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Abstract

Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are
crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently over-
expressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and meta-
bolic diseases.
Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed
to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in
protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI
and ERO1 also function outside of the cells.
Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the
detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, al-
though PDI and ERO1 inhibitors have been identified, the results from previous studies require careful eval-
uation, as many of these agents are not selective and may have significant cytotoxicity.
Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies
will be required to define their functions outside the ER. Antioxid. Redox Signal. 35, 1093–1115.
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Introduction

Oxidation and isomerization of intramolecular dis-
ulfide bonds are essential for appropriate protein folding

and maturation in the endoplasmic reticulum (ER). Dysre-
gulation of this process often results in cell and tissue pa-
thology and may lead to neurodegenerative diseases and
diabetes. Thiol isomerases, such as the prototypic enzyme,
protein disulfide isomerase (PDI), are catalysts that have
critical roles in facilitating disulfide bond modification. After
PDI has catalyzed the oxidation of one or more disulfide
bonds in a protein substrate, the reduced protein is enzymat-

ically reoxidized by ER oxidoreductase 1 (ERO1). This in-
teraction between ERO1 and PDI represents a catalytic redox
cycle that is critical for oxidative protein folding in the ER.

Studies with conditional knockout (CKO) mice and phar-
macological inhibitors have advanced our understanding of
the physiological roles played by both PDI and ERO1. Both
PDI and ERO1 are upregulated in various cell types in re-
sponse to pathologic conditions, and small amounts of each
enzyme are secreted extracellularly. These aspects highlight
the rationale for developing novel therapies that target PDI
and ERO1 and suggest that these enzymes might be devel-
oped as biomarkers to predict disease severity. In this review,
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we focus on the structure, function, and pathophysiological
roles of PDI and ERO1 and the identification and develop-
ment of their inhibitors as novel therapeutics.

Structure of PDI

PDI includes four major domains (a, b, b¢, and a¢). The a
and a¢ domains contain a TrpCysGlyHisCysLys active site.
The b and b¢ domains are catalytically inactive but can in-
teract with substrates primarily via a hydrophobic region in
the b¢ domain (29). The b¢ and a¢ domains of PDI are linked
with a flexible linker peptide containing 19 amino acids. This
linker region regulates substrate binding by capping and
uncapping a hydrophobic site on the b¢ domain (119, 180).
Many acidic residues in the C-terminal region maintain the
functional conformation of PDI and prevent self-aggregation
(170). PDI has an ER retrieval sequence (LysAspGluLeu)
at its C-terminus that promotes binding a receptor in the
cis-Golgi and facilitates its return to the ER (24).

Despite the ER retention signal, PDI can be released from
cells and has been detected on the plasma membrane where it
is bound to molecules on the cell surface (51, 62, 97). Pre-
vious studies suggested several molecular mechanisms by
which ER-resident molecules can be exported and released;
these include (1) masking of the LysAspGluLeu sequence
by glycosylation (2, 210) saturation or inactivation of Lys-
AspGluLeu receptors (3, 202) membrane translocation of
LysAspGluLeu receptor 1 (10) and (4) alteration of cytosolic
calcium levels (20, 173).

The crystal structures of yeast and human PDI were re-
solved at resolutions of 2.4 and 2.5 Å, respectively (169,
181). Human and yeast PDI share 31% amino acid sequence
identity. The four domains (a, b, b¢, and a¢) are arranged in a
‘‘U’’ shape with the a and a¢ active sites facing each other. In
the reduced form of human PDI, the a, b, and b¢ domains are
in a linear configuration, with the a¢ domain angled at *45�
from the plane; in this configuration, the distance between the
sulfur atoms of Cys53 and Cys397 is maintained at 27.6 Å
(181). In contrast, the four domains are organized differently
in the oxidized form of human PDI, with a 40.3 Å distance
separating the two active sites in the same plane.

Based on the relative positions of the substrate-binding
pocket and catalytic sites, reduced and oxidized forms of PDI
are considered to be in a closed and open conformation, re-
spectively. Although most proteins are capable of interacting
with oxidized PDI, it is critical to note that some substrates
can bind preferentially to the reduced form. For example, we
showed that the b-switch region of the platelet-specific re-
ceptor, glycoprotein Iba (GPIba), interacts with the b¢ do-
main of reduced PDI on the platelet surface (97). Further, we
found that the Cys4–Cys17 disulfide bond in the b-finger
region of GPIba is closer to PDI Cys53 when complexed with
the reduced rather than the oxidized form of the enzyme (16 Å
vs. 28 Å, respectively). These results suggest that GPIba may
bind more favorably to the reduced form of PDI.

The existence of different conformations of the b¢ do-
mains (181) implies the possibility of substrate interactions
that favor either the oxidized or the reduced forms of PDI. In
addition, it was recently reported that Fam20C, a Golgi-
associated secretory pathway kinase, phosphorylates
Ser357 in the x-linker region of PDI in response to ER
stress. Phosphorylation at this site induces an open confor-

mation with a 70 Å distance between the a and a¢ domains
and results in a functional switch from an oxidoreductase to
a molecular chaperone (203). Future studies are required to
explore the impact of Ser357 phosphorylation on the in-
teraction between PDI and ERO1a and ERO1a-mediated
PDI oxidation.

Function of PDI

PDI was first identified in 1963 as a microsomal enzyme
of rat liver and pigeon/chicken pancreas that was capable of
oxidizing reduced bovine pancreatic ribonuclease (1, 47).
Twenty-four years later, PDI was identified as the b-subunit
of prolyl 4-hydroxylase subunit b (P4HB) (132). Since prolyl
4-hydroxylase forms an a2b2 tetramer and catalyzes the
formation of 4-hydroxyproline in collagen, the PDI subunit
could contribute to oxidoreductase and/or molecular chap-
erone activity as a monomer and as a part of the prolyl
4-hydroxylase tetramer together with the a-subunit.

A previous study revealed that PDI forms disulfide-
independent dimers within cells and that dimerization im-
pairs both the catalytic and chaperone function by blocking
substrate-binding sites in the b and b¢ domains (11). How-
ever, because the results of this study were based on PDI
overexpression, it is not clear whether endogenous PDI can
undergo dimerization under pathophysiological conditions or
the nature of its functional role in this conformation.

PDI catalyzes disulfide bond oxidation and isomerization
in unfolded substrates in the ER and thus plays an indis-
pensable role in the process of protein folding (152). In a
highly oxidizing environment, reduced Cys thiols in sub-
strates form transient disulfide bonds with thiols with active
site residues in PDI (CysGlyHisCys), thereby resulting in an
oxidized, folded protein. Misfolded proteins are reduced and
isomerized by PDI and converted to their appropriate native
conformation. Reduced PDI is subsequently reoxidized by
oxidases such as ERO1, a topic that will be discussed later in
this review. To facilitate this process, the active site of PDI is
maintained in a reduced state, and glutathione (GSH) and
nicotinamide adenine dinucleotide phosphate (NADPH)
promote cleavage of the disulfide bonds (15, 111).

In addition to oxidoreductase activity, PDI-mediated
chaperone activity prevents the accumulation of misfolded
proteins that are formed in response to oxidative ER stress
and facilitates the maturation and transport of secretory
proteins. As described earlier, phosphorylation of Ser357 in
PDI results in a significant decrease in its isomerase activity
and a significant increase in its chaperone activity (203). This
result suggests that the post-translational modification in PDI
prevents aggregation of misfolded proteins under conditions
of ER stress.

The expression and function of PDI in the ER are indis-
pensable for survival in yeast, with no apparent compensation
provided by any of the four additional members of the PDI
enzyme family (53, 90). Consistently, our unpublished data
suggest that deletion of the gene encoding PDI results in an
embryonic lethal phenotype in mice, suggesting that none of
the 21 PDI oxidoreductase family members can provide ade-
quate compensation (16). Importantly, dysregulation of PDI
function in the ER has been associated with numerous disease
processes, including neurodegenerative disorders, diabetes,
and cardiovascular diseases (CVDs). Specifically, these
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disorders have been characterized by accumulations of mis-
folded and immature proteins or by impaired function of cell
surface molecules, which will be discussed later in this review.

Structure of ERO1

The yeast gene, Ero1, encoding Ero1p was discovered in
1998 (42, 134). Two human genes, ERO1-L and ERO1-Lb,
encoding ERO1a and ERO1b, respectively, were identified
thereafter (23, 126). Although ERO1a is expressed in most
cell types (126), ERO1b is mainly expressed in intestinal and
pancreatic b cells (7, 36). ERO1a and ERO1b share 65%
amino acid sequence identity. Inaba et al. reported the crystal
structure of hyperactive and inactive human ERO1a at res-
olutions of 2.35 and 3.07 Å, respectively (58). Interestingly,
one recent study showed that there are no substantial differ-
ences between the conformations of active and inactive forms
of human ERO1a (209).

Consistent with findings from mass spectrometry (4),
a crystallographic analysis revealed that hyperactive and
inactive ERO1a form a single globular domain enriched in
a-helices with five intramolecular disulfide bonds (Cys35–
Cys48, Cys37–Cys46, Cys85–Cys391, Cys208–Cys241, and
Cys394–Cys397) (58). Although the results of one earlier
study suggested that the intramolecular Cys85–Cys391
disulfide bond regulates ERO1 activity (9), subsequent
studies revealed a structural role for this linkage (6, 121,
208). Further, two essential Cys triads (Cys85–Cys94–
Cys99 and Cys391–Cys394–Cys397) are highly conserved
in yeast and human ERO1 and serve to control enzymatic
activity (17).

The results from mutational studies revealed that ERO1a is
activated by the formation of a Cys94–Cys99 disulfide bond,
whereas it is inactivated on disulfide bond formation between
the Cys94–Cys131 and Cys99–Cys104 (4, 6). A protruding
b-hairpin that includes Trp272 interacts with the substrate-

binding site of the b¢ domain of reduced PDI, and the Cys94–
Cys99 pair then transfers electrons from PDI to the Cys394–
Cys397 disulfide bond, resulting in PDI reoxidation (104).

As a flavin adenine dinucleotide (FAD)-binding enzyme,
ERO1 oxidizes reduced PDI during oxidative protein folding.
Our docking study confirmed the FAD-binding site in human
ERO1a and identified additional molecular interactions be-
tween FAD and ERO1a as compared with a previous report
(58). Among these results, we found that FAD interacts with
ERO1a via multiple hydrogen bonds with Arg187, Thr189,
Trp197, Trp200, Ser252, Asn259, Arg287, and Arg300 and
two p-p interactions with His255 and Tyr191 (Fig. 1A, B).
One study reported that the carbon 4a in the isoalloxazine
ring of bound FAD is only 3.3 Å away from Cys397 of
ERO1a, implicating the possibility of an interaction between
FAD and Cys397 that takes place after cleavage of the
Cys394–Cys397 disulfide bond (58).

Function of ERO1

Deletion of Ero1 has a marked effect on oxidative protein
folding and cell viability in yeast (42). In contrast, mice with
loss-of-function mutations in Ero1-l and Ero1-lb are viable
and exhibit minimal defects (214). The Ero1-l and Ero1-lb
mutant mice are hypersensitive to b-adrenergic blockade,
whereas an Ero1-l gene deletion alters calcium homeostasis
in cardiomyocytes and protects against the progression of
heart failure (27). Consistent with its abundant expression in
pancreatic b-cells, deletion of Ero1-lb results in compro-
mised oxidative folding of proinsulin and promotes glucose
intolerance (214). The different outcomes resulting from
disruption of ERO1 function are largely due to the presence
of compensatory mechanisms for ERO1-mediated thiol oxi-
dation in mice but not in yeast.

The expression of ERO1a is upregulated via hypoxia-
inducible factor-1a (HIF-1a) under hypoxia (105), whereas

FIG. 1. The binding site of FAD in ERO1a. (A, B) Glide docking was performed to verify the binding of FAD to
ERO1a. Our docked model confirmed molecular interactions between FAD and ERO1a (in black) that were similar to those
described in a previous report (3AHQ) (58) and identified new molecular interactions as shown in red. The abbreviation
HIE255 represents His with hydrogen on nitrogen in the epsilon position. ER, endoplasmic reticulum; ERO1, ER oxido-
reductase 1; FAD, flavin adenine dinucleotide. Color images are available online.
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the expression of ERO1b is enhanced by the unfolded protein
response (UPR) (126). ERO1a serves as the primary oxidase
that restores reduced PDI and other PDI family thiol isom-
erases, which together constitute an electron transfer network
of ER oxidoreductases. However, given the known dissoci-
ation constants for each oxidoreductase, ERO1a is likely to
bind preferentially to PDI (Kd = 1.7 lM), compared with ERp44
(Kd = 21 lM), ERp5 (Kd = 70 lM), ERp57 (Kd = 180 lM),
ERp72 (Kd = 160 lM), or ERp46 (Kd = 280 mM) (5).

One study revealed that peroxiredoxin 4 preferentially
recognizes and oxidizes ERp5 and ERp46 and that perox-
iredoxin 4-catalyzed oxidation of ERp5 and ERp46 is ac-
celerated in combination with PDI (150). Interestingly,
ERO1a-catalyzed PDI oxidation was impaired in the pres-
ence of a hyperactive mutant of ERp44 (104). Collectively,
these results suggest that ER oxidases target specific thiol
isomerases during protein folding and that thiol isomerases
cooperate or compete with one another to promote protein
reoxidation.

A previous study using full-length and mutant PDI re-
vealed that the b¢-x-a¢ domains of PDI provide the structural
basis for the preferential binding and oxidation of ERO1a

(183). Figure 2 summarizes ERO1a-PDI redox activity and
oxidative protein folding in the ER. A study using docking
simulations and mutations suggested that Trp272 in ERO1a
interacts with the hydrophobic residues (Phe240, Phe249,
and Phe304) of the b¢ domain of reduced PDI (104).

Preferential oxidation of the PDI a¢ domain is catalyzed by
nucleophilic attack initiated by the C-terminal active site in
PDI targeting the Cys94–Cys99 shuttle disulfide bond in
ERO1a. This results in a mixed-disulfide bond that forms a
transient link between the C-terminal active site of PDI and
Cys94 of ERO1a. Oxidized PDI shuttles a disulfide bond to
an unfolded substrate bound to its hydrophobic pocket. ERO1
uses O2 as an electron acceptor in this reaction and produces
H2O2 as a byproduct, inducing ER stress (183). Therefore, the
ERO1-PDI redox cycle is tightly regulated under homeostatic
conditions.

The ER-resident peroxidases, GSH peroxidase 7 (GPx7),
and GPx8 utilize ERO1a-generated H2O2 to oxidize PDI,
facilitating oxidative protein folding (118, 184). One recent
study suggested that GPx7 reacts more efficiently with H2O2

and promotes higher levels of PDI oxidation than GPx8. The
differential activity observed was attributed to the presence

FIG. 2. ERO1a-PDI redox cycling in the ER. In the highly oxidizing environment of the ER, unfolded proteins interact
with the b¢ domain of oxidized PDI and undergo oxidative protein folding. Misfolded substrate proteins can be reduced and
refolded or isomerized to the appropriate native protein conformation. Reduced PDI is then reoxidized by ERO1a via direct
hydrophobic interactions with its b¢ domain and electron transfer from the a¢ domain via a flexible Cys94 residue, resulting
in the production of H2O2. ERO1b is expected to participate in similar redox cycling. ERO1a expression is upregulated by
hypoxia, whereas ERO1b is expressed in response to the UPR. Mammals express several peroxidases, including peroxir-
edoxins (e.g., Prdx4) and GSH peroxidases (GPx7 and GPx8), to reduce H2O2-induced ER stress and can scavenge excess
H2O2, thereby tightly regulating its concentration. Further, Prdx4 can utilize H2O2 to oxidize reduced PDI and restore the
homeostatic redox state of ER. GPx7 and GPx8 also convert H2O2 to H2O. Oxidized GPx7 and GPx8 interact with and
oxidize GRP78 (also known as BiP), thereby augmenting its chaperone activity. The increased levels of oxidized PDI
promote the formation of the inhibitory disulfide bonds in ERO1a (Cys94–Cys131 and Cys99–Cys104) via which GSSG
can induce oxidation of PDI. GPx7, GSH peroxidase 7; GRP78, glucose-regulated protein 78; GSH, glutathione; PDI,
protein disulfide isomerase; UPR, unfolded protein response.
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of Gln92 in the GPx7 catalytic tetrad; this residue stabilizes
sulfenylated Cys57 that forms a hydrogen bond with ERO1a-
generated H2O2 (70).

Mouse embryonic fibroblasts deficient in GPx7 exhibit
increased production of reactive oxygen species (ROS) and,
thus, oxidative stress (188). This study also showed that ox-
idized GPx7 generates disulfide bonds and activates the
chaperone protein, glucose-regulated protein 78 (GRP78).
However, a very high concentration of H2O2 (20 mM) was
used in this study, which raises questions regarding physio-
logical relevance. Deletion of GPx8 results in leakage of
ERO1a-produced H2O2 from the ER to the cytosol and in-
duces ER stress and cell death (139). Further, knockdown of
peroxiredoxin 4 results in impaired cellular tolerance to ER
stress (165). Taken together, these results suggest that cells
are protected from H2O2-induced ER stress by the actions of
GPx7, GPx8, and peroxiredoxin 4.

Because the reduced form of PDI is necessary for isom-
erization of thiol-disulfide bonds, H2O2-induced ER stress
must be tightly controlled. Molteni et al. demonstrated the
antagonistic roles of cytosolic GSH and ERO1a in regulating
the ER redox state (111). GSH depletion accelerates the
formation of protein disulfides most likely via enhanced
ERO1 oxidase activity and the formation of high-molecular
protein aggregates. The rate of protein oxidation is consis-
tently higher in cells that overexpress ERO1a. These results
suggest that pathological conditions that alter the ratio of
oxidized to reduced glutathione (i.e., GSSG/GSH) would
have an indirect effect on disulfide bond formation via its
impact on the activity of ERO1 and/or thiol isomerases.

A study performed in yeast revealed that oxidative protein
folding alters intracellular levels of GSSG but not GSH and
thus influences the GSSG/GSH ratio (35). Increased expres-
sion of Pdip and Ero1p together reduces the cytosol redox
state, whereas Pdip expression alone supports oxidation.
Thus, maintaining the appropriate redox state in intracellular
organelles can be a complex issue. Overall, oxidative protein
folding and ER stress have an impact on the cytosolic redox
balance and may be a key factor in the pathogenesis of protein
folding-related diseases.

Pathological Roles of ERO1a and PDI

Neurodegenerative diseases

The accumulation of misfolded proteins triggers the UPR
and induces ER stress (130). Of particular note, the accu-
mulation and ultimately the aggregation of amyloid b, tau,
and a-synuclein together with oxidative stress induced by
ROS have been associated with the development of several
neurodegenerative diseases (67, 151). Among the most
common of these neurodegenerative diseases is Alzheimer’s
disease (AD), which can have a profound impact on memory
and cognitive judgment (151). Similarly, Parkinson’s disease
(PD) impairs mobility and mental ability (67) and is a major
cause of morbidity and mortality in the elderly. Figure 3
illustrates the roles of PDI and ERO1a in the pathogenesis
of neurodegenerative diseases.

PDI has been found in S-nitrosylated form in the brains of
patients with sporadic AD or PD (175). S-nitrosylation of PDI
impairs both its isomerase and chaperone activities and thus
induces protein misfolding and ER stress. The binding of PDI
to tau protein prevents tau misfolding and fibrillization (198).

One recent report documented that the chaperone activity of
PDI inhibits the phosphorylation and abnormal aggregation
of tau and thus protects cells from mitochondrial damage and
tau-mediated cytotoxicity (182). PDI is recruited to tissues
by tau protein in liquid droplets, inhibiting phase separation
and stress granule formation at these sites. By contrast, PDI
that is S-nitrosylated at Cys312 in the b¢ domain is unable to
recognize and undergo recruitment in response to tau pro-
tein (182). Likewise, intra-hippocampal injection of fibrillar
amyloid b in rats increases the production of nitric oxide
(NO) and decreases PDI activity; these responses result in
the accumulation of misfolded protein in the ER lumen and
ER stress (75).

Amyotrophic lateral sclerosis (ALS) is a disease in which
degeneration of motor neurons in the brain and spinal cord
leads to muscle weakness and paralysis (143). Many gene
mutations have been associated with the familial form of
ALS, including mutations in SOD1 (cytosolic superoxide
dismutase 1) and TARDBP (TAR DNA-binding protein 43
[TDP-43]) (107). Similar to other neurodegenerative dis-
eases, protein misfolding and inclusion formation are among
the hallmarks of ALS.

Mutant SOD1 and TDP-43 proteins form aberrant, non-
native disulfide bonds and ultimately undergo aggregation
(21, 33). Alterations in nuclear localization or export of TDP-
43 result in protein aggregation and recapitulate the bio-
chemical profile of pathological TDP-43-associated findings
in ALS (191). The findings from a recent study demonstrated
that the isomerase activity of PDI protects neuronal cells
from inclusion formation, protein unfolding, and aberrant
cytoplasmic localization of mutant forms of TDP-43, as well
as ER stress induced by mutant TDP-43 or SOD1 and ER-
Golgi transport dysfunction (127).

Of particular note, both oxidoreductase and chaperone
activities of PDI protect against apoptosis in neuronal cells
that express mutant forms of TDP-43 or SOD1. Further,
Asp292Asn and Arg300His mutations in the b¢ domain of
PDI have been linked to ALS; the expression of these PDI
variants in zebrafish results in the disruption of motor neuron
connectivity and impairs dendrite outgrowth (193).

Overexpression of PDI in the motor neuron-like cell line,
NSC-34, results in reduced aggregation and inclusion forma-
tion due to mutant SOD1 as well as reductions in ER stress,
whereas knockdown of PDI promotes mutant SOD1 inclusion
formation (179). Similar to findings reported in the brains of
patients with AD and PD, S-nitrosylated PDI has been detected
in spinal cord tissues of patients with ALS as well as in trans-
genic mice that express the SOD1 mutation Gly93Ala (26).
Collectively, these findings suggest that PDI protects against
ER stress and protein misfolding in patients with AD, PD, or
ALS and that this function is impaired by S-nitrosylation.

Huntington’s disease (HD) is an autosomal dominant
neurodegenerative disorder characterized by the degenera-
tion and loss of neurons in the striatum (178). This genetic
disorder is caused by the expansion of cytosine-adenine-
guanine repeats within the huntingtin gene. This genetic
aberration leads to the misfolding and aggregation of hun-
tingtin protein and apoptotic cell death in the striatum and
cortex. Currently, there is no effective therapy available to
prevent or slow the progression of this disease.

A recent report documented upregulated expression of
both PDI and ERp57 in the brains of patients with HD and a
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mouse model of HD; inhibition of PDI in this mouse model
suppressed ER stress in the brain and results in improved
survival (213). These results suggest that PDI might be a
therapeutic target for the treatment of HD patients. Although
it is not yet clear how PDI contributes to the pathology of HD,
one group has suggested that this may result from the upre-
gulation of CCAAT/enhancer-binding protein (C/EBP)-
homologous protein (CHOP), which is an ER stress protein
that modulates ERO1a expression after activation (93).

As the ERO1a-PDI redox cycle produces H2O2, accumu-
lation of mutant huntingtin protein may lead to overactivation
of the ERO1a-PDI cycle and the overproduction of H2O2,
leading to ER stress in cells. Therefore, unlike its protective
role vis-à-vis the pathogenesis of AD and ALS, PDI may
aggravate the pathology associated with HD. It is interesting
to note that PDI inhibitors were capable of attenuating ER
stress, huntingtin-associated toxicity, and motor dysfunction
in both in vitro and preclinical studies (55, 72, 213). The
results of these studies will be discussed later in this review.

No published studies have focused on the contributions of
ERO1a to the pathogenesis of neurodegenerative diseases.
One study showed that inhibition of ERO1a or PDI reduces
neurotoxicity and accumulation of a-synuclein in the ER of
the human SH-SY5Y neuroblastoma cell line and improves
cell survival after treatment with the PD-associated neuro-
toxin, 1-methyl-4-phenylpyridinium (92). However, it is not
clear whether ERO1a modulates a-synuclein accumulation
directly or indirectly via its actions on PDI. Future studies
aimed at identifying the specific function of PDI and ERO1a
in neurodegenerative diseases may provide insights into po-
tential therapeutic inventions that address the mechanisms
underlying ER stress and the UPR.

Cancer

Cancer is the second leading cause of death worldwide
(205). Hypoxia is the most common characteristic of the
tumor microenvironment. Hypoxia plays a critical role in the
initiation and progression of solid tumors and leads to re-
sistance to radiation and chemotherapeutic interventions
(64). Numerous proteins, including growth factors, extra-
cellular matrix proteins, and proteases, are involved in pro-
moting tumor growth. Since O2 is required for disulfide bond
formation, hypoxia significantly compromises this process.
There is now substantial evidence for ERO1a and PDI
overexpression in numerous cancers; these enzymes consti-
tute a key pathway for oxidative protein folding in the disease
state. Figure 4 summarizes our current knowledge regarding
the roles of PDI and ERO1a in cancer.

Studies using human cancer cell lines have demonstrated a
role for ERO1a as an endogenous marker of hypoxia in the
liver, pancreatic, colon, and breast cancer tissues (85, 161).
ERO1a was upregulated in the mouse Hepa-1c1c7 hepato-
cellular carcinoma cell line in response to hypoxia in a
manner that was dependent on HIF-1, but not p53 (105).
Knockdown of ERO1a reduced the secretion of vascular
endothelial growth factor (VEGF) and resulted in cell cycle
arrest and apoptosis (105). In another study that featured both
cell lines and patient-derived hepatocellular carcinoma tis-
sue, cancer-associated ERO1a was found to promote tumor
cell angiogenesis, migration, and invasion via upregulation of
VEGF-A expression (200). Collectively, these findings sug-
gest that ERO1a might be an actionable target for the de-
velopment of strategies to control VEGF-driven angiogenesis
and tumor growth.

FIG. 3. The role of PDI and ERO1a in neurodegenerative diseases. S-nitrosylation of PDI in association with
nitrosative stress of neurons impairs its chaperone and enzymatic activities and induces the aggregation and accumulation of
misfolded proteins (e.g., tau), thereby leading to neurotoxicity and various sequelae characteristic of AD and PD. The ER
stress in brain cells results in upregulated expression of PDI and CHOP and may enhance PDI-ERO1a redox cycling and
induce H2O2 overproduction and ER stress, thereby contributing to the pathology of HD. Further, mutations in the PDI b¢
domain and PDI deletion may also be linked to the pathogenesis of ALS. AD, Alzheimer’s disease; ALS, amyotrophic
lateral sclerosis; C/EBP, CCAAT/enhancer-binding protein; CHOP, C/EBP-homologous protein; HD, Huntington’s disease;
PD, Parkinson’s disease.
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Proteomic analysis revealed that ERO1a is highly upre-
gulated in pancreatic cancer cells under hypoxia and that it
serves as a potential biomarker predicting the survival of
patients with pancreatic cancer (49). Kutomi et al. reported
that deletion of ERO1a in murine 4T1 breast cancer cells
markedly reduces tumor growth and lung metastasis after
their injection into mice (86). Importantly, these authors
found that patients with ERO1a-positive breast cancer ex-
hibit poorer survival than those who are negative for this
marker. These results suggest that ERO1a might be devel-
oped as a novel biomarker to predict the survival of patients
with breast cancer.

Mechanistically, ERO1a promotes increased production of
granulocyte colony-stimulating factor and chemokine CXC
motif ligand 1/2 (CXCL1/2) by facilitating the formation
of intramolecular disulfide bonds, recruiting polymorpho-
nuclear myeloid-derived suppressor cells and inhibiting
T cell-mediated immune responses (163).

Further, ERO1a facilitates oxidative protein folding and
enhances the expression of programmed death-ligand 1
(PD-L1) in MDA-MB-231 breast cancer cells, impairing the
functional activity of cytotoxic T cells (164). By contrast,
other studies revealed that hypoxia-induced expression of
ERO1a in a human SW480 colorectal cancer cell line pro-
motes the oxidative folding and expression of MHC class I
molecules via the actions of oxidized PDI, increasing their
susceptibility to cytotoxic T cells (66, 85). Future studies will
be needed to determine whether ERO1a interacts with and
alters responses to immunotherapy that are currently in use as
treatments for various cancers.

It was reported that PDI plays a role in the pathology of
breast cancer (3, 192), gastric cancer (206), gliomas (215),

acute myeloid leukemia (AML) (50), and pancreatic adeno-
carcinoma (43). The growth and ongoing survival of rapidly
growing, highly invasive metastatic breast cancer cells would
most likely require more active oxidative protein folding
machinery than that found in nonmetastatic cells. One re-
cent study revealed that PDI is overexpressed in nonadherent
breast cancer cells and that PDI knockdown inhibits
anchorage-independent cell proliferation and mammosphere
growth (192). These results suggest that cancer-associated
PDI may contribute to breast cancer cell metastasis.

Bioinformatics and biochemical studies revealed that PDI
is a target gene of HIF-1a and that both proteins are up-
regulated in human gastric cancer cell lines (206). Knockdown
of HIF-1a impairs invasion and metastasis of gastric cancer
cells, an effect that was partially reversed by overexpression of
PDI. Although the detailed underlying mechanism remains to
be determined, these findings suggest the importance of the
HIF-1a-PDI pathway in promoting gastric cancer metastasis.

Analyses of Gene Expression Omnibus and the Human
Protein Atlas showed upregulated expression of PDI in gli-
omas; elevated PDI expression has been recognized as a
novel predictor for poor prognosis in patients diagnosed with
glioma (215). Inhibition of cell surface PDI with an anti-PDI
antibody blocks the adhesive function of glioma cells (48).
Collectively, these results suggest that PDI might be a useful
prognostic biomarker and therapeutic target for gliomas.
Further, a recent study demonstrated that ERO1a expression
is upregulated in human cervical cancer and correlates with
the grade of malignancy and poor prognosis and that blocking
ERO1a-PDI signaling by mutating the Val101 residue in
ERO1a reduces the migration, invasion, and growth of a
human cervical carcinoma cell line (HeLa) (209).

FIG. 4. The role of ERO1a and PDI in cancer. The hypoxic tumor microenvironment induces the upregulation of
ERO1a via HIF-1, suppresses T cell immunity, and promotes tumor angiogenesis, thereby facilitating metastasis and
resulting in poor survival. The PDI expression may be upregulated by HIF-1a in gastric cancer cells. In glioma and breast
cancer, upregulation of PDI may be a prognostic biomarker. Oxidized PDI increases PERK activity and the UPR in
colorectal cancer. In AML, dysregulation of C/EBP-a results in aberrant myeloid differentiation. Upregulated levels of PDI
may serve to suppress C/EBP function. AML, acute myeloid leukemia; HIF-1a, hypoxia-inducible factor-1a; PERK, protein
kinase R-like endoplasmic reticulum kinase; VEGF, vascular endothelial growth factor.
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Many cancers are associated with increased ER stress and
activation of the UPR, which have a significant effect on
protein expression (155). The transcription factor C/EBP-a
plays a crucial role in the production of granulocyte/
monocyte progenitors from common myeloid progenitors
(145). Dysregulation of C/EBP-a function is a common
finding in AML (145). PDI interacts with calreticulin binding
to the stem-loop region of the C/EBP-a mRNA and blocks
C/EBP-a translation (50). Further, other studies revealed that
PDI expression is enhanced in cells from patients with AML
on activation of the UPR. Collectively, these findings suggest
that PDI suppresses C/EBP-a function and perturbs myeloid
differentiation in AML.

Activation of protein kinase R-like endoplasmic reticulum
kinase (PERK) is a critical step in the initiation of the UPR
(144). A study using the HCT116 human colorectal carcinoma
cell line suggested that oxidized PDI acts to activate PERK and
that deletion or inhibition of PDI reduces PERK-mediated
signaling and sensitizes cancer cells to hypoxia and ER stress
(84). These results provide evidence suggesting that PDI might
be a therapeutic target for the treatment of patients with colon
cancer. Overall, ERO1a and PDI expression is upregulated by
tumor hypoxia, and these enzymes function to promote tumor
growth and metastasis.

Cardiovascular diseases

The CVDs are a leading cause of death and contribute to
substantial disability worldwide (1, 65). In addition to in-
herited genetic risk factors, hypoxia, cell death, and on-
going activation of intravascular cells and the coagulation
cascade are crucial for the initiation and progression of
CVDs (59, 153, 157, 166).

Hypoxia activates the UPR in cardiomyocytes and induces
apoptosis (167). Figure 5 summarizes the roles of ERO1a and
PDI in myocardial infarction. A study using the ERO1 in-
hibitor, QM295, and mice with Ero1-l loss-of-function mu-
tations showed that ERO1a is upregulated in fibroblasts
under hypoxic conditions and that the enzyme plays an im-
portant role in calcium homeostasis in cardiomyocytes and
progressive heart failure (27).

The PDI upregulation was detected in the infarcted area
after ligation of the left anterior descending artery (81). The

expression of both ERO1 and PDI was enhanced in the mu-
rine HL1 cardiomyocyte cell line in response to acute hyp-
oxia. The PDI protects these cells from undergoing apoptosis
via an activity-dependent mechanism (153). Postmortem
analysis revealed that PDI is a key factor underlying cardio-
myocyte survival in patients with ischemic cardiomyopathy
(153). Although an injection of adenoviral vectors expressing
PDI into heart tissue results in reduced infarct size and car-
diac remodeling in a mouse model of myocardial infarction
(153), it is not clear whether the expression of ERO1a results
in similar effects.

Another study demonstrated that the effects of PDI on
preventing cardiomyocyte apoptosis during acute myocardial
infarction disappear in patients with diabetes and mice, in
which most of the PDI was in reduced form (171). Although
the detailed mechanism is unknown, the beneficial effects of
PDI may result from the increased activity of SOD1 (172,
185). In contrast to acute hypoxia, chronic hypoxia (3 weeks)
before myocardial infarction protects cardiac function in
mice (168). This discrepancy may relate to the upregulation
of myocardial endothelial cell (EC) PDI, which induces an-
giogenesis and protects cardiomyocytes against myocardial
infarction. These results suggest that each of the known
cellular functions of PDI has a distinct role in mitigating the
progression of myocardial infarction.

Atherosclerosis is a chronic inflammatory disease of large
and medium-sized arteries, and it is associated with elevated
levels of low-density lipoproteins (LDLs) (99). During the
disease process, ER stress induces phenotypic switching and
apoptosis of vascular smooth muscle cells (VSMCs) (60,
160) and it promotes foam cell formation, pro-inflammatory
cytokine production in macrophages (122), and EC apoptosis
(2). Elevated LDL levels and cytokines can further activate
ER stress.

Proteomic analysis revealed PDI upregulation in rat aortic
VSMCs after stimulation with growth factors (128). The ROS
produced via the actions of NADPH oxidase 1 (NOX1) are
crucial factors underlying the proliferation and migration of
VSMCs in atherosclerosis (187). One study using an siRNA
approach suggested that PDI enhances the expression of
NOX1 but not NOX4 and ROS production in VSMCs in
response to stimulation with platelet-derived growth factor
and that PDI positively regulates the activities of both Rac1
and RhoA, thereby promoting VSMC migration (131).
Stretch stress and advanced glycosylation end products also
upregulate PDI and NOX1 in VSMCs; the PDI produced by
this mechanism enhances proliferation and apoptosis of
VSMCs, thereby accelerating the atherosclerosis of diabetic
vein grafts (133).

One recent paper using biochemical analysis and prox-
imity ligation assays showed that PDI interacts with p47phox

through Cys residues found in its two active sites and that PDI
interacts with p47phox in thrombin-stimulated VSMCs and
the carotid artery after wire-mediated injury in mice (46).

Fernandes et al. used an inducible PDI overexpression
system in VSMCs to show that PDI overexpression modu-
lates the expression of both NOX1 and NOX4 (41). At an
early time point (24–48 h), PDI overexpression resulted in
upregulated expression of NOX1, elevated levels of H2O2,
and VSMC migration; however, at a later time point (72–
96 h), PDI overexpression resulted in upregulated expression
of NOX4 and VSMC differentiation, which was associated

FIG. 5. The role of ERO1a and PDI in myocardial
infarction. Hypoxia in cardiomyocytes induces expression
of ERO1a and upregulation of the UPR. These responses
enhance Ca2+ homeostasis and lead to progressive heart
failure. Myocardial infarction results in the upregulated
expression of PDI, thereby enhancing SOD1 activity and
protection against cardiomyocyte apoptosis. SOD1, cyto-
solic superoxide dismutase 1.

1100 JHA ET AL.



with sustained high levels of NOX1. Further, the authors
demonstrated that NOX1 expression is downregulated
whereas NOX4 expression is enhanced in the carotid arteries
of PDI-overexpressing transgenic mice. This result suggests
that PDI can regulate both NOX1 and NOX4 activity and
VSMC function.

Elevation plasma LDLs are strongly associated with the
increased risk of atherosclerosis (113). Oxidized LDLs in-
hibit PDI activity in human microvascular ECs by inducing
the formation of 4-hydroxynonenal (4-HNE)-PDI adducts,
which were detected in advanced atherosclerotic plaques
obtained from patients undergoing carotid endarterectomy
(115). However, these results relied on the use of dieosin
glutathione disulfide (Di-E-GSSG) in cell-based assays,
which raises questions about the specificity of these assays
for the assessment of PDI activity.

Treatment of human umbilical vein ECs with oxidized
LDLs induces the binding of the RNA-binding protein, het-
erogeneous nuclear ribonucleoprotein E1, to the PDI 5¢UTR,
upregulating PDI expression (108). Hyperhomocysteinemia,
another risk factor for atherosclerosis (106), increases ER
stress in hepatocytes of ApoE KO mice and downregulates
both mRNA and protein levels of ERO1a (201). Over-
expression of ERO1a in hepatocytes reduces the expressions
of ER stress-related proteins, including GRP78, PERK, ac-
tivating transcription factor 6 (ATF6), and X-box binding
protein 1 (XBP-1). These results imply that ERO1a limits the
impact of hyperhomocysteinemia-induced ER stress during
atherosclerosis. Figure 6 presents the roles of PDI and ERO1a
in the pathology of atherosclerosis.

Ischemia is an underlying factor in *80% of all strokes.
Ischemia results from occlusion of the cerebral artery, which
blocks blood flow and O2 delivery to the brain, leading to the
damage and death of brain cells (156). Figure 7 summarizes

the role of PDI and ERO1a in ischemic stroke. One study
using a rat model of ischemic stroke showed that both CHOP
and ERO1a are upregulated in the hippocampus in response
to ischemic injury (135). Although CHOP regulates ERO1a
expression in ER-stressed cells (93), hypothermia results in
downregulated CHOP expression and augmented ERO1a
expression in hypoxic cells. These results suggest that HIF-1a
may induce the upregulation of ERO1a. PDI expression is
also enhanced in rat primary astrocytes in response to hyp-
oxia (2% O2 for 48 h) and subsequent reoxygenation (20% O2

for 48 h) (162).
Another study revealed that PDI is upregulated in the ce-

rebral cortex of the ischemic brain and that its oxidoreductase
activity is a critical factor in promoting protection against
hypoxia-induced cell death (162). Although the molecular
mechanism remains elusive, the cytoprotective effects of
p-hydroxy benzyl alcohol and tanshinone IIA in ischemic
stroke may be derived from their capacity to upregulate PDI
expression in brain tissue (68, 190).

Using megakaryocyte-specific Pdi CKO mice, we dem-
onstrated that platelet-derived PDI promotes platelet-
neutrophil aggregation and contributes to the pathogenesis
of ischemic stroke (97). Platelet–neutrophil interactions are
mainly mediated by the binding of P-selectin and GPIba,
which are found on the platelet surface to neutrophil
P-selectin glycoprotein ligand-1 and aMb2 integrin, respec-
tively (94, 95).

Adherent platelet–neutrophil aggregates can form thrombi
in the inflamed endothelium, which will ultimately result in
microvessel occlusion (79, 96). We found that PDI cleaves
two allosteric disulfide bonds in GPIba, thereby enhancing its
ligand-binding function. Importantly, although the inhibition
of extracellular PDI or platelet GPIba results in decreased
infarct volume and protects against the development of

FIG. 6. The role of PDI and ERO1a in the progression of atherosclerosis. PDI and ERO1a function differently in the
various cell types during the progression of atherosclerosis. PDI is upregulated in VSMCs, where it promotes ROS
production through NOX1 or NOX4, which leads to cellular proliferation or apoptosis. In ECs, oxidized LDLs form 4-HNE-
PDI, which impairs its activity. Hyperhomocysteinemia in hepatocytes induces ER stress, upregulates ER stress-related
proteins (GRP78, PERK, ATF6, and XBP-1), and downregulates ERO1a expression. All of these pathways serve to
aggravate the pathology associated with atherosclerosis. 4-HNE, 4-hydroxynonenal; ATF6, activating transcription factor 6;
LDLs, low-density lipoproteins; NOX1, NADPH oxidase 1; ROS, reactive oxygen species; VSMC, vascular smooth muscle
cell; XBP-1, X-box binding protein 1.
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neurological deficits in a mouse model of ischemic stroke, no
additive effects were observed (97). These results suggest
that a specific blockade of PDI-GPIba signaling might be an
attractive strategy for the treatment of thromboinflammatory
diseases.

Platelets adhere to extracellular matrix proteins, such as
collagen and von Willebrand factor, at the site of arterial
injury where they undergo receptor-mediated activation and
aggregation (120). Although this process is essential for he-
mostasis, excessive accumulation of platelets will result in
thrombosis and vascular occlusion. Since current antiplatelet
therapies that target signaling molecules or receptor–ligand
interactions increase the risk of major bleeding (13), many
efforts have been made to develop potent but safer antith-
rombotic agents that do not impair hemostasis.

Modification of thiol-disulfide bonds identified in platelet
receptors induces conformational changes and modulates
their ligand-binding activity (22). Extracellular PDI has been
identified as a target for novel treatments of thrombotic dis-
ease. Figure 8 illustrates the role of extracellular PDI in the

pathology of thrombosis. Several studies that used thiol-
reacting agents and PDI inhibitors suggested that platelet-
derived PDI enhances platelet adhesive function (39, 40,
88, 89).

Circulating PDI detected on the surface of platelet-derived
microparticles also promotes aggregation (140). Reinhardt
et al. demonstrated that extracellular PDI plays a crucial role
in regulating the activity of tissue factor (TF) and fibrin
generation in a mouse model of FeCl3-induced arterial
thrombosis (141). Further, the inhibition of extracellular PDI
with a blocking antibody perturbs arterial thrombus forma-
tion and prolongs bleeding times at the site of vascular injury
(30), suggesting that extracellular PDI plays an important
role in both thrombosis and hemostasis.

Studies using megakaryocyte-specific Pdi CKO and b3
KO mice demonstrated that platelet-derived PDI binds di-
rectly to the aIIbb3 integrin and is required for its full acti-
vation (31, 78, 212). This interaction promoted platelet
accumulation, with only a minimal effect on fibrin generation
at the site of vascular injury. Although EC-specific Pdi CKO
mice have not yet been generated, one study using an aIIbb3
antagonist suggested that EC PDI contributes to the genera-
tion of fibrin (62).

The EC microparticles isolated from diabetic mice con-
tain PDI, and the treatment of mouse platelets with the
microparticles activates the aIIbb3 integrin (137). Further,
EC-derived PDI exposes an ArgGlyAsp sequence in
thrombospondin-1, thereby promoting its binding to avb3
integrin (56), which may also contribute to thrombosis.

An in vitro study suggested that platelet ERO1a may
regulate the function of PDI and aIIbb3 and platelet aggre-
gation (159). However, detailed molecular mechanisms and
the function of ERO1a in thrombosis in vivo remain elusive.

Venous thromboembolism is the third most common CVD.
This condition is the direct result of blood stasis, hyperco-
agulability, and vascular wall injury (189). TF-initiated co-
agulation is a critical feature of this disease process. Mass
spectrometric analysis using purified TF and PDI revealed
that the Cys209 residue in TF is constitutively conjugated
with GSH and that PDI deglutathionylates TF and catalyzes
oxidation of the Cys186-Cys209 disulfide bond (141). In
contrast, PDI is found to enhance the pro-coagulant activity
of TF detected on EC-derived microparticles via a mecha-
nism that is independent of its oxidoreductase activity (177).
These results imply that both oxidoreductase and chaperone
activities of PDI may be required to regulate TF activity.

Another study revealed that ATP-induced P2X7 receptor
signaling induces the release of TF-positive microparticles

FIG. 7. The role of PDI and ERO1a in ischemic stroke. CHOP and ERO1a are upregulated in the hippocampus, and
PDI is upregulated in the cerebral cortex during ischemic stroke. Platelet-derived PDI binds to GPIba and enhances its
ligand-binding function, thereby contributing to platelet–neutrophil aggregation and vascular occlusion. GPIba, glyco-
protein Iba.

FIG. 8. The role of extracellular PDI in arterial and
venous thrombosis. PDI is released from activated intra-
vascular cells, including activated (adherent) platelets and
ECs, in response to vascular injury. Extracellular PDI pro-
motes the ligand-binding activity of GPIba and aIIbb3 by
modifying their disulfide bonds, thereby inducing the for-
mation of platelet thrombi. PDI also enhances TF activity,
which leads to the generation of thrombin and fibrin. Both
platelet aggregation and fibrin clots contribute to arterial/
venous thrombosis and vascular occlusion. TF, tissue factor.
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via thiol- and PDI-dependent mechanisms (44). Of the two
blocking anti-PDI antibodies (RL90 and BD34), only RL90
effectively reduced the release of these microparticles. An-
other study revealed that the inhibition of extracellular PDI
with high concentrations of RL90 (50 lg/mL) or quercetin-3-
rutinoside (rutin; 100 lM) interferes with the pro-coagulant
activity of TF in the human THP-1 monocytic cell line treated
with antithymocyte globulin (91). However, since RL90 and
rutin inhibit the activity of both PDI and ERp57 (197, 212),
these results may implicate the contribution of ERp57 to
microparticle release and TF activity.

The TF activation in myelomonocytic cells induced by
antiphospholipid antibodies is inhibited by treatment with the
PDI inhibitor, 16F16, or by blocking TF-PDI binding (116).
A study featuring a rat model of venous thrombosis docu-
mented upregulation and colocalization of PDI and TF in
leukocytes and ECs in the inferior vena cava (211). Simi-
larly, Subramaniam et al. demonstrated that blocking PDI
with PACMA 31 attenuates platelet accumulation and TF-
dependent fibrin formation in a mouse model involving
partial stenosis of the inferior vena cava (158). Although the
aforementioned studies provide evidence for PDI-mediated
modulation of TF activity, several published reports have
challenged this concept (8, 83, 129).

Diabetes

Diabetes is a metabolic disease that results in high blood
sugar. Glucose homeostasis is tightly regulated by insulin,
which is a hormone secreted from b cells found in pancreatic
islets (52). The production and secretion of insulin depend on
the synthesis and appropriate folding of its proinsulin precur-
sor in the ER. Chronic elevation in proinsulin synthesis results
in the accumulation of misfolded protein due to incorrect
pairing of the intramolecular disulfide bonds (101). Increased
ER stress and UPR result in the dysfunction and apoptosis of b
cells, which can cause diabetes. There are two main subtypes
of this disorder. Type 1 diabetes results from a defect in insulin
secretion, and type 2 diabetes is characterized by insulin re-
sistance and defective insulin secretion (149). Figure 9 illus-
trates the role of PDI and ERO1a in diabetes.

Higher levels of PDI-bearing platelet microparticles are
detected in patients with diabetes compared with healthy

control subjects (140). One study revealed that both the redox
states and enzymatic activities of PDI and ERO1a are altered
in liver microsomes isolated from streptozotocin-treated rats
(117). Proteomic analysis revealed that insulin- and TNF-a-
induced oxidative stress in differentiated 3T3-L1 adipocyte-
like cells induces PDI upregulation (25). Overexpression of
wild-type but not an activity-null mutant form of ERO1a
prevented proinsulin misfolding and reduced ER stress; co-
expression of PDI impaired the beneficial effects observed in
response to ERO1a overexpression (196).

As ERO1b is the dominant isoform expressed in pancreatic
b cells (7, 36), Zito et al. generated homozygous Ero1b
mutant mice and demonstrated a key role for this protein in
oxidative folding of proinsulin and glucose tolerance (214).
ERO1b is upregulated in mouse islets treated with high
glucose, and pancreatic and duodenal homeobox 1 promote
transcriptional regulation of ERO1-Lb expression, thereby
facilitating oxidative protein folding (77). The knockdown of
ERO1b reduces insulin content and secretion in the mouse
MIN6 insulinoma cell line and promotes tunicamycin-
induced cell death (77). In contrast to ERO1b, knockdown of
PDI augments proinsulin folding in the rat INS-1 b-cell line
(138). The PDI can interact directly with proinsulin via the
formation of a mixed disulfide bond, which results in its re-
tention in the ER.

One study performed in b cell-specific Pdi CKO mice on a
high-fat diet demonstrated that PDI is crucial for optimal
insulin production and glucose tolerance under conditions of
metabolic stress (61). The IRE1a-XBP1 signaling pathway is
constitutively activated in pancreatic b cells under homeo-
static conditions (174). Tsuchiya et al. (174) showed that b
cell-specific deletion of Ire1a results in reduced insulin se-
cretion, decreased insulin and proinsulin content, and down-
regulated expression of PDI family isomerases, including PDI,
ERp5, and ERp44. Taken together, PDI is a downstream ef-
fector of IRE1a-XBP1 signaling and it plays a critical role in
oxidative folding of proinsulin. Overall, these results suggest
that expression and/or activity levels of PDI and ERO1 are
altered under diabetic conditions and that these enzymes fa-
cilitate appropriate proinsulin folding and insulin secretion and
thus are critical regulators of glucose homeostasis.

The plasma level of adiponectin, an antidiabetic and anti-
atherogenic hormone secreted from adipocytes, is decreased in

FIG. 9. The role of ERO1a and
PDI in diabetes. Insulin produc-
tion is tightly regulated in the b
cells of the pancreas and relies on
the appropriate folding of proinsu-
lin by ERO1b and PDI. Misfolded
proinsulin leads to increased UPR
and ER stress and, ultimately, b
cell dysfunction and death, which
characterizes the progression of
diabetes. High glucose levels in
adipocytes result in mitochondrial
stress. PDI activity is reduced due
to succinylation, which impairs the
synthesis and secretion of the anti-
diabetic hormone, adiponectin.
ERO1a also plays a crucial role in
releasing adiponectin from ERp44.
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patients diagnosed with diabetes (194). ERO1a regulates the
assembly and secretion of adiponectin by releasing Erp44
thiol-mediated retention (186).

Mitochondrial stress in adipocytes due to high glucose
levels results in increased levels of both fumarate and malate
in diabetes; this leads to succinylation of the PDI active site
Cys residues and impaired assembly and secretion of adi-
ponectin (103). This article also noted that succinylation
perturbs the oxidoreductase activity of PDI in adipose tissue
of diabetic mice. Restoring glucose levels from high to nor-
mal concentrations also restores PDI reductase activity and
reduces ER stress in adipocytes. Although it remains to be
determined whether PDI regulates adiponectin function,
these results suggest that PDI succinylation could be a novel
regulatory mechanism by which altered mitochondrial me-
tabolism induces ER stress in adipocytes in patients with
diabetes.

The deposition of islet amyloid polypeptide (IAPP) is a
common feature of type 2 diabetes (18). Misfolding and ag-
gregation of IAPP lead to b cell dysfunction and death. The
administration of adenovirus encoding P4HB to transgenic
mice expressing human IAPP specifically in b cells resulted
in amelioration of insulin secretion and inhibition of b cell
apoptosis by PDI under glucolipotoxic conditions (112).

Inhibitors

ERO1 inhibitors

A high-throughput screening study identified two com-
pounds, EN460 and QM295 as ERO1 inhibitors, both with an
IC50 value of 1.9 lM (Fig. 10A, B) (19). Both inhibitors ac-
tivate the UPR in 293T cells and protect hypersensitive
PERK-null fibroblasts against severe ER stress. However,
EN460 and QM295 are weak inhibitors when evaluated in
cell-based assays, and they also exhibit cellular toxicity,
potentially due to poor solubility and cell permeability,
nonspecific interactions with free thiols, and/or inhibition of
other FAD-binding enzymes.

As ERO1a is upregulated in response to tumor hypoxia,
the inhibitors have been tested for their efficacy in numerous
cancer models. Among these findings, the treatment of
multiple myeloid cells with EN460 reduced cell proliferation
and induced apoptosis (54). Treatment with EN460 inhibited
the proliferation of pancreatic ductal adenocarcinoma cells
in vitro and also impeded tumor growth in vivo (207).

Costanzo et al. evaluated a network of genetic interaction
profiles and reported that erodoxin interacts with yeast genes
involved in protein folding, glycosylation, and cell wall

biosynthesis, and it also inhibits ERO1 activity (Fig. 10C)
(34). However, it is unknown whether erodoxin has in vivo
efficacy in animal models. Due to the high (65%) amino acid
sequence identity shared between ERO1a and ERO1b, no
isoform-specific inhibitor has been identified.

PDI inhibitors

Given its contributions to pathology associated with a
variety of diseases, PDI has received considerable attention
as a promising druggable target. Studies using a high-
throughput screen identified rutin and the bepristats as poten-
tial PDI inhibitors (Fig. 11A–E) (14, 63). As flavonoid-based
antioxidant compounds, both quercetin and rutin are known
to inhibit thrombosis (12, 32, 114), inflammation (37, 146),
neurodegenerative diseases (38, 102), and cancer (57, 73).
Rutin binds to the b¢ domain of PDI and exerts an inhibitory
effect on platelet aggregation and thrombus formation at the
site of arteriolar injury (63, 100). Nevertheless, several studies
have addressed the nonspecific effects of rutin at the same
concentration as that used to inhibit PDI activity (78, 97, 212).

The results of a Phase II clinical trial revealed that
quercetin-3-glucoside (isoquercetin) reduces hypercoagula-
bility in patients with advanced cancer (216). Simialr to rutin,
isoquercetin interacts with the PDI b¢ domain via the for-
mation of hydrogen bonds with Glu239, Asp297, and Asn298
(Fig. 11B). The bepristats also bind to the substrate-binding
pocket of the PDI b¢ domain, blocking substrate binding and
inhibiting platelet aggregation and thrombus formation (15).
Although PDI-null platelets exhibit a moderate defect
(*50% inhibition) in agonist-induced aggregation (78, 97,
212), treatment with bepristats abrogates platelet aggregation
(14), implicating their off-target effects.

ML359 (Fig. 11F) was identified as a potent PDI inhibitor
with an IC50 value of 250 nM, but treatment with 30 lM of
ML359 had only a minimal inhibitory effect on platelet ag-
gregation (76). Although its binding site has not been re-
ported, given its structural similarity with bepristat 1a
(Fig. 11D), ML359 is likely to bind to the b¢ domain.

A recent study using in silico molecular docking reported
that tannic acid (Fig. 11G) binds to both active sites and the b¢
domain of PDI. In contrast to cell-permeable small-molecule
inhibitors, given its molecular mass of 1.7 kDa, tannic acid is
likely to inhibit the activity of extracellular but not intracel-
lular PDI (142). When injected intraperitoneally, tannic acid
reduced thrombus formation without prolonging bleeding
times in vivo. Another study revealed that the hexamer, Ly-
sPheTrpTrpPheSer, interacts with the substrate-binding site
of PDI and eliminates ERO1a activity (109). This result

FIG. 10. The structures of ERO1a in-
hibitors. (A) EN460, (B) QM295, and (C)
Erodoxin.
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FIG. 11. The structures of PDI inhibitors and their binding site. (A–G) Inhibitors that bind to the b¢ domain of PDI.
(H–R) Inhibitors that bind to the active site(s) of PDI. (B, H) Glide docking was performed to confirm the binding site of
isoquercetin and LOC14 to PDI. (S) No binding site has been reported for this inhibitor.
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suggests that ERO1a binding to the substrate-binding pocket
in the PDI b¢ domain is a critical step that promotes both
ERO1a activation and the ERO1a-PDI redox cycle.

Most PDI inhibitors bind to the N- or C-terminal active site
or both. As these interactions are typically thiol mediated,
inhibition associated with molecules in this category is likely
to be irreversible. Among those inhibitors, LOC14 (Fig. 11H)
is the most potent PDI inhibitor with a Kd value of 62 nM
(71). This compound was reported as binding to reduced PDI
only, suggesting that the free thiols in the PDI active site are
required for LOC14 binding. Using glide docking, we found
that LOC14 fits well within the a domain of reduced PDI and
interacts with His55 and Tyr99 (Fig. 11I). The compound is
stable in mouse liver microsomes; blood plasma undergoes
low rates of clearance while within microsomes, exhibits low
binding affinity to plasma proteins, and penetrates the blood–
brain barrier (71). Treatment with LOC14 improves the vi-
ability of PC12 cells expressing the mutant huntingtin protein
(71) and suppresses ER stress in a mouse model of HD (213).

PACMA 31 (Fig. 11J) was identified as an orally available
PDI inhibitor (199). Since PDI is overexpressed in ovarian
tumors, it has been associated with poor prognosis in patients
with ovarian cancer (148). PACMA 31 covalently binds to
the Cys397 and Cys400 residues in the PDI a¢ domain and
irreversibly inhibits its activity with an IC50 value of 10 lM
(199). This compound is cytotoxic and can suppress the
growth of multiresistant ovarian cancer cells. PACMA 31
also exhibited a significant inhibitory effect on human
ovarian cancer cell growth in a mouse xenograft model while
displaying no substantial toxicity to normal tissues (199).
Further, in vitro and in vivo studies revealed the beneficial
effects of PACMA 31 in multiple myeloma (176), hepato-
cellular carcinoma (195), and breast cancer (136).

It is recently reported that similar to PACMA 31, the irre-
versible PDI inhibitor, AS15 (IC50 value of 300 nM; Fig. 11K),
forms a covalent bond to the C-terminal active site of PDI (154).
AS15 and its derivatives synergistically inhibit the growth of
human glioblastoma cells (A-172 and U-118 MG lines) when
treated in combination with a GSH synthesis inhibitor.

Unbiased screening experiments identified CCF642
(Fig. 11L) as a PDI inhibitor (176). Computational modeling
suggested that the inhibitory effect is based on covalent bind-
ing between the carbonyl group of CCF642 and the Lys residue
found at the two active sites of PDI (176). Compared with
bortezomib, which is a U.S. Food and Drug Administration-
approved drug for myeloma, CCF642 exhibits similar inhibi-
tory effects on multiple myeloma in studies carried out in vivo.
Another study showed that CCF642 reduces the expression of
ER stress markers and neuronal apoptosis in a mouse model of
experimental autoimmune encephalomyelitis, resulting in
neuroprotection (69).

Hoffstrom et al. identified the compound 16F16
(Fig. 11M) as an irreversible inhibitor for both PDI and
ERp57 (55). PDI accumulates at mitochondria-associated
ER membranes in PC12 cells that express polyglutamine-
expanded huntingtin exon 1; treatment with 16F16 sup-
pressed apoptosis of the PC12 cells (55), suggesting mech-
anisms underlying PDI-mediated protection against
apoptotic cell death in HD. In addition, 16F16 inhibits the
migration of breast cancer cells (136) and the replication of
influenza viruses (80). However, this inhibitor did not affect
the pro-coagulant activity of TF (204). Although the sites of

the 16F16-PDI interaction remain unclear, cystamine, which
is a simple organic disulfide, competes with 16F16A for
binding to PDI (55), suggesting that 16F16 is likely to bind to
the active site of PDI.

One recent study in which the reactive group in 16F16 was
replaced with an NO donor suggested that 16F16-NO
S-nitrosylates PDI by releasing NO, resulting in the revers-
ible inhibition of PDI activity (98). Securinine (Fig. 11N) was
identified as another irreversible PDI inhibitor (72). Similar
to the effects of phenylarsine oxide, which is a compound that
reacts with vicinal thiols, securinine binds irreversibly to the
N-terminal active site of PDI. Treatment with securinine
results in improved viability of PC12 cells that express the
mutant form of huntingtin (72). In addition, securinine inhibits
SH-SY5Y cell viability with an IC50 value of 37 lM (123).

Several other PDI inhibitors have been characterized.
SK053 (Fig. 11O) is an inhibitor of the thioredoxin–
thioredoxin reductase system, and it also binds to the
C-terminal active site of PDI and inhibits its enzymatic activity
with an IC50 value of 10 lM (28, 82). Treatment with SK053
results in elevated C/EBP-a levels in the human HL-60 pro-
myelocytic leukemia cell line and impairs cell growth and
differentiation (28). A computational docking study revealed
that compound 35G8 (Fig. 11P) binds to Cys397 in the
C-terminal active site of PDI (87). This compound inhibits PDI
activity with an IC50 value of 170 nM and is cytotoxic to
glioblastoma cell lines at concentrations of 1–5 lM.

Origamicin (Fig. 11Q) was also identified as a PDI in-
hibitor that covalently binds to Cys residues in the active sites
(124). Microarray analysis revealed that treatment with or-
igamicin alters the gene expression profiles of both SH-SY5Y
and Huh7 cells infected with the hepatitis C virus (124, 125).
Origamicin inhibits hepatitis C virus replication and modu-
lates the viability of SH-SY5Y cells at concentrations of 25–
50 lM. Screening of the human MCF-7 breast cancer cell line
identified a phenyl vinyl sulfonate-containing small com-
pound (P1) (Fig. 11R) as a cell-permeable PDI inhibitor with
an IC50 value of 1.7 lM, although it cross-reacts with both
ERp72 and ERp5 (45). Treatment with P1 inhibits the pro-
liferation of various cancer cells. The phenyl vinyl sulfonate
group of P1 probably binds to Cys 397 in the C-terminal
active site of PDI (45).

Juniferdin (Fig. 11S) is a natural compound that inhibits
PDI reductase activity with an IC50 value of 156 nM and has
no effect on the activities of ERp57 and ERp72 (74). The
binding site in PDI has not been reported. Juniferdin perturbs
PDI-catalyzed reduction of the human immunodeficiency
virus type 1 protein, gp120, which is crucial for virus entry
into cells (74, 147). Treatment with juniferdin also reduces
the rates of intracellular replication of influenza A and B
viruses (80). Further studies are required to determine whe-
ther this inhibitor interferes with other viral infections.

Concluding Remarks

ERO1 and PDI are upregulated in response to hypoxia and
the ER stress-activated UPR that has been associated with
numerous diseases. In particular, ERO1a has an emerging
role in the hypoxic tumor microenvironment. Along with its
critical function in the ER, PDI released from cells in the
peripheral vasculature also regulates cell adhesive functions
associated with thrombosis and inflammation.
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Although the ERO1a-PDI redox cycle facilitates oxidative
protein folding and disulfide bond modification, the target
molecules and regulatory mechanisms might vary between
individual cell types. Thus, future studies will be required to
determine the answers to additional remaining questions.
Among these issues, although absolute PDI deficiency would
be lethal in humans, PDI that has undergone posttranslational
modification (e.g., S-nitrosylation) has been found in patients
diagnosed with neurodegenerative diseases. Therefore, it will
be important to determine which posttranslational modifica-
tions or mutations occur in PDI and ERO1 under specific
disease conditions.

Clinical and research data associated with altered expres-
sion or mutation of PDI and ERO1-L genes will greatly ad-
vance our understanding of their pathophysiological roles.
Likewise, although most of the protein is retained in the ER, a
small fraction of the total PDI is found in other organelles.
The role and function of PDI detected outside the ER should
be elucidated. Upregulated expression of both PDI and ERO1
might lead to their release under specific disease conditions.
It would be important to understand whether and how PDI
and ERO1 are released from cells as well as their individual
roles in specific disease states.

Finally, as described earlier, PDI and ERO1 synthesized by
and released from individual cell types might subserve un-
ique functions in health and disease. The molecular and
cellular mechanisms underlying the contributions of ERO1a
and PDI to the initiation and progression of various diseases
remain to be determined. Both specific inhibitors and tissue-
specific CKO mice will be critical resources to answer the
aforementioned questions.

There are several issues related to the identification and
development of ERO1a and PDI inhibitors that remain of
concern. First, due to the high amino acid sequence identity
and the need to target the FAD-binding pocket, it may
be challenging to identify ERO1a-specific inhibitors. Simi-
larly, the selectivity and physicochemical properties (e.g.,
membrane-permeability, solubility, and others) of most PDI
inhibitors have not been fully evaluated. For example, given
that extracellular PDI activity is a critical feature contributing
to the pathology of thrombotic diseases, cell-permeable in-
hibitors should be evaluated with caution as they might im-
pair the indispensable function of PDI in the ER.

PDI is upregulated in areas of myocardial infarction in
mouse models of left anterior descending artery ligation. The
expression of ERO1 and PDI is enhanced by acute hypoxia in
cells of the murine HL1 cardiomyocyte line, and PDI plays a
protective role in limiting apoptosis via its activity-dependent
mechanism (150). Further, postmortem analysis revealed that
PDI is a key factor promoting cardiomyocyte survival in
patients with ischemic cardiomyopathy.

Second, many PDI inhibitors are capable of forming cova-
lent bonds with Cys residues in the active sites, thereby en-
abling them to inhibit PDI activity irreversibly. Since PDI
inhibitors are likely to be administered for long periods of
time, any adverse effects associated with these compounds
should be carefully examined. Third, the administration of
specific inhibitors of either PDI or ERO1a may not exhibit
potent inhibitory effects in vivo, as other isoforms may com-
pensate for diminished function. Thus, it would be interesting
to test the combined effects of both sets of inhibitors in diseases
such as cancer in which both PDI and ERO1a are upregulated.
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Abbreviations Used

4-HNE¼ 4-hydroxynonenal
AD¼Alzheimer’s disease

ALS¼ amyotrophic lateral sclerosis
AML¼ acute myeloid leukemia
ATF6¼ activating transcription factor 6

C/EBP¼CCAAT/enhancer-binding protein
CHOP¼C/EBP-homologous protein

CKO¼ conditional knockout
CVD¼ cardiovascular disease

CXCL1/2¼ chemokine CXC motif ligand 1/2
Di-E-GSSG¼ dieosin glutathione disulfide

EC¼ endothelial cell
ER¼ endoplasmic reticulum

ERO1¼ER oxidoreductase 1
FAD¼ flavin adenine dinucleotide

GPIba¼ glycoprotein Iba
GPx7¼GSH peroxidase 7

GRP78¼ glucose-regulated protein 78
GSH¼ glutathione

HD¼Huntington’s disease
HIF-1a¼ hypoxia-inducible factor-1a

IAPP¼ islet amyloid polypeptide
LDL¼ low-density lipoprotein

NADPH¼ nicotinamide adenine
dinucleotide phosphate

NO¼ nitric oxide
NOX1¼NADPH oxidase 1
P4HB¼ prolyl 4-hydroxylase subunit b

PD¼ Parkinson’s disease
PDI¼ protein disulfide isomerase

PD-L1¼ programmed death-ligand 1
PERK¼ protein kinase R-like endoplasmic

reticulum kinase
ROS¼ reactive oxygen species

SOD1¼ cytosolic superoxide dismutase 1
TDP-43¼TAR DNA-binding protein 43

TF¼ tissue factor
UPR¼ unfolded protein response

VEGF¼ vascular endothelial growth factor
VSMC¼ vascular smooth muscle cell
XBP-1¼X-box binding protein 1
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