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Abstract

We present an image-based navigation solution for a surgical robotic system with a Continuum 

Manipulator (CM). Our navigation system uses only fluoroscopic images from a mobile C-arm 

to estimate the CM shape and pose with respect to the bone anatomy. The CM pose and 

shape estimation is achieved using image intensity-based 2D/3D registration. A learning-based 

framework is used to automatically detect the CM in X-ray images, identifying landmark features 

that are used to initialize and regularize image registration. We also propose a modified hand-eye 

calibration method that numerically optimizes the hand-eye matrix during image registration. The 

proposed navigation system for CM positioning was tested in simulation and cadaveric studies. In 

simulation, the proposed registration achieved a mean error of 1.10 ± 0.72 mm between the CM 

tip and a target entry point on the femur. In cadaveric experiments, the mean CM tip position error 

was 2.86 ± 0.80 mm after registration and repositioning of the CM. The results suggest that our 

proposed fluoroscopic navigation is feasible to guide the CM in orthopedic applications.
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I. INTRODUCTION

CONTINUUM manipulators (CMs) have the potential to advance minimally-invasive 

surgical procedures due to their high dexterity and enhanced accessibility [2]. Robotic 

systems equipped with CMs have been studied in the context of soft environment surgical 

applications such as percutaneous intracardiac surgery [3], fetoscopic interventions [4], 

laryngeal surgery [5], gastroscopy [6] and endoscopic orifice surgery [7], [8], [9]. The 

application of CMs for soft tissue surgery has attracted a great amount of research energy. 

However, similar applications in orthopedic surgery have been limited. The stiffness needed 

for cutting and debriding harder tissues such as bone contrasts with the shape-compliance 

inherent to CMs, presenting design challenges and further complicating the shape sensing 

and control of CMs. Despite these challenges, CMs may be very useful in the surgical 

treatment of bone defects, such as femoroacetabular impingement (FAI), metastatic bone 

disease, severe osteoporosis in areas including the pelvis/acetabulum, femoral neck, peri- 

and sub-trochanteric regions, and traumatic fracture repair. For example, osteonecrosis in 

the femoral head is treated with a procedure called core decompression, which consists of 

using a drill to remove the 8-10 mm cylindrical core from an osteonecrotic lesion [10]. 

Complete removal of a lesion in the femoral head requires access by drilling through the 

narrow femoral neck, and then debriding a larger volume of necrotic bone beyond this 

access point. High accuracy is needed to remove minimal healthy bone so as to maintain 

structural integrity and stability, especially in the narrowest regions of the femoral neck. 

However, to debride a larger volume once having passed through the narrow femoral neck, 

significant dexterity of the tool is required. CMs with embedded shape sensing have been 

demonstrated to meet these requirements [11], [12]. Further, registration and navigation of 

a robotic system with rigid tools for treatment of femoroplasty has been demonstrated [13]. 

We extend these works to demonstrate registration and navigation of a CM relative to the 

femoral bony anatomy.

We present a fluoroscopic image-based navigation solution for a surgical robotic system 

including a CM for orthopedic applications. The CM is mounted on a 6-Degree-Of-Freedom 

(DOF) positioning rigid-link robot, resulting in a redundant robotic system. Due to its 

dexterity, it remains a challenging task to control and steer the CM inside the patient body. 

An effective navigation system is essential to assist robotic interventions including CMs. 

The key challenge is the estimation of the CM-to-bone relationship.

Optical tracking systems are commonly used for navigation in orthopedic surgeries [14], 

[15]. In our previous implementation, we used optical tracking in the control of the CM 

[16]. However, optical tracker based navigation systems require external markers pinned or 

screwed into the patient’s bone to track the real-time pose of the bone relative to the CM, 

introducing additional invasiveness to the procedure. Furthermore, optical tracking systems 

require a clear line-of-sight, adding complexity to surgical workflow.
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Fluoroscopy is an effective way to monitor both CMs and tissue intraoperatively, which has 

been applied to intracardiac navigation [17], percutaneous interventions [18], and orthopedic 

surgeries [19]. Fluoroscopic imaging has the following advantages in orthopedic procedures: 

1) C-arm X-ray machines are widely used in orthopedic rooms; 2) it is low-cost, fast, and 

supplies accurate imaging of deep-seated structures with high resolution; 3) unlike optical 

tracking, it can show changes in bones during surgical operations, for example in fracture 

reduction in trauma surgery. A general disadvantage of fluoroscopy is that it adds to the 

radiation exposure of the patient and surgeon. However, in current practice, orthopaedic 

surgeons always use fluoroscopy for verification, whether navigation with optical tracking is 

used or not, to gain “direct” visualization of the anatomy. As such, the use of fluroroscopy 

for navigation is intended to replace its use for these manual verification images, resulting in 

similar radiation exposure compared to a traditional procedure.

Fluoroscopic 2D/3D registration of the femur has been studied by Gao et al. in the 

application of femoroplasty [20]. In cadaver studies, a mean error of 2.64±1.10 mm was 

achieved between the target point and a rigid drilling/injection device attached to the robot 

[13]. This demonstrates the feasibility to guide a surgical robotic device with a fixed tool 

using this registration approach with respect to the femur. In this paper, we investigate the 

further challenge of using a CM. Estimating the CM shape and pose from fluoroscopic 

images, which is essentially a 2D/3D registration problem, is challenging. This is because 

the CM is dexterous and its size is small relative to the C-arm X-ray projection geometry. 

This leads to severe ambiguities in 2D/3D registration.

The addition of internal sensing units have been studied for estimating the CM shape to 

assist navigation, such as the Fiber optic technologies like FBGs [21], [22], [1]. As shown 

in Fig. 1, our CM has embedded FBG units, which provides real-time curvature sensing 

of the CM. However, external forces, such as those occurring when the CM interacts with 

hard tissues, can make shape estimates from the FBG signal unreliable [1]. In addition, the 

relative pose from the CM to the patient anatomy cannot be bridged by internal sensing 

units. This motivates the use of external imaging to close the loop of navigation. In this 

work, the FBG signals serve as an initial curvature estimation of the CM for image-based 

registration.

Otake et al. first applied fluoroscopic image-based 2D/3D registration to estimate the CM 

pose and shape [23]. However, there were several major limitations: 1) the algorithm was 

only tested with simulation and camera images instead of real fluoroscopic images; 2) the 

registration was manually initialized close to the global optima; 3) the method only used a 

single-view image method, which leads to large ambiguity.

In this paper, we integrate C-arm x-ray image-based navigation into a surgical robotic 

system with a CM (Fig. 1). The contributions are summarized as follows: 1) learning-based 

CM detection and localization for CM pose initialization; 2) image-based 2D/3D registration 

methods for CM shape and pose estimation; 3) a modified hand-eye calibration method that 

numerically optimizes the hand-eye matrix during the multiple CM 2D/3D registration.
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II. METHODOLOGY

Fig. 2 presents the overall concepts of the proposed navigation system. It consists of three 

stages: 1) Pre-operative calibration: The transformation from the CM model reference 

frame to the rigid-link robot end-effector frame is calibrated using X-ray image-based 

hand-eye calibration (Fig. 2a). 2) Detection and Initialization: Distinct features of the 

CM are automatically detected in 2D X-ray images. An initial 3D pose of the CM 

TCM
Carm

ini  is estimated using centerline-based 2D/3D registration (Fig. 2b). 3) Registration 

and Navigation: An accurate 3D pose and shape estimation of the CM TCM
Carm  is achieved 

by intensity-based 2D/3D registration using X-ray images and 3D CM model. The pose of 

the bone anatomy TFemur
Carm  is also estimated using intensity-based 2D/3D registration. The 

patient is anaesthetized and remains stationary during the pre-operative registration phase. 

After registration, the rigid-link robot performs navigation, moving the CM according to 

patient-specific planning (Fig. 2c).

A. CM Model

The CM used in the surgical robotic system is constructed from a hollow superelastic 

nitinol tube with 27 alternating notches on two sides, using a 4 mm diameter lumen as 

a flexible instrument channel, with an outside diameter of 6 mm and a total length of 35 

mm. It achieves flexibility and compliance in the direction of bending while preserving high 

stiffness in the perpendicular direction to the bending plane [24], [25], [26]. Two stainless 

steel cables are embedded through channels on two opposing sides of the CM wall to 

provide bidirectional planar motion [24], [25]. FBG fibers are integrated into the CM wall 

channels. The 3D shape of the CM can be inferred in real-time from FBG readings [27], 

[28].

The CM kinematics configuration is determined by the notch joint angles. Following 

previous work on kinematic modeling of this CM [23], we assume that the joint angle 

changes smoothly from one joint to the next. Angles are parameterized as a cubic spline of 

n equally distributed control points, τi, along the central axis of the CM (n = 5). The model 

of the CM used in the simulation is built from component volumetric models that are aligned 

according to the CM kinematic model. The origin of the CM model base reference frame is 

at the center of the structure between the first notch and the base. The y-z plane defines the 

CM bending plane and the x axis is perpendicular to the bending plane. Fig. 3 illustrates how 

the CM model is built and defines the reference frame.

B. CM Detection and Pose Initialization

The small size, symmetric structure, and dexterity of the CM make it particularly 

challenging to estimate its pose and shape using a fluoroscopic image. To this end, we 

propose to exploit semantic prior information on the imaged object, i. e. the CM, to heavily 

constrain rigid initialization and the deformable registration. We train a convolutional neural 

network (ConvNet) to segment the CM in X-ray images and simultaneously detect its 

start and end point using multi-task learning [29], [30], [31], yielding an estimate of the 

projection domain centerline of the CM. Our segmentation target region covers the 27 
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alternating notches which discern the CM from other surgical tools (Fig. 4a). The two 

landmarks are defined as 1) the origin of the CM base reference frame and 2) the center of 

the distal plane of the last notch, i. e. start and end point of CM centerline (Fig. 4c). Inspired 

by [32], the 2D centerline is extracted using morphological processing of the segmentation 

mask (Fig. 4d). Fig. 4 illustrates these features in an example 2D image and 3D model.

Due to the unavailability of annotated real X-ray images to train ConvNets, we rely on 

DeepDRR [33], a framework for the physics-based rendering of Digitally Reconstructed 

Radiographs (DRRs) from 3D CT, to generate simulation images for network training [34]. 

DeepDRR uses voxel representation, so the CM surface model is voxelized with high 

resolution to preserve details of the notches. The ConvNet architecture is a U-Net inspired 

encoder-decoder structure with concurrent segmentation and landmark heatmap network 

paths [30]. We chose Dice loss to train the segmentation task and the standard l2 loss for the 

localization task.

The detected semantic features combined with the known C-arm projection geometry and 

the CM curvature estimation from FBG readings enable an initial 3D pose estimation of the 

CM using centerline-based 2D/3D registration. Since two 2D landmarks only determine 4 

of the required 6 DOF of the CM base rigid transformation, the other two DOFs can be 

decomposed as the depth distance of the 3D CM base landmark (dA) and the rotation angle 

(θ) about the axis passing through the two 3D CM landmarks (Fig. 4e). We then perform an 

optimization search of these two variables (dA, θ) by minimizing the distance between the 

extracted centerline and the reprojection of the 3D model centerline. Once the global optimal 

(dA, θ) is found, the rigid CM pose in the C-arm frame TCM
Carm  can be determined, which 

is used as the initialization of the intensity-based registration. Since the centerline feature is 

approximate, we expect to see some ambiguity in depth and rotation which is going to be 

resolved using intensity-based registration.

C. Image-based 2D/3D Registration

Pose estimation of both the bone anatomy and the CM is achieved using purely image-based 

2D/3D registration. Image-based 2D/3D registration of the CM estimates both the rigid 

pose of the CM relative to the C-arm source frame TCM
Carm ∈ SE(3)  and the deformable 

kinematics configuration (τi, i ∈ {1..5}). The initial estimation of TCM
Carm is from the 

centerline-based registration, and the initial τi are from the FBG readings. Our proposed 

intensity-based registration of the CM is performed by optimizing an image similarity score, 

combined with a landmark reprojection penalty. DRRs are created by calculating ray casting 

line integrals through the CM model onto a 2D image plane following the C-arm projection 

geometry. The similarity score is calculated between each DRR and the intraoperative image 

I. The landmark reprojection penalty is defined as the sum of l2 distance between each 

detected landmark position from image I and the projected landmark position from the 3D 

model.

Given K images (Ik) as input, using J CM model segment volumes (Vj, j ∈ {1..J}, J = 

27), a DRR operator (P), similarity metric (S), and regularizer over plausible poses (ℛ), 

Gao et al. Page 5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the registration recovers the CM rigid pose TCM
Carm  and deformation control points (τi) by 

solving the following optimization problem:

min
TCM

Carm ∈ SE(3), τi
∑
k = 1

K

S Ik, P(∑
j = 1

J

V j; TCM
Carm, τi) + ℛ TCM

Carm, τi , i ∈ {1..5} (1)

We use patch-based normalized gradient cross correlation (Grad-NCC) as similarity score 

[35]. The 2D image is first cropped to a 500 × 500 region of interest (ROI) using the 

two landmark locations and downsampled 4 times in each dimension. The optimization 

strategy is selected as “Covariance Matrix Adaptation: Evolutionary Search” (CMA-ES) due 

to its robustness to local minima [36]. The two detected landmarks are incorporated into a 

reprojection regularizer defined as

ℛ TCM
Carm, τi = 1

2σl
2 Σ

k = 1

K

P(p3D
(k, l); TCM

Carm, τi) − p2D
(k, l) 2, i ∈ 1..5 , l ∈ A, B (2)

The registration produces the rigid pose of the CM in the C-arm frame TCM
Carm

regi and the 

deformation control point values (τi).

Depending on the number of images being used, image-based 2D/3D registration can be 

classified as single-view (K = 1) or multi-view registration (K > 1). Single-view intensity-

based 2D/3D registration suffers from depth ambiguity as 3D features are condensed along 

the ray-casting line during projection. Since our CM object is deformable and symmetric, it 

also has the problem of axial rotation ambiguity. Multiple view 2D/3D registration, however, 

jointly registers several images in which the relative orientation of objects and the imaging 

device varies, which is effective to remedy the single-view ambiguity [37].

There are two different ways to introduce multiple projection geometries: One is moving 

the C-arm to multiple views to register a static CM pose, which we phrase as multi-view 
registration (Fig. 5a). The other one is moving the CM to multiple poses under a single 

C-arm view, which we phrase as multiple CM registration (Fig. 5b). One key challenge 

of using multiple images is the relative geometry estimation among these poses, which is 

essentially a calibration problem. Grupp et al. used the pelvis as a “fiducial” to estimate the 

multi-view C-arm geometries in the application of osteotomy, and achieved accurate pose 

estimation of the pelvis fragment with an average fragment pose error of 2.2°/2.2 mm [37]. 

Thus, we chose to use the pelvis registration to estimate the relative C-arm view geometry 

for multi-view CM registration.

To keep the pelvis as a fiducial and the femur in the field of view, the multiple C-arm 

view geometries need to be close in rotation, limiting the differences in image appearance. 

In multiple CM registration, however, the CM poses can be more diverse by moving the 

rigid-link robot. Relative CM pose geometries can be calculated using the rigid-link robot 
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forward kinematics Tee
Rbase  and the hand-eye matrix TCM

ee . Calibration of the hand-eye 

matrix is discussed in the following Section II-D.

As shown in Fig. 5b, given M static rigid-link robot forward kinematics 

Tee1
Rbase, Tee2

Rbase, …, TeeM
Rbase and a hand-eye matrix TCM

ee , the CM poses in the static rigid-link 

robot base frame are TCMm
Rbase = Tee

Rbase · TCMm
ee , m ∈ 1..M  with the fact that all configurations 

share the same hand-eye matrix. We then define a central reference frame with respect to the 

robot base frame. The reference frame is chosen to be the average position of multiple CM 

base origins. Its orientation is identity and its translation is the mean translation of all CM 

poses. The transformation from the reference frame to the C-arm frame is noted as Tref
Carm. 

Each CM pose with respect to the reference frame TCMm
ref  can be derived by the reference 

frame definition. We assume the CM shape is fixed during registration. Since the C-arm 

frame is static, Tref
Carm determines all the CM rigid poses in the C-arm frame. Following the 

formulation of (1), the multiple CM registration can be defined using:

min
Tref

Carm ∈ SE(3), τi
∑
m = 1

M

S Im, P(∑
j = 1

J

V j; Tref
Carm, τi) + ℛ Tref

Carm, τi , i ∈ {1..5} (3)

The similarity score, image cropping and downsampling, and optimization strategy are the 

same as multi-view registration. The landmarks of all CMs are reprojected and incorporated 

to the regularizer, which can be described as

ℛ Tref
Carm, τi = 1

2σl
2 Σ

m = 1

M

P p3D
(m, l); θC, τi − p2D

(m, l) 2, i ∈ 1..5 , l ∈ A, B (4)

The registration produces the pose of the reference frame Tref
Carm

regi. Each 

individual pose of the CM in the C-arm frame can be calculated using 

TCMi
Carm

regi = Tref
Carm

regi · TCMm
ref , m ∈ {1..M}.

D. Hand-eye Calibration

In order to navigate the CM using the surgical robotic system, the transformation from 

the CM model frame to the rigid-link robot end effector frame, TCM
ee , needs to be 

calibrated, which is essentially a hand-eye calibration problem. Fig. 6 illustrates the hand-

eye calibration transformations. The conventional hand-eye calibration method collects the 

calibration data at each individual frame, building matrices A from the robot kinematics and 

B from sensor readings. If A system of linear equations AX = XB can be defined where 

X is the hand-eye matrix. However, in this application, X will be inaccurate because B is 

ambiguous due to severe single-view 2D/3D registration ambiguity. Following the multiple 
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CM registration method as described in Section II-C, we propose a modified hand-eye 

calibration method that numerically optimizes the hand-eye matrix during the multiple CM 

registration. Specifically, the hand-eye matrix TCM
ee  is now included as a target variable 

in the optimization problem defined in (3). The intuition is that the collection of multiple 

calibration CM poses can be regarded as a CM object group, then Tref
Carm controls the central 

pose of the group and TCM
ee  controls the relative poses between the CM objects within the 

group. Tref
Carm and TCM

ee  are sufficient to determine all the CM rigid poses in the static C-arm 

frame. The hand-eye calibration can be formulated as

min
Tref

Carm, TCM
ee ∈ SE(3), τi

∑
m = 1

M

S Ik, P(∑
j = 1

J

V j; Tref
Carm, TCM

ee , τi)

+ ℛ Tref
Carm, TCM

ee , τi , i ∈ {1..5}

(5)

and the regularizer is defined as

ℛ Tref
Carm, TCM

ee , τi = 1
2σl

2 Σ
m = 1

M

P p3D
(m, l); θC, τi − p2D

(m, l) 2, i ∈ 1..5 , l ∈ A,

B
(6)

The registration directly produces the hand-eye matrix TCM
ee , which integrates the CM model 

frame to the rigid-link robot end effector frame. There is no need for a fiducial marker in the 

system as the CM itself is functioning as a fiducial via the model-to-image registration that 

connects the C-arm camera frame to the robot kinematics.

We move the rigid-link robot to various static configurations within its workspace and the 

C-arm capture range to collect the calibration data. The C-arm is static during the calibration 

data collection procedure. At each static configuration, we take an X-ray image of the CM 

and the rigid-link robot kinematics. The CM curvature is kept constant during the calibration 

data collection.

In order to validate the accuracy of the hand-eye calibration, we put two rigid bodies with 

reflective markers on the CM tip segment and shaft. The optical tracker simultaneously 

tracks these two rigid bodies for validation. At each static configuration, we also take the 

optical tracker readings. Thus, we can perform an additional standard hand-eye calibration 

using the accurate optical tracking result. In this case as shown in Fig. 6, the shaft marker 

pose in the optical tracker frame, TOs
tracker, is used to define the A matrix, and the robot 

kinematics Tee
Rbase is used to define the B matrix.
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E. CM Navigation

Given the registration pose estimation of the femur ( TFemur
Carm

regi) and the CM ( TCM
Carm

regi), 

the relative transformation of the registration CM frame with respect to the femur anatomy is

TFemur
CM

regi = TFemur
Carm

regi · TCM
Carm

regi
−1

(7)

Given a target CM pose relative to the femur, TFemur
CM

tar, we can calculate a target rigid-link 

robot forward kinematics using:

Tee
Rbase

tar = TCM
ee −1 · TFemur

CM
tar
−1 · TFemur

CM
regi · TCM

ee · Tee
Rbase

regi (8)

where Tee
Rbase

regi is the rigid-link robot forward kinematics during registration, and TCM
ee

is the hand-eye matrix. The CM can be navigated to patient-specific planned positions/

trajectories by the rigid-link robot according to the target kinematics.

III. EXPERIMENTS AND RESULTS

We verified our navigation system with a series of simulation studies and cadaveric 

experiments, including CM detection, 2D/3D registration, hand-eye calibration, and robot 

navigation. Lower torso CT scan images of a female cadaveric specimen were acquired 

for fluoroscopic simulation and anatomy registration. The CT voxel spacing is 1.0 × 1.0 

× 0.5 mm with dimensions 512 × 512 × 1056. Pelvis and femur volumes were segmented 

and pelvis anatomical landmarks were annotated using the method described in [13]. We 

manually annotated a drilling/injection entry point on the greater trochanter surface based 

on the biomechanical analysis. The simulation environment was set up to approximate a 

siemens CIOs Fusion C-Arm, which has image dimensions of 1536 × 1536, isotropic pixel 

spacing of 0.194 mm/pixel, a source-to-detector distance of 1020 mm, and a principal point 

at the center of the image.

A. CM Detection

Given the CT scan image, we manually defined a rigid transformation such that the CM 

model was enclosed in the femur, simulating applications in core decompression and 

fracture repair [11], [38]. Projection using DeepDRR was based on voxel representations 

of the CT and CM. The CM surface model was voxelized with high resolution to 

preserve details of the notches. The CM model voxel HU value was set to 2,000 to 

match measurements from real fluoroscopic acquisition. At positions where the CT volume 

exhibited overlap with the CM, CT values were ignored to simulate drilling. We used 

DeepDRR to generate 1) realistic X-ray images, 2) 2D segmentation masks of the CM end-

effector, and 3) 2D locations of two key landmarks. 3D CM segmentations and landmark 

locations were determined by the simulated CM rigid transformation and joint angles, which 

were then projected to 2D as training labels following the C-arm projection geometry. We 

generated in total 300 CM models for training and testing. We uniformly sampled the 
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control point values in [−7.9°, 7.9°], source-to-isocenter distance in [400 mm, 500 mm], 

rotation angle of LAO/RAO in [0°, 360°]; CRAN/CUAD in [75°, 105°], and the volume 

translation of ±20 mm in x, y and z axis. We included 5 half-body CT scans (512 × 512 × 

2590 voxel, 0.853 mm3/voxel) in the experiment. We used 4 CTs for training and the other 

one for testing. 10,000 images were generated for training and validation with a split of 10:1. 

4,000 images were generated for testing. We also tested the performance on 100 real Xray 

images, where we manually labeled the groundtruth mask and landmarks to compare. These 

real X-ray images covered three different CM application scenarios: 1) clean background 

images during hand-eye calibration; 2) the CM above cadaver with soft tissue as background 

during registration; 3) the CM inserted to a drilled femur. The learning rate was initialized 

with 0.001 and decayed by 0.1 every 10 epochs.

The segmentation accuracy was calculated using the DICE score of the prediction mask and 

the groundtruth mask. Landmark detection accuracy was reported with the pixel l2 distance 

norm. We first tested the network output on the simulation dataset using groundtruth 

projection. The mean DICE score was 0.993 ± 0.002 and the mean l2 distance error was 

0.449 ± 0.525 mm. The mean DICE score on real X-ray was 0.920 ± 0.068 and the mean l2 

distance error was 2.62 ± 1.05 mm. Fig. 7 presents the qualitative results. The performance 

on real data is sufficient to initialize the registration. Thus, we did not consider using the real 

X-rays to retrain the network for improved accuracy.

B. 2D/3D Registration Simulation Study

We tested a series of CM 2D/3D registration workflows, including centerline-based 2D/3D 

registration, single-view 2D/3D registration, multi-view 2D/3D registration and multiple CM 

2D/3D registration. We performed 1,000 simulation studies with randomized geometries 

for each registration workflow and report the registration accuracy based on our simulated 

“groundtruth ” poses of the objects and the registration results.

The single-view image is approximately anterior/posterior (AP). Multi-view images 

included a perturbed AP view and two views at random rotations about the C-arm orbit with 

a mean and STD of +20 ± 3° and −15 ± 3°. Random movements of the pelvis were sampled 

uniformly to simulate patient pose variations, including translations from 0 to 10 mm and 

rotations from −10 to 10 in degrees with respect to a randomly assigned unit vector in pelvis 

volume center. Rotations of femur were sampled from random rotations with respect to the 

center of femoral head (FH). The axis of rotation was sampled uniformly between −15 and 

15 degrees. The CM was simulated at random positions above the specimen femur head. 

Perturbed movements of the CM with respect to the C-arm included translations from −30 

to 30 mm and rotations from −30 to 30 in degrees with respect to a randomly assigned unit 

vector in the CM base reference frame (Fig. 8). To test the joint registration of multiple 

CM poses using a static C-arm view, we randomly sampled four CM poses with constant 

curvature in the AP view including translations from −10 to 10 mm and rotations between 

−30 and 30 degrees with respect to randomly assigned unit vector in the CM reference 

frame for each registration. Fig. 8 shows example simulation images for each registration 

workflow.
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Registration accuracy was assessed based on the the following metrics: 1) CM tip position 

in the C-arm frame pCarm
CMt ; 2) entry point position in the C-arm frame pCarm

ent ; relative 

distance between the CM tip and the entry point in the C-arm frame pCarm
ent − pCarm

CMt ; 3) 

CM base rigid registration transformation in the C-arm frame TCarm
CMbase . We computed the 

l2 distance error for items 1-3 above compared to the groundtruth point position in the 

C-arm frame. CM base registration error was reported in the CM base reference frame using 

δTCMbase = TCarm
CMbase

regi · TCarm
CMbase

gt
−1

. We also computed the CM notch (joint) rotation 

error compared to groundtruth notch rotation angles. The femur entry point annotation is 

shown in Fig. 8.

1) Centerline-based Initialization: We used the CM detection results to test our 

centerline-based 2D/3D registration algorithm on the AP view simulation images. We 

assumed the initial curvature readings were added with a uniformly distributed random 

noise of [−0.5°, 0.5°] to the groundtruth control point values. We uniformly sampled 1,000 

points in the search space of dA and θ, and chose the lowest point as global minimum for 

CM pose estimation. We compared the output with the groundtruth values. dA had a mean 

error of 29.27 ± 21.02 mm, and θ with 30.78° ± 22.13°.

2) Single-view Registration: We first performed a single-view pelvis registration and 

then the femur registration was initialized using the pelvis registration outcome as described 

in [20]. We used the centerline-based registration result in the above section to initialize the 

intensity-based 2D/3D registration of the CM. The CM curvature noise model is the same 

with the centerline-based registration settings. Thus the registration started at a deflected 

shape estimation and optimized the n + 6 (n = 5) DoF until convergence. We achieved a 

mean error of 1.17 ± 0.98 mm for the CM tip position and 1.88±1.39 for the relative distance 

between CM tip and femur bone entry point.

3) Multi-view Registration: Multiple C-arm pose geometry was estimated using the 

pelvis registration result of each individual view. The femur registration was initialized by 

pelvis registration and jointly optimized using multi-view images. The CM registration was 

initialized using the AP view centerline-based registration result and also jointly optimized 

with multi-view images. The mean CM tip position error was 0.64 ± 0.45 mm and the mean 

relative error was 0.62 ± 0.39 mm.

4) Multiple CM Registration: The femur registration was performed using the same 

method as in multi-view registration. However, the CM registration was performed using 

multiple CM pose configurations with the static AP view. We assumed that the relative 

CM poses were known and the CM curvature was constant among multiple poses. We set 

the reference frame of multiple CM poses using the method described in Section II-E. The 

registration optimized the reference frame pose and the CM control points resulting in n+6 

(n = 5) DoF until convergence. We achieved a mean CM tip position error of 0.99±0.55 mm 

and a mean relative error of 1.29 ± 0.78 mm.
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Registration errors are presented in Table I. A histogram of the error metrics is shown in Fig. 

10. These results are further discussed in the discussion section.

C. Hand-eye Calibration

We collected X-ray images using the surgical robotic system for hand-eye calibration. Fig. 

9 shows our data collection setup. Two rigid bodies with 4 optical markers each were used 

for validation. Marker (Os) was fixed rigidly to the shaft of the CM. Marker (Ot) was rigidly 

attached to the last segment of CM. The two rigid bodies were simultaneously tracked 

by an NDI Polaris (Northern Digital Inc., Waterloo, Ontario, Canada) system. We used a 

6-DOF UR-10 (Universal Robots, Odense, Denmark) as the rigid-link robot. We manually 

commanded the UR-10 to 60 different configurations. At each configuration, we took an 

X-ray image using a 30 cm flat panel detector Siemens CIOS Fusion C-Arm, recorded the 

UR-10 forward kinematics Tee
Rbase  and two polaris marker positions TOt

tracker, TOs
tracker .

We performed the proposed multi-view hand-eye calibration method and found TCM
ee . In 

order to validate its accuracy, we solved another hand-eye calibration using the optical 

tracking data of marker (Os). The relative frame transformations TOt
tracker

i · TOt
tracker

j and 

Tee
Rbase

i · Tee
Rbase

j are the A and B matrices of the hand-eye equation AX = Y B, and TOs
ee

is the X hand-eye matrix. We then transformed the CM tip position into the robot base frame 

using both the optical tracking and image-based registration hand-eye results. This can be 

formulated as:

pRbase
Ot = Tee

Rbase · TOs
ee · TOs

tracker −1 · TOt
tracker · pOt (9)

pRbase
CMt = Tee

Rbase · TCM
ee · TCM

Carm −1 · TCMt
Carm · pCMt (10)

where pOt is the origin point of the Ot marker and pCMt is the tip point of the CM model. We 

then computed the l2 distance error between pRbase
Ot  and pRbase

CMt . We achieved a mean error of 

2.15 ± 0.50 mm.

D. Cadaveric Study

We used two cadaveric specimens for our study (Fig. 11). A female Specimen1, including 

lower torso, pelvis, and femurs, was used for testing registration and robot positioning. A 

right femur of Specimen2 was used for testing registration when the CM was inserted to 

the femoral head. To obtain the groundtruth poses for the femur anatomy, metallic BBs 

were implanted into the femoral head as shown in Fig. 11. For Specimen1, the BBs were 

implanted closer to the trochanter and the femoral head center region in order to accurately 

estimate the femoral head pose. For Specimen2, the BBs were evenly distributed around the 

femoral head. We took CT scans of both Specimen1 and Specimen2. The 3D locations of the 

BBs were manually labeled in the CT scans of the specimens. The 2D BB locations were 

manually annotated in the X-ray images.
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We performed the registration workflow five times using Specimen1 with varying C-arm 

geometries and specimen poses. Each registration workflow had three images for femur 

registration and four images for CM registration. An example set of images is shown 

in Fig. 12. After each registration, we commanded the UR-10 to another configuration 

and took another X-ray image to check the CM reposition accuracy. The optical fiducials 

were detected in the X-ray image using Hough transform circle detection. The optcial 

marker (Ot) was attached to the tip segment of the CM. Thus, the groundtruth CM tip 

position, pCarm
CMt

gt, in the C-arm frame was calculated by solving the PnP problem using 

corresponding fiducials in X-ray and marker configurations. The CM tip position error was 

reported using the l2 distance between estimated tip position from registration pCarm
CMt

est

and pCarm
CMt

gt. Groundtruth femur entry point position, pCarm
FEMent

gt, was calculated from the 

PnP solution using the corresponding BBs. l2 distance between estimated ((pCarm
FEMent)est) and 

groundtruth ((pCarm
FEMent)gt) femur entry point was reported as femur entry point error. We also 

calculated the relative error between the entry point and the CM tip using

pCarm
FEMent

gt − pCarm
CMt

gt − pCarm
FEMent

est
− pCarm

CMt
est 2 (11)

We achieved a mean CM tip position error of 2.86±0.80 mm and a mean relative error 

between CM tip and femur entry point of 3.17 ± 0.86 mm. Table. II presents the error 

metrics of each individual trial.

For Specimen2, we drilled two pathways inside the femoral head using the CM. One 

pathway was curved and the other one was straight. The CT scan was taken after the 

pathways were drilled. Three multiple view X-ray images were taken at several positions 

along the insertion of the CM into the end of the bone pathways (Fig. 12). We then 

performed registration of the CM and the femur. We manually annotated both the straight 

and the curved pathway endpoints in the CT scan. The registration accuracy was reported 

using the l2 distance between CM tip positions and the CT pathway end points in the 

CT coordinate frame. We achieved a tip position error of 2.88 mm of the curved pathway 

registration and 2.65 mm of the straight pathway registration. Fig. 12 illustrates overlay 

images of the registration convergence stage on Specimen2.

IV. DISCUSSION

Our studies suggest the feasibility of applying purely fluoroscopic image-based registration 

for the CM navigation. This is of interest because fluoroscopy is the most common imaging 

modality for orthopedic applications. Our navigation system automates the detection of 

distinct CM features in fluoroscopic images, which provides an initial CM pose estimation 

in 3D. Accurate pose estimation is achieved using intensity-based 2D/3D registration of the 

fluoroscopic image to the CM model. To navigate robotic interventions, the model-based 

registration result is integrated into the rigid-link robot kinematics configuration using a 

modified hand-eye calibration method. The proposed navigation system performs single-
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view or multi-view registrations for both the CM and the bone. Our simulation study shows 

sub-millimeter accuracy in determining the relative translation error between the CM tip 

position and the femur entry point. The mean CM base rotation error and the mean CM 

notch rotation error are less than 0.2 degrees. The cadaver study results suggest a mean 

translation error of 3.17 mm and a maximum error of 4.10 mm between the two points, 

which is sufficient for osteonecrosis lesion removal (less than 1 cm), and is feasible to guide 

the CM for orthopedic applications.

Estimating CM pose and curvature using 2D/3D registration is a challenging problem. Our 

centerline feature-based registration yields large mean error of 30.78° ± 22.13° in θ (Fig. 

4e), because the centerline feature has strong symmetric property which leads to ambiguity 

when doing rotations. Due to its dexterity, the CM projection image itself has distinct 

appearance, which is suitable for intensity-based 2D/3D registration. However, the problem 

of ambiguity along the projection line direction still exists in single-view intensity-based 

2D/3D registration, which has large TransX (depth translation) and RotY (axial rotation) 

errors in simulation studies (Fig. 10).

Multi-view 2D/3D registration, however, combines the information of CM appearance under 

multiple projection geometries, which fundamentally improves single-view ambiguity. We 

compared two different methods of introducing multiple views: multi-view registration and 

multiple CM registration. In simulation, although the mean translation error of multiple 

CM registration (1.00 mm) is higher than multi-view registration (0.52 mm), the mean 

axial rotation error is significantly smaller (0.12° compared to 0.88°) and the mean CM 

notch (joint) rotation error is also smaller (0.18° compared to 0.22°). Thus, multiple CM 

registration is preferable over multi-view registration for the CM because the rotation 

accuracy is more important to navigate the positioning robot. Another advantage of the 

multiple CM registration is that motion of the CM can be automated as opposed to the 

C-arm motion. Multi-view registration is useful when the CM is inserted inside the bone 

and cannot move freely (Fig. 12). Multi-view registration can provide an accurate CM tip 

position estimation with respect to the bone, which is essential for orthopedic applications.

To further demonstrate the relationship between the CM tip error and the 

registration ambiguity, we create correlation plots of the CM tip position error, 

( pCarm
CMt

gt − pCarm
CMt

est 2
), and the CM base origin depth error in the C-arm frame, 

(( yCarm
CMbase

gt − yCarm
CMbase

est 2
)). All three methods show strong correlation between the CM 

tip error and the CM base depth error (correlation coefficient > 0.8) (Fig. 13). Single-view 

registration has the lowest correlation of 0.82, which suggests part of the CM tip error comes 

from the rotation ambiguity. Multiple CM registration has the highest correlation coefficient 

of 0.99. This is because the joint registration of multiple CM poses balances the rotational 

ambiguity of registering a single CM, but the depth ambiguity still arises from using a single 

view.

The accuracy of the cadaveric experiments is less than the simulation study. There are 

several potential reasons: 1) the CM appearance in real fluoroscopic images is different from 

simulated DRR images due to spectrum and exposure; 2) the UR kinematics introduces joint 
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configuration errors due to robot going out of calibration; 3) the gravity parameter of the CM 

and the actuation unit not compensated in the UR kinematics; 4) the BB injection, Polaris 

fiducial detection, manual annotation and segmentation are likely to introduce errors.

One drawback of the fluoroscopic navigation is the radiation exposure to the patient. Our 

approach requires six to seven X-rays to register the patient and the CM. This is usually 

not excessive as compared to other orthopedic applications. However, the pose of patient 

anatomy can be different after registration due to tool/bone interactions, such as drilling/

milling or injection. In this case, additional X-rays are required to correct the registration 

and update the robot navigation planning. If needed, additional registrations can keep 

track of the tool pose during surgical operation, which can account for movement of the 

anatomy, or unmodeled interaction behavior. The process of re-registration will require only 

2-3 additional X-ray shots. Unlike other navigation systems which can perform real-time 

tracking (e.g. optical tracking), fluoroscopic images cannot be acquired at high frequency in 

real-time for safety reasons. The internal sensing units, like the FBG sensors, can provide 

real-time CM curvature sensing with high frequency (100 Hz) [1], but the measurements 

may be inaccurate, and the tool to tissue relationship can not be directly visualized. Thus, 

to better control the CM, the image-based navigation needs to be combined with the use of 

internal sensing units.

The feasibility of fusing data from FBG sensors and overhead camera to control the 

CM motion was previously investigated [39]. The future work includes the study of 

combining the FBG sensor data with our fluoroscopic image-based registration to perform 

intra-operative CM control.

V. CONCLUSION

We present a fluoroscopic navigation system for a surgical robotic system including a 

continuum manipulator, which automatically detects the CM in fluoroscopic image and uses 

purely image-based 2D/3D registration to estimate the poses of CM and bone anatomy. The 

registration is integrated into the robot kinematics to guide CM navigation. Our navigation 

system was evaluated through intensive simulation and cadaveric specimen studies. The 

results showed the feasibility to apply the proposed navigation system for CM navigation in 

robot assisted orthopedic applications. In the future, we will conduct individual calibration 

experiments to further locate the sources of errors.
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Fig. 1. 
Concept of the proposed fluoroscopic image-based navigation for the CM. Key frames are 

illustrated as red cross arrows. The blue arrows illustrate the transformations. TBone
Carm and 

TCM
Carm are rigid pose estimations of the CM and the bone anatomy in the C-arm coordinate 

frame. TCM
ee  is the hand-eye matrix. Top right: Continuum manipulator and the integrated 

FBG with triangulation configuration [1].
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Fig. 2. 
Illustration of the proposed image-based navigation for the CM. Key frames are shown with 

red cross arrows. (a) Pre-operative hand-eye calibration of the CM. The hand-eye matrix 

TCM
ee  is represented by the curved arrow. (b) CM feature detection and centerline-based 

initialization. 2D landmark heatmaps and corresponding 3D landmarks are shown in red and 

green. 2D and 3D centerlines are shown in yellow and pink, respectively. The CM initial 

pose estimation TCM
Carm

ini is marked with a blue arrow. (c) Scheme of 2D/3D registration 

of the CM and the femur bone anatomy. The registration transformations are described in 

Section II-C in detail. An example navigation position after registration is illustrated with 

transparency.
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Fig. 3. 
CM Model. (a) Basic model components including base, notch and top segments. (b) An 

example CM configuration. The notch joint angle is illustrated as τi. The cubic spline 

control points are shown aside as c1, c2, …, c5. The CM base reference frame is shown in 

RGB cross arrows. (c) An example flexible tool model. (d) Integrated CM with flexible tool 

inside.
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Fig. 4. 
(a) 3D segmentation label and landmark positions on an example CM model. (b) An 

example simulation image using DeepDRR. (c) Overlay of the 2D segmentation mask 

and landmark heatmaps on the cropped image in (b). (d) Extraction of the 2D centerline 

from a segmentation mask consists of dilation, edge and distance map computation, and 

finally, shortest path extraction. (e) A simplified illustration of the centerline-based 2D/3D 

registration geometry.
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Fig. 5. 
(a): Illustration of multi-view registration. Three example C-arm view source frames 

are noted with red cross arrows. (b): Illustration of multiple CM registration. The 

transformations are marked separately on the right and described in Section II-C.
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Fig. 6. 
Illustration of the hand-eye calibration transformations. The image-based hand-eye 

calibration loop is shown in blue. The purple arrow shows the image-based hand-eye 

transformation TCM
ee . The optical tracker-based hand-eye calibration loop is shown in green, 

and TOs
ee  is the optical tracker-based hand-eye matrix.
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Fig. 7. 
Representative examples of segmentation and landmark detection performance on synthetic 

and real ex vivo data in the top and bottom rows, respectively. The predicted segmentation 

mask is shown as green overlay while the estimated landmark locations appear as red blobs.
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Fig. 8. 
Example of simulation images. Red: single-view image. Blue: multi-view images. Green: 

Multiple CM pose images. Upper right: CM base and C-arm coordinate frames used to 

report the registration error are marked with RGB cross arrows using an example projection 

geometry. The femur entry point and the CM tip point are marked using red spheres.

Gao et al. Page 26

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Upper: Hand-eye calibration setup with UR-10, C-arm polaris tracker and markers. Lower: 

Two example calibration X-ray images. 2D overlay of cropped X-ray (back-ground) and 

DRR-derived CM edges in green.
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Fig. 10. 
Top: Histogram plot of CM tip error (in orange) and CM tip to femur entry point relative 

error (in blue) in the AP view C-arm frame. Bottom: Box plot of CM base registration error 

in translation and rotation of all axes.
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Fig. 11. 
Upper Left: Specimen1 experiment setup with C-arm, UR-10, polaris tracker and CM. 

Upper Right: Specimen2 experiment setup with UR10 and CM inserted to the femur head. 

Middle: Examples of BB locations. Bottom: Examples of Polaris fiducial detection results.
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Fig. 12. 
2D overlay examples of fluoroscopic images (background) and DRR-derived edges in 

green when registration is converged. Top: Cadaveric Specimen1 CM registration results 

and position overlay after reposition (in red). The original full size image is placed at 

background and the cropped CM registration image is placed at foreground lower left corner. 

Bottom: Cadaveric Specimen2 CM registration results of each C-arm view for the straight 

and curved pathway insertions.
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Fig. 13. 
Scatter plots of the correlation matrix between CM tip position error and CM base TransX 

error of three registration methods. Correlation coefficients are marked on the upper left of 

each plot.
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TABLE II

CADAVER SPECIMEN1 RESULTS OF ERROR METRICS

Trial ID I II III IV V

CM Tip Position (mm) 2.73 2.44 2.77 4.20 2.09

Femur Entry Point (mm) 1.21 2.23 1.91 2.35 2.04

Relative (mm) 2.95 3.31 3.65 4.10 1.83
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