Micro-
bacterium sp. efficiently reduces the root invasion of RKN 
M. hapla by firmly attaching to its cuticle (Topalović et al. 
2020). Furthermore, this bacterium down-regulated all those 
defense suppressive genes triggered by PPN and activated 
defense systems, including ROS formation.

Priming host plants immunity against invading 
pathogens

Indirectly, root and soil-associated microbe’s prime host 
plants immunity by inducing systemic resistance (ISR). 
Numerous elicitors’ molecules synthesized by microbe trig-
ger ISR in the host plants via activating JA, SA, and ET 
signaling-dependent pathways (Pieterse et al. 2014; Tyagi 
et al. 2018). Several MAMPs such as flagellar proteins, chi-
tin, LPSs, AHLs, cyclic lipopeptides, VOCs (e.g., 2,3-butan-
ediol, acetoin), siderophore, and antibiotics are pivotal in 
activating ISR (Sharifi and Ryu 2018; Tyagi et al. 2018; 
Villena et al. 2018; Romera et al. 2019). Additionally, some 
specific compounds released in the root exudates trigger 
ISR in host plants. As studied by Stringlis et al. (2018), the 
antimicrobial compound, coumarin scopoletin, released by 
A. thaliana roots in the presence of Pseudomonas simiae 
primed host plants immunity against invading phytopatho-
gens. Plants with ISR have improved physiological status, 
antioxidative profile, and defense system towards diverse 
plant pathogens.

Pseudomonas and Bacillus  are the most well-known 
PGPR genera for inciting ISR. The bacterium P. fluores-
cens N21.4 elicit ISR in plants of Rubus sp. via activation of 
GAs dependent flavonoid and phenylpropanoids biosynthe-
sis pathways (Garcıa-Seco et al. 2015). Moreover, bacterium 
regulated gene expression and shaped the biosynthesis of 
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many secondary metabolites. Genes encoding enzymes that 
catalyze the conversion of phenylalanine to anthocyanins, 
catechins, and flavonols and coordinating the expression of 
flavonoid biosynthesis were identified in fruit (Garcıa-Seco 
et al. 2015). PGPR also modulates the expression profile 
of key regulatory genes involved in defense-related meta-
bolic pathways and reactive oxygen species (ROS) produc-
tion. The system biology analysis confirmed that bacte-
rium Paraburkholderia phytofirmans PsJN primed innate 
immunity in A. thaliana against Pseudomonas syringae via 
triggering ET, JA, and SA based signaling pathways (Tim-
mermann et al. 2019). Post 1 h of pathogen infection, bacte-
rium regulated at least 48 transcription factors and a network 
with 4 clusters in A. thaliana. Within these clusters, LHY, 
WRKY28, MYB31, and RRTF1 are the main transcription 
factors related to the activation of JA, ET, SA, and ROS 
pathways. In addition to direct antagonism, some rhizo-
bacteria effectively inhibit pathogenes activity via eliciting 
host resistance, as reported in bacteria Pseudomonas aer-
uginosa and Bacillus stratosphericus (Durairaj et al. 2017). 
These bacteria synthesized antibiotics and siderophores and 
depicted antagonistic activities against five different bac-
terial phytopathogens. Further, up-regulated expression of 
the defense-related genes (PR-1a and PAL) in tomato plants 
was noticed after the bacterial treatment (after 12 h). A 
deep RNA-sequencing analysis of host peanut plants in the 
presence of inoculated halotolerant PGPR, Klebsiella spe-
cies (referred to MBE02), revealed that 979 genes were up-
regulated, while 281 were down-regulated (Sharma et al. 
2019). Most expressed genes were linked to phytohormone 
signaling, including JA, ET, and pathogen-defense signaling 
towards Aspergillus infection. In addition to priming host 
plants immunity, this strain directly inhibited the growth 
of many fungal pathogens, including Aspergillus (Sharma 
et al. 2019). The partial list of rhizosphere colonizing/ben-
eficial microorganisms triggered some key genes of host 
plants implicated in their survivability and alleviation of 
challenged abiotic and biotic environmental conditions is 
given in Table 2.

Recent advances and development 
in the area of beneficial PRM interactions

Potential of “multi‑omics” approach for elucidating 
rhizosphere microbiome functions

Due to the uncultivable nature of the rhizosphere microbi-
ome, several culture-independent “omics” approaches such 
as metagenomics, transcriptomics, proteomics, metabo-
lomics, phenomics, and interactomics are used for their 
in-depth analysis (Fig. 3) (Bell et al. 2014; Zhang et al. 
2016). The metagenomics approaches reveal the rhizosphere 

microbiome's vast structural and functional diversity 
(Melcher et al. 2014). Metatranscriptomics and metaprot-
eomics provide insight into numerous genes translated and 
expressed in forming multiple PRM interactions in the rhizo-
sphere and many other ecological niches (Von Bergen et al. 
2013; Turner et al. 2013). Diverse metabolites formed in the 
cellular metabolism process are analyzed using the latest 
chemical analytical tools, chiefly liquid chromatography-
mass spectrometry (LC–MS) and gas chromatography-mass 
spectrometry (GC–MS). Further, a nuclear magnetic reso-
nance (NMR) tool deciphers the exact chemical structure 
of such metabolites and compounds secreted in the root 
exudation process (Zhang et al. 2012). Likewise, the exo-
metabolomics tool can identify the metabolites utilization 
patterns of the rhizosphere microbiome (Baran et al. 2015; 
Swenson et al. 2018). Metabolomics and transcriptomics 
could help elucidate the precise functions of genes encoding 
biosynthesis of diverse signaling molecules implicated in 
different rhizosphere communication processes (Yan et al. 
2017). Rhizosphere colonizing diverse microbial communi-
ties can be extensively analyzed using high-throughput or 
NGS. The 16S rRNA gene-based phylogeny strategy reveals 
the whole prokaryotic community, thereby knowing the evo-
lutionary linkage and the microbial diversity (Ladoukakis 
et al. 2014). Using shotgun metagenome and 16S rRNA gene 
profiling, Bulgarelli et al. (2015) revealed the presence of 
structural and community diversity during various PRM and 
microbe-microbe associations in the wild and cultivated bar-
ley rhizosphere. Similarly, metagenomics combined with the 
454-pyrosequencing technique unraveled the vast structural 
and functional diversity of the microbiome associated with 
the rhizosphere of Avicennia marina (Alzubaidy et al. 2015). 
The presence of a small ‘‘core” microbial consortium, 
mainly comprising of a symbiotic association of AMF with 
PGPR, probably acting as phytostimulatory bio inoculants 
in the rice cultivation, was demonstrated (Valverde et al. 
2016). The metagenomics analysis confirmed the microbial 
diversity in the rhizosphere of red kidney beans (Suyal et al. 
2015) and cultivated and wild rice varieties (Shenton et al. 
2016). The obtained information on rhizodeposits and plant 
metabolites using these tools may widen our knowledge 
about the precise functions of metabolites in the beneficial 
PRM interactions in sustainable farming. Thus, understand-
ing the biosynthesis and transportation of signaling mol-
ecules is achieved to optimize crop performance via regu-
lating the rhizodeposition process (Jirschitzka et al. 2013).

The metatranscriptomics approach could collect informa-
tion to identify the diverse metabolic pathways and active 
microbial community involved in the PRM interactions. The 
comparative metatranscriptomic technique revealed the taxo-
nomic and functional attributes of wheat rhizomicrobiome in 
disease suppressive and non-suppressive soil (Hayden et al. 
2018). Stenotrophomonas spp. and Buttiauxella spp. were 
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dominant in suppressive soil, while non-suppressive soil was 
predominated by Arthrobacter sp. and Pseudomonas spp. 
Further, the gene expression profile revealed the up-reg-
ulation of polyketide cyclase and several cold shock pro-
teins (CSPs) genes in suppressive soil. In contrast, genes 
for antibiotic synthesis, transcriptional enhancer protein, 
ROS, and superoxide radicals were up-regulated in the non-
suppressive soil. In brief, these tools can precisely show the 
microbial community assemblage and micro details of PRM 
interactions with various PGP attributes.

Genome editing for customizing PRM interactions 
to improve plants growth and resilience

The application of CRISPR-Cas technology has enabled us 
to control the expression of genes using CRISPR interfer-
ence (CRISPRi), having catalytically dCas9 and CRISPR 
stimulation (CRISPRa) systems (Parveen et  al. 2020) 
(Fig. 4). The CRISPR-Cas system efficiently allows genome 
alteration with high specificity and accuracy, genes knock-
down, and fluorescence imaging of RNA transcripts (Wang 
et al. 2020a, b). It has been established as a promising tool 
for strain improvement in bacteria. Many bacterial cells such 
as Bacillus, Clostridium, Escherichia, Corynebacterium, 
Pseudomonas, Lactobacillus, Mycobacterium, Streptomy-
ces, etc. have been genetically altered for industrial product 
development (Cho et al. 2018; Fokum et al. 2019). Several 
metabolic pathways can be engineered for enhanced metab-
olite production by overexpressing or adding the desired 
genes (Fokum et al. 2019). Presently, this system has been 
more precisely Escherichia coli for producing many indus-
trial biochemicals, biofuels, and other compounds with 
diverse applications (Parveen et al. 2020).

Under challenging environmental conditions, these 
techniques could decipher the decisive mechanisms in the 
plant-microbiome network, improving microbe-mediated 
plant growth, agronomic performance, phytoremediation, 
and developing disease-resistant cultivars (Shelake et al. 
2019) Some of the potential applications of CRISPR-based 
GE techniques in the PRM interactions are (1) to uncover 
the gene functions in microbiome and plant (2) to fully 
knockdown the specific target genes (Bisht et al. 2019) and, 
(3) to obtain more precise and accurate genomic informa-
tion and numerous gene functions at the molecular level 
(Shelake et al. 2019). At the rhizosphere microbiome level, 
the mutual interactions between legume root–rhizobia and 
pathogenic interaction of roots with Pseudomonas syringae 
have revealed the exact role and perspectives of responsible 
genetic factors (Glick 2014; Xin et al. 2018). This system 
has deciphered molecular facets of interactions of plant and 
rhizobacteria such as Bacillus mycoides EC18 and B. subtilis 
HS3 at the molecular level (Yi et al. 2018). In this system, 
the CRISPR/Cas9 mediated GE tool generated two mutants Ta
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of B. mycoides EC18 and three mutants of B. subtilis HS3. 
By disrupting the sfp gene encoding 4′-phosphopantetheinyl 
transferase in B. subtilis HS3, authors demonstrated that the 
lipopeptide antibiotics (surfactin and fengycin) are essen-
tial for antifungal activity against Rhizoctonia solani and 

Fusarium culmorum. Moreover, a green fluorescent protein 
(GFP)-tagged mutant approach revealed that the particular 
strain effectively colonized root hairs of grass (Lolium per-
enne) in a hydroponic system. Using CRISPR-Cas9 medi-
ated genes (siderophore biosynthesis) interruption studies 

Fig. 3  Cellular targeted com-
ponents, different purposes and 
strategies adopted in “multi-
omics” based approaches in 
analyzing different aspects of 
PRM interactions
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Fig. 4  Schematic diagram 
depicting the working of 
clustered regulatory interspaced 
short palindromic repeats 
(CRISPR)-Cas mediated 
genome editing techniques
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in the bacterium B. mycoides EC18, the crucial role of 
siderophore (petrobactin) in plant growth support and root 
colonization was demonstrated (Yi et al. 2018). Further, the 
CRISPR-Cas system has been utilized for controlling pest 
and diseases of crops via targeted genes modifications in 
some microbial biocontrol agents such as Beauveria bassi-
ana, Purpureocillium lilacinum, and Trichoderma species 
(Liu et al. 2015; Jiao et al. 2019; Chen et al. 2017) and host 
plants too. The CRISPR-Cas system may help speed up the 
microbiome-mediated phytoremediation process by custom-
izing the xenobiotic degradation associated genes expression 
in plants and the specific microbiome (Mali et al. 2013). 
Several secondary metabolites (SMs) of plants and microbes 
are crucial in establishing a PRM network and communica-
tion. Hence, the CRISPR-mediated GE of SM biosynthe-
sis pathway-related metabolic genes could allow its higher 
synthesis, discover novel aspects, and improve productivity 
(Shanmugam et al. 2019).

Such a tool has great potential in modifying rhizosphere 
processes by altering plant architecture and physiological 
status (Garcia and Kao-Kniffin 2018). For instance, the 
system may modify the root exudation process to recruit 
beneficial crop microbiota (Ahkami et al. 2017). Molecular 
breeding of legumes and non-legumes crops may facilitate 
the recruitment of more efficient N-fixing rhizobia, P-min-
eralizing, and other beneficial microbes in their rhizosphere. 
Briefly, these genome modification tools are imperative in 
unraveling the fundamental mechanisms and understanding 
how the host influences root microbiome diversity and their 
functionalities. Further, more detailed information obtained 
using the CRISPR/Cas9 could assist in devising the strate-
gies for the precise selection of beneficial microbial groups 
in the rhizosphere.

Nanotechnological interventions for improving 
the performance of microbial inoculants

Despite the established role of microbial inoculants in incre-
menting plant yield and productivity, their performance at the 
field level is often inconsistent and variable due to adverse 
and unfavorable environmental conditions (Gupta et al. 2015). 
Recent advances in nanomaterials can be used to augment the 
field efficiency of microbial bio inoculants by minimizing the 
detrimental effects on the environment. Nanotechnological 
science could play a pivotal role in transforming conventional 
farming into more precision-based agriculture (Subrama-
nian and Tarafdar 2011). Various metal nanoparticles such 
as silver, gold, Cd, Cu, Zn, Fe, and Se, have applications in 
plant growth promotion, antimicrobial and antifungal effects, 
nano fertilizers, plant micronutrients, and plant disease con-
trol (Bahrulolum et al. 2021). Depending on the application 
required, nanomaterials are being used for their specific use 
in agriculture production. For example, in the suppression of 

phytopathogens activity, antifungal properties of numerous 
nanoparticles such as like silver, Cu, zincite, nickel, and titania 
have been reported (De la Rosa-García et al. 2018). Likewise, 
metal oxide nanoparticles containing trace elements (such as 
Cu, Zn, and Fe) considerably contribute to plant growth and 
development (Wei et al. 2021). Before using nanoparticles in 
combination with the microbial inoculants, their antimicrobial 
effect and biocompatibility with the selected microbe need to 
be evaluated. For effective performance of the PGPRs, there 
requires to be a rational approach in providing a formula-
tion and delivery of specific microbiome or their bioactive 
products in the field. Different nano-based recent approaches 
such as polymeric nanoparticle coatings, nano-formulations, 
and microencapsulated microbial formulations, referred to as 
nano-biofertilizers can efficiently deliver microbe inoculants 
(Vassilev et al. 2020). Nanobiofertilizer formulation compris-
ing PGPR treated with different nanoparticles increment plant 
growth and prohibits pathogen proliferation and pathogenesis 
in the rhizosphere. Nano-formulations can help in the gradual 
and precise release of microbes/nutrients at the target sites. 
These mechanisms prevent the loss of nutrients from interact-
ing with soil, water, and air, and other microorganisms in the 
ecosystem. Nanoparticle-based microbial nanoformulation is 
often provided with the nano-additives to (1) improve stability 
under a wide range of environmental conditions (e.g., desicca-
tion, heat, drought, and UV exposure), (2) to offer substances 
required by the inoculums for growth and development, and 
(3) finally, to increase storage life and successful delivery of 
developed microbial products (Prasad et al. 2017; Jampílek 
and Králová 2017).

Upon the treatment of PGPR with titanium nanoparticles, 
PGPR was subsequently firmly attached to the rapeseed root 
surface and protected it from pathogen attack. Also, seeds of 
different monocots and dicot crops, pretreated with zinc oxide 
(ZnO) nanoparticles, increased the speed of seed germination 
(Mishra and Kumar 2009). In another recent study by Tim-
musk et al. (2018), the novel use of nano titania nanoparticles 
combined with PGPR firmly attached wheat roots and suc-
cessfully colonized seedlings. Nano-coated microbial formula-
tion improved plant biomass and performance under diverse 
abiotic (drought and salt) and biotic (induced by pathogenic 
fungi Fusarium culmorum) stresses. Likewise, such a nano 
product may also successfully manage insect pests and weeds 
of crops. Therefore, nanoscience could assist in exploring the 
vast potential of beneficial microbial inoculants via facilitating 
their consistent and reproducible performance at the field level.

Concluding remarks and future prospects

Here, we have focussed on the importance of a healthy 
microbiome for plants growth and development under 
challenging environmental conditions. Using the bilateral 
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“molecular dialogue” and biochemical and physiological 
aspects, we deciphered the several mechanisms implicated 
in the microbe incited plants growth, health, and stress resil-
ience. The plant-linked microbiome is always fascinating 
and constantly expanding area of research throughout the 
globe. The potential of rhizosphere microorganisms to sup-
port plant health and fitness, especially under many adverse 
environmental conditions, is still not fully explored. Thus, 
more investigations using the latest scientific approaches 
are a prerequisite to elucidate the mechanisms of PRM 
interactions and the pathways of their reciprocal “molecu-
lar cross-talk” under a different set of suboptimal growth 
environments.

Herein, we narrated some contributing determinants allied 
with microbiome components and functional groups; yet, 
the causality of these associations demands further in-depth 
studies. Each biotic and abiotic stress must be dealt with 
within a specific context, examining distinct microbiomes, 
crops, and prevailing environmental conditions. Therefore, 
it is imperative to characterize a particular microbiome spe-
cific to various conditions, which further can maneuver the 
knowledge-based precise design of superior plant growth 
and health. Several PGPR isolated from challenging ecosys-
tem have shown potential for developing promising inocu-
lants to thrive in harsh soil conditions. Using the knowledge 
of niche-specific PGP traits of rhizobia, different inoculant 
combinations, and genomic manipulation approaches could 
augment the crop yield (Bellabarba et al. 2019). Beyond 
the pure metagenomic analyses to comprehensively inter-
pretation of “multi-omics” findings, plants physiological 
and biochemical responses along with appropriate testing 
hypotheses and validations through in vitro and in vivo tri-
als will be the next critical step. Every omics approach has 
pros and cons, which decide their application areas in the 
PRM interactions under abiotic stresses (Table 3). Further, 
a design of a system-based approach that combines genetics, 
biochemistry, physiology, immunity, and the defense biome 
is needed to gain insight into plant defense against biotic 
and abiotic stresses. A holistic understanding of the stress-
induced microbiome shifts could facilitate the development 
of tailored “Defense Microbiomes” to fight crop stresses. 
Using such knowledge, new biotechnological products and 
innovative solutions that exploit plant-useful microbiome 
may be developed and introduced for improving agricultural 
productivity and environmental sustainability.
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