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A B S T R A C T   

This study aims to elucidate the variations in spatiotemporal patterns and sociodemographic determinants of 
SARS-CoV-2 infections in Helsinki, Finland. Global and local spatial autocorrelation were inspected with Moran’s 
I and LISA statistics, and Getis-Ord Gi* statistics was used to identify the hot spot areas. Space-time statistics were 
used to detect clusters of high relative risk and regression models were implemented to explain sociodemo
graphic determinants for the clusters. The findings revealed the presence of spatial autocorrelation and clustering 
of COVID-19 cases. High–high clusters and high relative risk areas emerged primarily in Helsinki’s eastern 
neighborhoods, which are socioeconomically vulnerable, with a few exceptions revealing local outbreaks in 
other areas. The variation in COVID-19 rates was largely explained by median income and the number of foreign 
citizens in the population. Furthermore, the use of multiple spatiotemporal analysis methods are recommended 
to gain deeper insights into the complex spatiotemporal clustering patterns and sociodemographic determinants 
of the COVID-19 cases.   

1. Introduction 

Coronavirus disease (COVID-19), caused by Severe Acute Respira
tory Syndrome Coronavirus 2 (SARS-CoV-2), was first identified on 31 
December 2019 in the Wuhan prefecture in the Hubei Province of China 
(WHO, 2020a), where the first cases were linked to the Huanan Seafood 
Wholesale Market (Hui et al., 2020). However, the origin of the 
pandemic has not yet been determined. On 11 March 2020, the World 
Health Organization (WHO) declared COVID-19 a pandemic (WHO, 
2020b). In Finland, the first coronavirus case was diagnosed already on 
29 January 2020 in Lapland (Haveri et al., 2020), while the first positive 
case in the City of Helsinki was diagnosed on February 25th (Jarva et al., 
2021). Thereafter, the disease spread quickly after winter holiday 
travelers to Austria, Italy and Spain returned to Finland (Nguyen et al., 

2021). In April and early May, the daily number of new cases remained 
relatively high (5.6% of tested individuals were positive) in the Greater 
Helsinki area (Jarva et al., 2021). In June and July, the COVID-19 
epidemic eased temporarily in Finland and infections dropped 
steadily. In autumn 2020, a total number of new COVID-19 cases was on 
the rise and the second wave of coronavirus hit Finland, mainly seeded 
by new imported SARS-CoV-2 strains (Nguyen et al., 2021). The inci
dence of the second wave peaked in early December, and after a brief 
descent, started to rise again in mid-January. This heralded the begin
ning of a third wave driven by the more transmissible alpha (B.1.1.7) 
and beta (B.1.351) SARS-CoV-2 variants (Kant et al., 2021), which 
peaked in late March. This study focuses on the second and early third 
wave of the COVID-19 epidemic in the City of Helsinki from 28th 
October 2020 to 24th March 2021. 
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Since the outbreak of the COVID-19 pandemic in early 2020, there 
has been growing interest in spatial modeling of COVID-19 to under
stand spatial patterns and spatiotemporal dimensions of the disease 
spread (Fatima et al., 2021). Clustering, hot spot analysis, space-time 
scan statistics, and regression modeling have been the most commonly 
used spatial methods (Franch-Pardo et al., 2020). Global Moran’s I and 
Local Indicators of Spatial Association (LISA) statistics have been used in 
previous COVID-19 studies to explore spatial epidemic dynamics of the 
virus (Dutta et al., 2021; Kang et al., 2020), and to examine spatial 
patterns of COVID-19 incidence cases and death rates (Cavalcante et al., 
2020; Kim et al., 2021). According to Fatima et al. (2021), there has 
been less attention to analyze COVID-19 hot spots with Getis-Ord Gi* 
statistics (see e.g. Das et al., 2021; Lakhani, 2020; Mollalo et al., 2020). 
Previous COVID-19 studies, to the best of our knowledge, did not include 
a comparison of LISA and Getis-Ord Gi* statistics. 

Space-time scan statistic (Kulldorff, 1997) has been used to analyze 
space-time clusters and risk areas of COVID-19 in a number of studies 
(Andrade et al., 2020; Cordes and Castro, 2020; Desjardins et al., 2020), 
which mainly employed the prospective Poisson space–time scan sta
tistic method. However, when using a large maximum scanning window 
in this method, a large cluster can hide several smaller distinct clusters 
(Han et al., 2016). To overcome this problem, Gini Optimization 
parameter was introduced in SaTScan software (Kulldorff, 2021) but it is 
not yet widely utilized. 

Traditional OLS regression methods and spatial regression models 
have been used to understand the contribution of socioeconomic, de
mographic and environmental determinants to explain spatial vari
ability of COVID-19 incidences and mortality in the epidemic (Mansour 
et al., 2021; Maiti et al., 2021; Mena et al., 2021; Middya and Roy 2021; 
Mollalo et al., 2020; Zhang and Schwartz, 2020; Snyder and Parks, 
2020). However, in the majority of these studies, only one 
regression-based method was employed. Furthermore, most of the 
earlier geospatial COVID-19 studies have been conducted at 
global-continental or country scale (McKenzie and Adams, 2020; Melin 
et al., 2020; Moonsammy et al., 2021; Pourghasemi et al., 2020; San
nigrahi et al., 2020; Sobral et al., 2020) or at county/municipality level 
(Han et al., 2021; Liu et al., 2021; Imdad et al., 2021; Martines et al., 
2021; Rahman et al., 2021; Sun et al., 2020; Sun et al., 2021). Less 
research has been carried out at postal/ZIP code level (Cordes and 
Castro, 2020; DiMaggio et al., 2020; Kim et al., 2021). Furthermore, the 
majority of previous studies have investigated COVID-19 with only one 
temporal time slot. This study represents a one-of-a-kind effort to 
contribute to the existing geospatial COVID-19 research by analysing 
second and early third wave COVID-19 cases with multitemporal postal 
code level data using GIS and spatial modeling methods. 

1.1. Purpose of the study 

This study aims to identify and map the significant clusters of COVID- 
19 cases and significantly elevated disease risk areas in Helsinki, 
Finland. As recommended in previous studies, we used the prospective 
Poisson space–time scan statistic. Besides that, there is a need to 
investigate the Poisson space-time scan approach using Gini Optimiza
tion further, so we tested Gini Optimized cluster detection with retro
spective purely spatial Poisson scan statistics. Furthermore, the goal of 
this research is to determine sociodemographic factors that influence the 
spread of COVID-19. We employed three different regression methods: 
Ordinary Least Squares (OLS) (Ward and Gleditsch, 2018), Geographi
cally Weighted Regression (GWR) (Brunsdon et al., 1996), and Multi
scale Geographically Weighted Regression (MGWR) (Fotheringham 
et al., 2017) with sociodemographic determinants to explain spatial 
variability of COVID-19 infection rates. 

This is the first comprehensive spatial analysis study of COVID-19 
(SARS-CoV-2) infections in Finland, and it provides new insights into 
the disease’s spatial spread, temporal trends and sociodemographic 
correlates. The findings could help public health services better target 

intervention locations and control disease spread. The spatiotemporal 
analysis methods presented here could be used to investigate and pro
vide information to improve management and control of the ongoing 
COVID-19 crisis and future pandemics in other parts of the world. 

2. Materials 

2.1. Study area and COVID-19 infection data 

Finland is situated in northern Europe, bordering Sweden, Norway 
and Russia. Helsinki, the capital of Finland, is located in the southern 
part of the country on the shore of the Gulf of Finland (Fig. 1). Helsinki is 
the most densely populated city in Finland (2934 people/km2), with 653 
835 inhabitants (31 December 2019) of whom 9.6% are of foreign origin 
(City of Helsinki, 2020a). The City of Helsinki is officially divided into 
60 neighborhoods, and these neighborhoods have altogether 84 postal 
code areas (Fig. 1). 

The City of Helsinki provided the dataset of COVID-19 infections at 
the postal code level. The data are publicly available online and include 
information on new COVID-19 infections and new cases per 100,000 
residents at approximately 14-day intervals (14-day notification rate) 
(City of Helsinki, 2020b). This study used data from 28th October 2020 
to 24th March 2021. During this period, a total of 21,668 COVID-19 
infections were diagnosed in Helsinki comprising 29.5% of all cases in 
Finland during the period ((City of Helsinki, 2020b). There were 69 
postal code areas in this study for which COVID-19 data were available 
for 11 time periods (Fig. 2). Due to sensitivity issues, data for 15 postal 
code areas were missing (less than five COVID-19 infection cases in 
postal code areas cannot be published) (City of Helsinki, 2020b). 

2.2. Sociodemographic data for regression analysis 

Statistics Finland (2020) provided sociodemographic data, and the 
Helsinki Region Environmental Services SeutuData’19 database pro
vided data on foreign citizens (HSY, 2019). Based on previous COVID-19 
studies (Das et al., 2021; DiMaggio et al., 2020; Li et al., 2021; Liu et al., 
2021; Mansour et al., 2021; Mollalo et al., 2020), seven potential pre
dictor variables for regression analyses were chosen as outlined in 
Table 1. 

3. Methods 

3.1. Spatial association of COVID-19 infections in the City of Helsinki 

First, we used global Moran’s I to test the spatial independence of 
COVID-19 infection cases per 100,000 residents in Helsinki (Moran, 
1950). Global Moran’s I computes the degree of spatial autocorrelation 
across the entire study area. Moran’s I values range from − 1 to +1, with 
a positive Moran’s I value indicating similar value clustering, a negative 
Moran’s I value indicating dissimilar value clustering, and a value of 
0 indicating random distribution. 

Second, two analyses of local spatial autocorrelation were per
formed: the Local Indicators of Spatial Association (LISA) (Anselin, 
1995) and the Getis-Ord Gi* statistic (Getis and Ord, 1992). LISA anal
ysis was used to detect statistically significant local spatial clusters with 
high values high–high (H–H) or low values low–low (L–L), as well as 
spatial outliers with high–low (H–L) or low–high (L–H). The cluster type 
distinguishes a statistically significant cluster of high values (H–H), a 
statistically significant cluster of low values (L–L), an outlier in which a 
high value is surrounded primarily by low values (H–L), and an outlier in 
which a low value is surrounded primarily by high values (L–H). The 
Getis-Ord Gi* statistic was used to determine the geographic distribution 
of potential COVID-19 infection hot spots (high values) and cold spots 
(low values) per 100,000 residents. 

GeoDa (version 1.18.0) was used to compute global Moran’s I and 
LISA statistics (Anselin et al., 2010). A Monte Carlo simulation of 999 
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random iterations yielded a pseudo p-value and z-score of the global 
Moran’s I for each variable. ArcGIS Desktop (version 10.8) was used to 
compute Getis-Ord Gi* hot spot statistics (ESRI, 2020). Supplementary 
Materials 1 contains the statistics equations for Moran’s I, LISA, and 
Getis-Ord Gi* hot spots. 

3.2. Space-time clustering patterns and epidemic curve 

The space-time patterns of COVID-19 infections in Helsinki were 
examined in SaTScan software (version 10.0) to detect significant (p- 
value<0.05) space-time clusters using the prospective Poisson space- 
time scan statistic and the retrospective purely spatial Poisson scan 
statistic (Kulldorff, 2021). First, we ran purely spatial scan statistics for 
three time periods: 28.10.2020–9.12.2020, 23.12.2020–10.2.2021, and 
24.2.2021–24.3.2021. We computed pure spatial scan statistics with and 
without Gini optimization to see if there were any ’Gini clusters’ in the 
data. Then, for the same time periods, we used prospective Poisson 
space-time scan statistics to detect active and emerging clusters. We 
restricted the spatial and temporal scanning windows to include ≤20% 
of the population at-risk and ≤50% of the study period. In addition, each 
candidate must contain at least 5 infection cases at a minimum duration 
of 2 days (Desjardins et al., 2020; Hohl et al., 2020). To avoid detecting 
extremely large clusters, larger spatial and temporal windows were not 
chosen (Desjardins et al., 2020). To determine the statistical significance 
of space-time clusters, we used Monte Carlo testing with 999 simula
tions. The relative risk maps for COVID-19 infections were then reported 
and visualized for three different time periods, presenting spatiotem
poral variation of significant (p-value<0.05) relative risk (RR) clusters 
with significantly higher observed cases compared to expected, and 
relative risk values for each postal code area. In addition, an epidemic 
curve for COVID-19 infections in seven major districts of Helsinki was 

created. 

3.3. Regression modeling 

For each of the 14-day datasets, the ArcGIS Exploratory Regression 
data-mining tool was used prior to regression modeling. All possible 
combinations of the seven sociodemographic input candidate explana
tory variables for regression models were evaluated by the tool. The tool 
looks for the best ordinary least squares (OLS) models that meet certain 
criteria. Refer to Supplementary Materials 1 for more information. 
Variable combinations with the lowest corrected Akaike Information 
Criterion (AICc) (Akaike, 1974) value were chosen for regression ana
lyses for each model. To identify the significant sociodemographic de
terminants of COVID-19 infection rates, we used three regression 
methods: OLS, GWR, and MGWR. Their detailed discussions can be 
found elsewhere, for example (Brunsdon et al., 1996; Fotheringham and 
Oshan, 2016; Ward and Gleditsch, 2018; Oshan et al., 2019) and their 
equations are presented in Supplementary Materials 1. 

We may assume that COVID-19 infections are spatially autocorre
lated, which violates the implicit assumptions of OLS. In order to allow 
parameters varying spatially, we used GWR, which calculates regression 
coefficients for each individual data entity (in this case, postal code 
areas) separately rather of estimating global values for regression pa
rameters (Fotheringham and Oshan, 2016). However, GWR assumes 
that the scale of relationships remains constant across space, which may 
not be the case in spatial models. To overcome this implicit assumption, 
we applied MGWR (Fotheringham et al., 2017; Yu et al., 2020). For 
comparison, all regression models (OLS, GWR, and MGWR) were 
implemented with the same variables in the MGWR 2.2 software (Oshan 
et al., 2019). To compare the model performances, the adjusted R2 and 
AICc were used. A higher adjusted R2 value and a lower AICc value 

Fig. 1. Study area showing the population density (per sq. km) within 69 postal code areas in the City of Helsinki.  
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indicated the best model fit. Moran’s I was used to see if there was any 
significant spatial autocorrelation in the regression model residuals. 

4. Results 

4.1. Global spatial autocorrelation 

This study examined whether a spatial association occurred in the 
new infection cases of COVID-19 per 100,000 residents in the City of 
Helsinki. Results, presented in Table 2, indicate that positive spatial 
autocorrelation was detected during the whole study period from 
28.10.2020 to 24.3.2021 (Moran’s I = 0.1393, p<0.029). Positive 
spatial autocorrelation, on the other hand, was relatively low for the 
majority of the time periods. Global Moran’s I statistic reveals that the 
distribution of COVID-19 infections is not random for most of the 
studied periods, and spatial clustering was detected. Moran’s I statistics 
with the highest values were 0.3243 for 11.11.2020, 0.2992 for 
24.02.2021, 0.2645 for 24.03.201, and 0.1866 for 10.03.2021. Moran’s 
I produced lower values for other dates. Global Moran’s I statistics in the 
City of Helsinki were only moderate at best, indicating spatial hetero
geneity of COVID-19 case rates between postal code areas. As a result, it 

Fig. 2. Spatial distribution patterns of the new COVID-19 infection cases per 100,000 residents in postal code areas for each previous 14-day time period (14-day 
notification rate). 

Table 1 
Spatiotemporal dataset including dependent COVID-19 infections per 100,000 
residents variables and seven sociodemographic predictors.  

Variable Description Source 
Dependent   
Case028 to 

Case0324 
Number of new COVID-19 infections per 
100,000 residents in postal code areas during 
the previous 14 days (28.10.2020–24.3.2021) 

City of Helsinki 

Predictors   
ulkoka19 Number of foreign citizens in residential 

building aggregated to postal code areas 
SeutuData’19 - 
HSY 

ko_perus Basic level studies, 2018 – no qualification after 
basic level or qualification unknown 

Statistics 
Finland 

hr_mtu Median income of inhabitants, 2017 Statistics 
Finland 

hr_pi_tul Inhabitants belonging to the lowest income 
category, 2017 

Statistics 
Finland 

tr_pi_tul Households belonging to the lowest income 
category, 2017 

Statistics 
Finland 

pt_tyott Unemployed, 2017 – (people aged 15–64 
years) 

Statistics 
Finland 

pt_elakel Pensioners, 2017 Statistics 
Finland  
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was critical to investigate local spatial autocorrelation in greater depth. 

4.2. Local spatial autocorrelation 

LISA cluster maps were used to indicate the locations of significant 
spatial clusters and outliers of COVID-19 infection rates. Fig. 3 depicts 
the postal code areas associated with high–high (H–H), high–low (H–L), 

low–high (L–H), and low–low (L–L) values of COVID-19 infection rates 
in the LISA cluster map. Throughout the study period of 28th October 
2020 to 24th March 2021 high–high (H–H) clustering areas were mostly 
found in the eastern parts of the city, while low–low (L–L) clusters were 
mostly found in the city’s western postal code areas (Fig. 3). When the 
COVID-19 epidemic eased temporarily in Helsinki in December 2020 
and January 2021, there were few exceptions to the general pattern. 
Only few high–high (H–H) clusters emerged as local outbreaks. Many 
high–high (H–H) clusters were identified in the eastern parts of the city 
where SARS-CoV-2 infections spread rapidly in late February and early 
March 2021. Low–low (L–L) clusters were mostly observed in the city’s 
western and southern outskirts. Low–high (L–H) outliers were mostly 
found near high–high (H–H) clusters, whereas high–low (H–L) outliers 
were evenly distributed across Helsinki (Fig. 3). 

4.3. Hot spot analysis of COVID-19 infections 

To detect hot spot and cold spot clusters of new COVID-19 cases in 
Helsinki, Getis-Ord Gi* hot spot analysis was used as an alternative 
method to LISA. Overall, the patterns were similar to those found with 
LISA analysis, indicating that the eastern suburbs were hot spots during 
the majority of the studied periods, while the western parts of Helsinki 

Table 2 
Global Moran’s I values with z-values and pseudo p-values of the distribution of 
COVID-19 infection rates at different time period.  

Time period Moran’s I value Z-score pseudo p-value 
28.10.2020–24.03.2021 0.1393 2.0099 0.029 
28.10.2020 0.0536 0.9241 0.054 
11.11.2020 0.3243 4.6738 0.001 
25.11.2020 0.0206 0.4786 0.305 
09.12.2020 0.0893 1.4087 0.082 
23.12.2020 0.0662 1.0172 0.148 
13.01.2021 0.0377 0.7181 0.228 
27.01.2021 0.0939 1.4653 0.084 
10.02.2021 − 0.0147 − 0.3024 0.395 
24.02.2021 0.2992 4.0603 0.001 
10.03.2021 0.1866 2.6119 0.008 
24.03.2021 0.2645 3.7255 0.001  

Fig. 3. Local indicators of spatial autocorrelation of the COVID-19 infection rates at the studied time periods (14-day notification rate). The cluster type distinguishes 
a statistically significant cluster of high values (H–H), a statistically significant cluster of low values (L–L), an outlier in which a high value is surrounded primarily by 
low values (H–L), and an outlier in which a low value is surrounded primarily by high values (L–H). 
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were cold spots (Fig. 4). However, a comparison of the LISA map (Fig 3) 
and the hot spots map (Fig 4) reveals certain differences in recognition 
of COVID-19 hot and cold spots that must be considered when inter
preting the results. 

4.4. Spatial distribution of pure spatial and space-time clusters of COVID- 
19 and epidemic curve 

The results of the retrospective pure spatial Poisson scan statistic and 
the prospective Poisson space–time scan statistic show that the detected 
COVID-19 clusters varied over time and space in Helsinki (Figs. 5 and 6). 
Tables S1, S2 and S3 in Supplementary Materials 2, provide the char
acteristics of the statistically significant (p<0.05) pure spatial scan sta
tistic and space-time scan results of the COVID-19 infection rates at the 
postal code level at three different aggregated time periods, and from 
October 28th 2020 to March 24th 2021. 

4.4.1. Pure spatial scan statistic results 
From late October to mid-December 2020 (28.10.2020–9.12.2020), 

two clusters (C1, C4) were detected in the eastern parts of Helsinki, two 
clusters (C2, C3) were identified in northwestern areas and one cluster 

(C5) was found closer to the city center (Fig. 5 a1–2). A similar pattern 
was observed in the 23.12.2020–10.2.2021 data (Fig. 5 b1–2), with the 
main cluster detected in the eastern parts of Helsinki and smaller clus
ters detected in northwestern areas and in the central parts of Helsinki. 
The smaller clusters had a high relative risk of COVID-19 infection. It is 
worth noting that one ’Gini cluster’ (C5) was discovered in the eastern 
suburbs (Fig. 5 b2). The COVID-19 situation deteriorated in February 
and March 2021, as the number of infections increased rapidly, partic
ularly in the eastern suburbs, where the main cluster with a high relative 
risk (RR 1.94) was discovered (Fig. 5 c1). Two more clusters (C2 and C3) 
were detected in the central and southeastern regions (Fig. 5 c1). 
Furthermore, the eastern suburbs had a high relative risk (RR) and in the 
eastern parts of Helsinki, many non-overlapping ’Gini clusters’ were 
detected (Fig. 5 c2). 

4.4.2. Space-time scan statistic results 
According to the results of prospective space-time scan statistics of 

COVID-19 clustering, the main clusters were active or emerged in the 
eastern parts of Helsinki, and smaller clusters were detected in other 
areas, possibly as a result of local outbreaks (Fig. 6). Space-time scan 
statistics, on the other hand, detected less significant clusters than pure 

Fig. 4. Locations of hot spots and cold spots of COVID-19 infection rates per 100,000 residents in the City of Helsinki during 11 time periods (14-day notification 
rate) identified by Getis-Ord Gi* statistic analysis. 
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Fig. 5. Patterns of significant pure spatial scan statistic clusters (indicated by black circles with the text C on the maps) of COVID-19 at the postal code level and the 
relative risk in the City of Helsinki for three aggregated time periods: 28.10.2020–9.12.2020, 23.12.2020–10.2.2021 and 24.2.2021–24.3.2021. Maps on the left 
present pure spatial scan statistics (a1, b1 and c1) and maps on the right (a2, b2 and c2) present pure spatial scan statistic with “Gini optimized” clusters. 

M. Siljander et al.                                                                                                                                                                                                                               



Spatial and Spatio-temporal Epidemiology 41 (2022) 100493

8

Fig. 6. Patterns of significant space-time clusters (indicated by black circles with the text C on the maps) of COVID-19 at the postal code level and propagation of 
COVID-19 relative risk in the City of Helsinki for three aggregated time periods: 28.10.2020–9.12.2020 (map a), 23.12.2020–10.2.2021 (map b) and 
24.2.2021–24.3.2021 (map c). 
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spatial scan statistics. Table S3 in Supplementary Materials 2 describes 
the characteristics of the statistically significant active and emerging 
space-time clusters of COVID-19 infection rates at the postal code level 
over three time periods. 

Fig. 7 depicts the epidemic curve of new COVID-19 infection cases 
per 100,000 Helsinki residents based on major districts. The eastern 
district had the highest infection rates throughout the study period, 
while the northern and southeastern districts had the lowest. Infection 
rates were relatively low in all districts in October 2020, but began to 

rise in November 2020 and continued to rise in December 2020. The 
spread of COVID-19 slowed in January 2021, but infection rates began 
to rise again in February 2021, particularly in the eastern district. In
fections peaked in all districts in March 2021. 

4.5. Performance of global and local regression models 

Different regression model methods produced slightly different 
model-fit results. Models were unable to explain variation in COVID-19 

Fig. 7. The epidemic curve indicating the new COVID-19 infection cases per 100,000 residents per two weeks period in different major districts of Helsinki.  
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data over many time periods, resulting in very low adjusted R2 values 
(Table 3). Overall, MGWR models outperformed all other models, with 
the highest adjusted R2 and lowest AICc values. Unexpectedly, at three 
time periods: 9.12.2020, 23.12.2020, and 13.01.2021, OLS models 
outperformed MGRW and GWR models. GWR models performed best on 
two occasions: 10.02.2021 and 24.02.2021. Supplementary Materials 2 
shows the regression variables and coefficients of the final multivariate 
OLS models for COVID-19 (Tables S4 and S5). Supplementary Materials 
3 contains the results of all regression modeling (OLS, GWR, and 
MGWR). According to Supplementary Materials 3, for the entire study 
period (28.10.2020–24.03.2021), the OLS model with the variables: 
median income of inhabitants, number of foreign citizens, and pensioners 
could explain approximately 40% of the variation in COVID-19 infection 
rates data (adjusted R2=0.401), for GWR adjusted R2 was 0.453, and for 
MGWR (adjusted R2=0.436). Moran’s I statistics were computed in all 
OLS, GWR, and MGWR regression model residuals, and Moran’s I test 
revealed significant spatial autocorrelation in some of the OLS models. 
Spatial autocorrelation was absent in all GWR and MGWR regression 
models. Fig. 8 show the residuals and local R2 values of the OLS, GWR, 
and MGWR models for COVID-19 infection rate data from 28.10.2020 to 
24.3.2021. Generally, local R2 values for GWR and MGWR models are 
high in the eastern part of the study area, decreasing gradually towards 
the western part of the city. 

4.6. Sociodemographic variables explaining variation in COVID-19 
infection data 

In this study, sociodemographic variables were investigated to 
determine the best predictors of COVID-19 infections in postal code 
areas in the City of Helsinki. To identify the best predictors, we used 
linear regression with the dependent variable being the COVID-19 case 
median rate for the entire study period of 28.10.2020–24.03.2021 
(Table 4). Each independent sociodemographic variable was tested 
separately. Table 4 also shows how frequently each sociodemographic 
variable was chosen for the OLS regression models out of a total of 11 
regression models run for different 14-day time periods to explain the 
variation in SARS-CoV-2 infection rates data. 

Fig. 9 presents the spatial distribution of median COVID-19 infection 
rates and sociodemographic variables that best explain the variation in 
median COVID-19 infection rates in the City of Helsinki from October 
28th, 2020 to March 24th, 2021. The maps show that COVID-19 in
fections are concentrated in areas with a lower median income, a rela
tively high number of foreign citizens, a low level of education, and a 
high number of unemployed citizens (Fig. 9). 

5. Discussion 

Throughout the epidemic, Helsinki has been the COVID-19 disease 
epicenter in Finland. Approximately 30% of all COVID-19 infections in 

Finland were diagnosed in Helsinki between the 28th of October 2020 
and the 24th of March 2021. This study sought to understand the 
spatiotemporal clustering patterns and sociodemographic determinants 
of the second and early third wave of COVID-19 (SARS-CoV-2) in
fections. We demonstrate a holistic approach to analyze COVID-19 
epidemic at local level using four spatial and spatiotemporal tech
niques; global and local spatial autocorrelation (Moran’s I and LISA), 
Getis-Ord Gi* hot spot analysis, space-time scan statistics, and three 
regression modeling methods (OLS, GWR and MGWR). 

5.1. Global and local spatial autocorrelation of COVID-19 in the City of 
Helsinki 

Global Moran’s I analysis revealed that there was a moderate positive 
spatial autocorrelation (Moran’s I = 0.1393, pseudo p-value=0.029) 
between 28th October 2020 and 24th March 2021, indicating that 
COVID-19 infection rates were not randomly distributed in Helsinki 
with clear variations in different time periods (Table 2). The LISA map 
(Fig. 3) shows high–high COVID-19 clusters in the eastern parts of 
Helsinki. With a few exceptions, the Getis-Ord Gi* hot spot map yields 
essentially similar results (Fig 4). Moran’s I value was relatively low 
from late November 2020 to February 2021, with the absence of sta
tistically significant clusters from the majority of Helsinki (Figs. 3 and 
4). There were only few significant COVID-19 clusters that could be 
identified as local outbreaks during that time period. COVID-19 in
fections began to rise with the third wave of coronavirus in mid- 
February 2021. Moran’s I value was statistically significant from data 
on February 24, 2021 to the end of the study period. LISA and Getis-Ord 
Gi* hotspot maps (Figs 3 and 4) shows that COVID-19 infections have 
strong clusters in eastern part of Helsinki. Previous research has shown 
that Moran’s I is a useful method for understanding the overall spatial 
dependency of COVID-19 and for presenting reliable information about 
the disease’s spatiotemporal patterns to local health authorities and 
policymakers (Dutta et al., 2021; Kang et al., 2020; Kim et al., 2021). 
However, global Moran’s I cannot reveal spatial heterogeneity of the 
studied phenomenon, and local spatial autocorrelation analysis i.e. LISA 
statistics analysis is recommended to map the local variation of 
COVID-19-related phenomena. (Dutta et al., 2021; Liu et al., 2021; Sun 
et al., 2021). We utilized Getis-Ord Gi* hot spot analysis to compare 
clustering patterns from the LISA statistic. Interestingly, LISA clusters 
and Getis-Ord Gi* hot spot analysis maps yielded partly different clus
tering results (Figs. 3 and 4). This may imply that both cluster analysis 
methods, as observed in the previous study (Sánchez-Martn et al., 2019), 
are required to gain a deeper understanding of the spatiotemporal 
clustering of the studied phenomena. Overall, our findings are consistent 
with previous studies in which LISA analysis of COVID-19 infection or 
mortality cases revealed local clustering patterns (Dutta et al., 2021; Liu 
et al., 2021; Sun et al., 2021). Unlike previous studies, we were able to 
examine short-term variations in COVID-19 cases at 14-day intervals 

Table 3 
Measures of goodness-of-fit for OLS, GWR, and MGWR in modeling COVID-19 infection rates in the City of Helsinki. The best-fitting model (highest adjusted R2 value) 
for each 14 days time period and for 28.10.2020–24.03.2021is bolded.   

OLS  GWR  MGWR  
Time period Adjusted R2 AICc Adjusted R2 AICc Adjusted R2 AICc 
28.10.2020–24.03.2021 0.401 168.321 0.453 166.087 0.436 168.363 
28.10.2020 0.162 191.454 0.211 191.738 0.238 191.348 
11.11.2020 0.163 190.139 0.18 190.159 0.191 189.639 
25.11.2020 0.079 195.501 0.085 197.374 0.115 197.197 
09.12.2020 0.183 187.184 0.17 189.864 0.171 190.019 
23.12.2020 0.137 192.231 0.112 196.517 0.107 197.236 
13.01.2021 0.061 198.071 0.041 201.659 0.047 142.504 
27.01.2021 0.047 197.854 0.067 197.935 0.087 198.254 
10.02.2021 0.132 193.907 0.163 196.711 0.131 197.266 
24.02.2021 0.289 180.074 0.456 171.307 0.42 170.887 
10.03.2021 0.548 150.263 0.592 148.309 0.615 146.05 
24.03.2021 0.489 157.289 0.546 156.83 0.571 151.517  
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(14-day notification rate). We discovered spatiotemporal variations in 
which COVID-19 clusters emerged at short intervals, such as high–high 
(H–H) and low–low (L–L) clusters most likely related to local outbreaks 
(Figs. 3 and 4). 

5.2. Space-time scan statistics, spatiotemporal trends and epidemic curve 

Space-time scan analysis (Kulldorff, 1997) was performed over three 
aggregated time periods, yielding statistically significant COVID-19 
clusters. Throughout the study period, clusters were found in the 

eastern areas of the City of Helsinki, though local clusters emerged in 
other parts of the city as well. A similar pattern was discovered in the 
relative risk of COVID-19 in postal code areas (Figs. 5 and 6). The pro
spective Poisson Space-time scan analysis method has been found to be a 
valuable method for detecting COVID-19-related clusters and relative 
risk areas (Desjardins et al., 2020; Masrur et al., 2020; Xu et al., 2021). In 
order to detect smaller secondary clusters, we tested Gini Optimized 
cluster detection with the retrospective purely spatial Poisson scan sta
tistic method, rarely used in previous COVID-19 studies. We discovered 
a number of secondary clusters in eastern Helsinki, particularly between 

Fig. 8. Spatial distribution of OLS residuals and local R2 of GWR and MGWR models for COVID-19 infection rate data from 28.10.2020 to 24.3.2021.  
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24.2.2021 and 24.3.2021 (Fig 5, c2), coinciding with the third wave of 
the COVID-19 epidemic, when the disease caused by alpha and beta 
variants spread rapidly in the eastern suburbs, as shown in Fig. 7. In 
addition to space-time scan analysis, the multitemporal quintiles map 
visualizes spatial and temporal trends for COVID-19 incidence diffusion, 
allowing comparison of the epidemic over time (Fig. 2). In most postal 
code areas, the number of infection cases per 100 000 residents 
remained low in autumn 2020. The virus began to spread throughout 
Helsinki in November and December 2020, but the number of infections 
remained relatively low, with only a few postal code areas having a high 
number of infection cases. The epidemic subsided temporarily in 
December 2020 and January 2021, but with the third wave of corona
virus, the number of COVID-19 infection cases began to rapidly increase 
in mid-February 2021. The third coronavirus wave exacerbated the 
situation, particularly in the eastern and northeastern suburbs (Fig 2). 
Interestingly, high population density in postal code areas did not 
appear to be the primary cause of high clusters, as shown in Figs. 1 and 
2. This suggests that other sociodemographic factors could account for 
COVID-19 clustering. The sociodemographic factors associated with the 
previously mentioned patterns are discussed in greater detail in the 
forthcoming section. The epidemic curve, along with an accompanying 
map, may reveal valuable information about the epidemic’s spatial 
progression (Fig. 7). However, due to reporting delays, it may be diffi
cult in some cases to determine the progression of epidemics. 

5.3. Performance of OLS, GWR, and MGWR regression models 

In this study, we discovered spatiotemporal clustering patterns of 
COVID-19 infections in Helsinki, but spatial analysis only revealed "half 
of the story." Therefore, we attempted to determine the factors under
lying the spatial patterns of COVID-19 infection rates. To explain the 
variation in COVID-19 data, we used the most important sociodemo
graphic determinants identified in previous studies. Finally, we used 
only seven sociodemographic predictors to reduce predictor multi
collinearity, also observed in previous studies (Mollalo et al., 2020; 
Snyder and Parks, 2020). However, Souza et al. (2020) discovered that 
reducing multicollinearity may compromise the study’s quality. 

Similarly, in this study, reducing multicollinearity and then using only 
seven predictors could explain why some regression models had low 
explanatory power at certain time periods. Low model performance may 
also result from more efficient virus transmission throughout Helsinki, 
such as during the period 13.01.2021–27.01.2021, reducing the ability 
of sociodemographic factors to explain variation in COVID-19 in
fections. In addition to sociodemographic predictors, other variables not 
included in our study, such as environmental, distance-based, and 
behavioral factors, could improve the models’ explanatory power. The 
best performance of regression models appears to have been achieved 
during time periods with positive local and global spatial autocorrela
tion and scan statistics detecting significant clusters in the COVID-19 
data, such as on 10.03.2021 and 24.03.2021. 

5.4. Sociodemographic predictors explaining variation in COVID-19 
infections in Helsinki 

In general, median income of inhabitants and a high number of 
foreign citizens were the best predictors of variation in COVID-19 
infection data, followed by a low level of education and a relatively 
high number of unemployed in postal code areas (Table 4). Our findings 
are in line with previous socioeconomic studies in Finland, which found 
that COVID-19 infections were most common in adults with low incomes 
and a low level of education (Helsinki GSE, 2021), and one out of every 
four coronavirus infections in Finland has been diagnosed among 
foreign citizens (Holmberg et al., 2022; THL, 2020). Furthermore, health 
authorities in Helsinki region announced in 2020 that high number of 
COVID-19 infections had been detected among the foreign population in 
the metropolitan area (Rantavaara, 2020). According to THL’s MigCO
VID survey (Skogberg et al., 2021), there is an increased risk of imported 
SARS-CoV-2 virus infection among people of migrant origin due to the 
following factors; working conditions, lower education and income, and 
crowded housing. However, one factor stood out above the rest: working 
conditions. According to Skogberg et al. (2021), foreigners do a lot of 
work that cannot be done remotely. Many professions, for example, are 
in the service sector, and only one-third of foreign citizens had the op
portunity to work remotely. In addition, half of the foreign-speaking 
respondents said it was impossible to observe safety intervals at work. 
Skogberg et al. (2021) also discovered that during the pandemic, foreign 
citizens traveled more than Finnish native citizens, primarily to visit 
relatives living in other countries. This could be another reason for the 
virus’s rapid spread among foreign communities. These postal code 
areas in Helsinki with lower median incomes and higher proportions of 
foreign citizens are mostly found in the eastern and northeastern sub
urbs (Fig 9). In these areas, there are pockets of poverty neighborhoods 
with low median income, low levels of employment, and low levels of 
education (Kortteinen and Vaattovaara, 2015). Furthermore, in the 
eastern and northeastern suburbs, there may be concentrations of 
cramped condominiums with circular migration workers, such as con
struction workers from the Baltic and Eastern European countries. Many 
of the COVID-19 infections in Helsinki and the surrounding area were 
linked to these migrant worker housing conditions, and a large number 
of infections were observed on construction sites (Ervasti, 2020). 

5.5. Targeting future interventions and control of the disease spread in the 
City of Helsinki 

Based on the study’s findings that COVID-19 infections are concen
trated in areas with lower income, relatively high number of foreign 
citizens, a low level of education and a high number of unemployed 
citizens; future disease-control interventions should be geographically 
targeted particularly to the eastern and norther eastern suburbs, which 
have served as hotspots during most epidemics. Furthermore, as the 
virus was discovered to be spreading strongly among foreign citizens, 
public health authorities should be ready to co-operate with foreign 
communities and organizations. Active efforts should be emphasized to 

Table 4 
Linear regression performance of sociodemographic variables explaining inde
pendently the variation in median COVID-19 infection rates data for the time 
period 28.10.2020–24.03.2021, and the total number of times each variable was 
selected to the OLS models out of a total of 11 regression models run for different 
14-day time periods.  

Predictor Description Adjusted R 
Square 

Standard 
Error 

Number of 
times 
selected to 
OLS models 

hr_mtu Median income of 
inhabitants, 2017 

0.30 49.954 8 

ulkoka19 Number of foreign 
citizens in residential 
building summed to 
postal code area 

0.23 52.255 5 

ko_perus Basic level studies, 2018 
– no qualification after 
basic level or 
qualification unknown 

0.22 52.581 4 

pt_tyott Unemployed, 2017 – 
(people aged 15–64 
years who were 
unemployed) 

0.18 53.947 3 

hr_pi_tul Inhabitants belonging to 
the lowest income 
category, 2017 

0.09 56.872 2 

pt_elakel Pensioners, 2017 0.04 58.477 2 
tr_pi_tul Households belonging to 

the lowest income 
category, 2017 

0.11 56.097 1  
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Fig. 9. Map presents the distribution of COVID-19 infection rates (14 days median) for time period 28.10.2020–24.03.2021 (A), and the distribution of demographic 
and socioeconomic variables in the City of Helsinki by postal code area; median income of inhabitants in Euros (B), percentage of foreign citizens (C), percentage of 
people with only basic education (D) and percentage of unemployed citizens (E). 
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disseminate COVID-19-related information in the City of Helsinki with 
multilingual and multi-channel communication and counseling. More
over, COVID-19 infections were detected in foreign citizen communities, 
particularly among the younger generations; thus, low-threshold 
tracking and testing, as well as mobile vaccination points, are required 
particularly in these target groups and intervention areas. 

5.6. Holistic approach to analyze spatiotemporal patterns of COVID-19 

This study takes a holistic approach to analysing spatiotemporal 
clustering patterns and sociodemographic determinants of COVID-19 
infections in Helsinki. There are only a few studies that we are aware 
of that take a holistic approach to study the spatiotemporal aspects of 
COVID-19 transmission (Liu et al., 2021; Wang et al., 2021). However, 
these studies were conducted on a small scale and focused on factors 
such as population movement, meteorological parameters, and air pol
lutants. Whereas, for the first time, our study was able to provide holistic 
insights into the spatial patterns and sociodemographic determinants of 
COVID-19 infections in Helsinki at the postal scale level. Based on our 
study results, spatial analysis techniques can identify neighborhoods 
and communities where public health interventions should be targeted 
to reduce local COVID-19 outbreaks. Furthermore, these techniques 
could be utilized in contacts tracing in healthcare units to more efficient 
action. However, these techniques were not used during the first, sec
ond, and third waves of the COVID-19 epidemic in Finland as the 
governmental and local authorities in Finland were not fully aware of 
the benefits of geospatial analysis in fighting the pandemic. In future, in 
order to study quickly spatiotemporal phenomena of emerging diseases 
and epidemics, spatial and molecular epidemiology data should be 
available for researchers and aggregated more efficiently. 

5.7. Limitations of spatiotemporal analysis in COVID-19 studies 

Although our findings indicated that the overall spatial patterns of 
second-wave COVID-19 infections in the City of Helsinki could be ana
lysed, as well as space-time clusters and risk areas identified and map
ped, this study has limitations. In 15 postal code areas, low numbers of 
COVID-19 infection cases prohibited the City of Helsinki from publish
ing data due to privacy reasons. These postal code areas could not be 
analysed, which may have influenced the results. Furthermore, spatial 
analysis at postal code level aggregates information, hindering under
standing of the local variations inside these areal units. Thus, interpre
tation of the results is limited to postal code scale due to ecological 
fallacy and modifiable areal unit problem (MAUP) (Wang and Di, 2020). 
In addition, misinterpretations of the resulted maps of COVID-19 in
fections may arise from the way in which COVID-19 infection data were 
collected. Postal code information is based on the infected person’s 
home address, not the location of the initial infection, which is often 
difficult to determine and may differ. As a result, study findings from 
spatial analysis of COVID-19 infection data collected at the postal code 
level must be interpreted with caution. 

Previous spatiotemporal studies on COVID-19 infections have 
encountered similar difficulties in other parts of the world. Kim and 
Castro (2020) mentioned that more detailed information about 
COVID-19 infection cases would have allowed them to fine-tune their 
analysis to a finer-scale than district level in South Korea. According to 
Fatima et al. (2021), COVID-19 data quality and access to fine-scale data 
are crucial and are the main limitations in spatial analysis of COVID-19 
epidemics. There are also limitations in sociodemographic data, as we 
were unable to obtain the most recent data for postal code areas because 
it was not freely available. Furthermore, we used sociodemographic 
predictors that were available, but other variables may explain the 
variation in COVID-19 infections better. It is also worth noting that 
because vaccinations were only started in January 2021 in Helsinki, a 
sufficiently rapid accumulation of population immunity by disease, or 
vaccine immunity in a given area, could not be counted in any way in 

this study. 

6. Conclusion 

Our findings show that open datasets, such as the City of Helsinki’s 
postal code level COVID-19 infection data and Statistics Finland’s open 
sociodemographic dataset, can be used in spatial analysis to gain a better 
understanding of spatiotemporal patterns and sociodemographic de
terminants even without access to individual-level data. The holistic 
approach used in this study, including global- and local spatial auto
correlation (Moran’s I and LISA); Getis-Ord Gi* hot spot analysis, and 
regression models (OLS, GWR, MGWR), can be applied to any other 
global location with similar datasets to contribute to the existing geo
spatial knowledge of the COVID-19 pandemic at the local scale. 

However, acquisition of real-time, fine-scale COVID-19 infection and 
sociodemographic data are often challenging, making spatial analyses 
difficult to conduct. To be better prepared for future pandemic waves 
and to guide policymakers and local health authorities in implementing 
mitigation strategies, it is critical to understand the benefits of the ho
listic approach in spatial epidemic analyses in Finland and elsewhere in 
the globe. Future research should be conducted using fine-scaled 
COVID-19 surveillance data in collaboration with health authorities, 
who should be encouraged to elucidate these complex spatiotemporal 
patterns to inform mitigation and control efforts of the ongoing as well 
as future pandemics. 
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Andrade, L.A., Gomes, D.S., Góes MA de, O., de Souza, M.S.F., Teixeira, D.C.P., 
Ribeiro, C.J.N., et al., 2020. Surveillance of the first cases of COVID-19 in sergipe 
using a prospective spatiotemporal analysis: The spatial dispersion and its public 
health implications. Rev. Soc. Bras. Med. Trop. 53, 1–5. https://doi.org/10.1590/ 
0037-8682-0287-2020. 

Anselin, L., 1995. Local Indicators of Spatial Association—LISA. Geogr. Anal. 27, 93–115. 
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x. 

Anselin, L., Syabri, I., Kho, Y., 2010. GeoDa: an introduction to spatial data analysis. In: 
Fischer, MM, Getis, A (Eds.), Handb. Appl. Spat. Anal. Softw. Tools, Methods Appl. 
Springer, pp. 73–89. 

Brunsdon, C., Fotheringham, A.S., Charlton, M.E., 1996. Geographically weighted 
regression. Geogr. Anal. 28 https://doi.org/10.4135/9781412939591.n478. 

Cavalcante, J.R., Abreu, A.J.L., 2020. COVID-19 in the city of Rio de Janeiro: spatial 
analysis of first confirmed cases and deaths. Epidemiol. Serv. Saude 29. https://doi. 
org/10.5123/S1679-49742020000300007. Brasília2020.  

City of Helsinki. Coronavirus updates from Helsinki 2020b. https://www.hel.fi/helsinki/ 
coronavirus-en/social-and-health/corona-situation. (accessed 24 March 2021). 

Cordes, J., Castro, M.C., 2020. Spatial analysis of COVID-19 clusters and contextual 
factors in New York City. Spat. Spatiotemporal. Epidemiol. 34, 100355 https://doi. 
org/10.1016/j.sste.2020.100355. 

Das, A., Ghosh, S., Das, K., Basu, T., Dutta, I., Das, M., 2021. Living environment matters: 
Unravelling the spatial clustering of COVID-19 hotspots in Kolkata megacity, India. 
Sustain. Cities Soc. 65, 102577 https://doi.org/10.1016/j.scs.2020.102577. 

Desjardins, M.R., Hohl, A., Delmelle, E.M., 2020. Rapid surveillance of COVID-19 in the 
United States using a prospective space-time scan statistic: Detecting and evaluating 
emerging clusters. Appl. Geogr. 118, 102202 https://doi.org/10.1016/j. 
apgeog.2020.102202. 

DiMaggio, C., Klein, M., Berry, C., Frangos, S, 2020. Black/African American 
Communities are at highest risk of COVID-19: spatial modeling of New York City ZIP 
Code–level testing results. Ann. Epidemiol. 51, 7–13. https://doi.org/10.1016/j. 
annepidem.2020.08.012. 

M. Siljander et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.sste.2022.100493
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1590/0037-8682-0287-2020
https://doi.org/10.1590/0037-8682-0287-2020
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://refhub.elsevier.com/S1877-5845(22)00017-X/sbref0004
http://refhub.elsevier.com/S1877-5845(22)00017-X/sbref0004
http://refhub.elsevier.com/S1877-5845(22)00017-X/sbref0004
https://doi.org/10.4135/9781412939591.n478
https://doi.org/10.5123/S1679-49742020000300007
https://doi.org/10.5123/S1679-49742020000300007
https://www.hel.fi/helsinki/coronavirus-en/social-and-health/corona-situation
https://www.hel.fi/helsinki/coronavirus-en/social-and-health/corona-situation
https://doi.org/10.1016/j.sste.2020.100355
https://doi.org/10.1016/j.sste.2020.100355
https://doi.org/10.1016/j.scs.2020.102577
https://doi.org/10.1016/j.apgeog.2020.102202
https://doi.org/10.1016/j.apgeog.2020.102202
https://doi.org/10.1016/j.annepidem.2020.08.012
https://doi.org/10.1016/j.annepidem.2020.08.012


Spatial and Spatio-temporal Epidemiology 41 (2022) 100493

15

Dutta, I., Basu, T., Das, A., 2021. Spatial analysis of COVID-19 incidence and its 
determinants using spatial modeling: A study on India. Environ. Challeng., 100096 
https://doi.org/10.1016/j.envc.2021.100096. 
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ps://www.hs.fi/kotimaa/art-2000006562993.html. accessed 3 February 2021.  

ESRI, 2020https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-8. 
Fatima, M., KJ, O ’keefe, Wei, W., Arshad, S., Gruebner, O., 2021. Geospatial analysis of 

covid-19: A scoping review. Int. J. Environ. Res. Public Health 18, 1–14. https://doi. 
org/10.3390/ijerph18052336. 

Fotheringham, A.S., Oshan, T.M., 2016. Geographically weighted regression and 
multicollinearity: dispelling the myth. J. Geogr. Syst. 18, 303–329. https://doi.org/ 
10.1007/s10109-016-0239-5. 

Fotheringham, A.S., Yang, W., Kang, W., 2017. Multiscale Geographically Weighted 
Regression (MGWR). Ann. Am. Assoc. Geogr. 107, 1247–1265. https://doi.org/ 
10.1080/24694452.2017.1352480. 

Franch-Pardo, I., Napoletano, B.M., Rosete-Verges, F., Billa, L., 2020. Spatial analysis and 
GIS in the study of COVID-19. A review. Sci. Total Environ. 739, 140033 https://doi. 
org/10.1016/j.scitotenv.2020.140033. 

Getis, A., Ord, J.K., 1992. The analysis of spatial association by use of distance statistics. 
Geogr. Anal. 24, 189–206. https://doi.org/10.1111/j.1538-4632.1992.tb00261.x. 

Han, J., Zhu, L., Kulldorff, M., Hostovich, S., Stinchcomb, D.G., Tatalovich, Z., et al., 
2016. Using Gini coefficient to determining optimal cluster reporting sizes for spatial 
scan statistics. Int. J. Health Geogr. 15 https://doi.org/10.1186/s12942-016-0056-6. 

Han, Y., Yang, L., Jia, K., Li, J., Feng, S., Chen, W., et al., 2021. Spatial distribution 
characteristics of the COVID-19 pandemic in Beijing and its relationship with 
environmental factors. Sci. Total Environ. 761, 144257 https://doi.org/10.1016/j. 
scitotenv.2020.144257. 
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