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Abstract

Significance: Sepsis is a critical clinical syndrome with life-threatening organ dysfunction induced by a
dysregulated host response to infection. Despite decades of intensive research, sepsis remains a leading cause of
in-hospital mortality with few specific treatments.
Recent Advances: Toll-like receptors (TLRs) are a part of the innate immune system and play an important role
in host defense against invading pathogens such as bacteria, virus, and fungi. Using a combination of genet-
ically modified animal models and pharmacological agents, numerous preclinical studies during the past two
decades have demonstrated that dysregulated TLR signaling may contribute to sepsis pathogenesis. However,
many clinical trials targeting inflammation and innate immunity such as TLR4 have yielded mixed results.
Critical Issues: Here we review various TLRs and the specific molecules these TLRs sense—both the
pathogen-associated and host-derived stress molecules, and their converging signaling pathways. We critically
analyze preclinical investigations into the role of TLRs in animal sepsis, the complexity of targeting TLRs for
sepsis intervention, and the disappointing clinical trials of the TLR4 antagonist eritoran.
Future Directions: Future sepsis treatments will depend on better understanding the complex biological
mechanisms of sepsis pathogenesis, the high heterogeneity of septic humans as defined by clinical presentations
and unique immunological biomarkers, and improved stratifications for targeted interventions. Antioxid. Redox
Signal. 35, 1324–1339.

Keywords: sepsis, toll-like receptors, danger-associated molecular patterns, pathogen-associated molecular
patterns, innate immunity, inflammation, clinical trial

Introduction

Toll-like receptors (TLRs) represent an important
component of the innate immune defense against mi-

crobial pathogens (2). They are among the first to sense
pathogen invasion, activate innate immune response, control
adaptive immune response (53), and maintain normal im-
mune homeostasis. Depressed or overactivated immune re-
sponses via TLRs impair host defense against pathogens and
play an important role in sepsis pathogenesis (21, 51).

Sepsis is a clinical syndrome with life-threatening or-
gan dysfunction caused by a dysregulated host response to
infection (115). In the United States, sepsis develops in
more than 750,000 people annually and 210,000 of them
die (9, 80). Despite the recent progress in sepsis man-

agement, such as early antibiotic coverage, aggressive
fluid resuscitation, and vasopressors to maintain hemo-
dynamics, sepsis remains the #1 cause of mortality in
hospitals (32, 102, 110). There have been numerous phase
2 and 3 sepsis clinical trials of various therapies for
sepsis, including anti-inflammation, anti-cytokine, and
immune and coagulation modulations, most of which have
failed (37, 77).

Among many possible causes, incomplete understanding
of the biological mechanisms of sepsis pathogenesis may
have contributed to the failed clinical trials (51, 77, 123). This
article critically reviews the animal investigations on the role
of TLR signaling in sepsis, the clinical trials testing the
therapeutic efficacy of blocking TLR4, and the lessons we
learn from these studies.
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TLRs: Pattern Recognition and Signaling Pathways

Following their invasion, microbes release various
pathogen-associated molecular patterns (PAMPs), such as
endotoxin, lipopeptide, and nucleic acid. PAMPs are sensed
by the pattern recognition receptors such as TLRs in the host
cells and activate the host proinflammatory responses such as
leukocyte activation, complement activation, and coagulation
activation (21, 51). These host responses are extremely im-
portant to contain and eliminate microbe dissemination.
However, if the responses are dysregulated and excessive, it
can cause collateral damage to the host. For example, too much
cytokine production (cytokine storm) can cause septic shock,
coagulation activation, and subsequent consumptive coagulo-
pathy such as disseminated intravascular coagulation.

Dead cells release damage-associated molecular pattern
(DAMP) that can act on TLRs and perpetuate proinflammatory
responses, causing excessive inflammation and tissue damage.
Almost at the same time, the anti-inflammatory responses are
initiated. These include the neuroendocrine axis of parasympa-
thetic outflow and adrenal glands, immune cell dysfunction or
death, and anti-inflammatory cytokine production. The anti-
inflammatory pathways are implicated in the enhanced suscep-
tibility to secondary infections during the later stage of sepsis.

Discovery of toll and TLR

In 1985, Nusslein-Volhard identified the Toll gene critical
for the embryonic development of the fruit flies Drosophila
(7, 8). A decade later, Hoffmann and colleagues found that Toll
was essential to innate immunity against pathogen (69). The
following year, Medzhitov and Janeway at Yale discovered that
a human Toll protein was a transmembrane protein with an
extracellular domain consisting of a leucine-rich repeat and
cytoplasmic domain, which they coined ‘‘Toll-like receptor’’
(79). Subsequently, several groups discovered that mice with
naturally mutated Tlr4 gene (97, 98), either a missense point
mutation (Pro/His, C3H/HeJ strain) or null mutation (C57
BL/10 ScCr strain), or with specific Tlr4 gene deletion
(TLR4-/-) (50), exhibited insensitivity to endotoxin, demon-
strating TLR4 as the sensor for bacterial endotoxin.

TLR signaling pathways

At least 11 human and 13 mouse TLRs have been cloned
and they are expressed on various types of immune and
nonimmune cells, such as macrophages, monocytes, den-
dritic cells (DCs), lymphocytes, endothelial and epithelial
cells, and cardiomyocytes. TLRs are single-spanning mem-
brane glycoproteins with an intracellular Toll/interleukin-1
receptor (TIR) domain (58).

Based on their locations in the cell, TLRs are categorized
into two groups: (i) those anchored on the plasma membranes
including TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10, which
mainly sense lipopeptides, peptidoglycan, lipopolysaccharide
(LPS), or zymosan of bacterial and fungi origins, and (ii) those
located inside the cell on the endosome membranes such as
TLR3, TLR7, TLR8, TLR9, TLR11, TLR12, and TLR13,
which are mainly associated with nucleic acid sensing (103),
such as double-stranded (ds) RNA (TLR3) (4), single-stranded
RNA (TLR7/8) (45, 73, 131), and DNA (TLR9) (49). Other
known nucleic acid sensors are located in the cytoplasm and
include the RNA sensors—retinoic-acid-inducible gene 1

(RIG-I) and melanoma-differentiation-associated gene 5
(MDA5), and the DNA sensors—cyclic GMP-AMP synthase
and absent in melanoma 2 in the cytoplasm (103).

Following ligand binding, TLRs form dimers and the re-
sulting TIR-TIR complexes trigger the downstream signaling
(Fig. 1) through the specific adaptors (84), that is, MyD88
(myeloid differentiation factor 88), TIRAP (TIR domain-
containing adaptor protein), Trif (TIR domain-containing
adaptor inducing IFN-b–mediated transcription factor),
SARM (sterile a- and heat-armadillo-motif-containing pro-
tein), and TRAM (Trif-related adaptor molecule).

TLR signaling can be further divided into two distinct but
convergent pathways: MyD88-dependent and Trif-dependent
pathways. MyD88-dependent pathway is activated by all
TLRs with the exception of TLR3. MyD88 pathway leads to
activation of the transcription factor nuclear factor kappa B
(NF-jB) and mitogen-activated protein kinases. MyD88 re-
cruits IL-1 receptor-associated kinase (IRAK). The IRAK1-
TNF receptor-associated factor 6 (TRAF6) complex then
activates transforming growth factor-a activated kinase 1
(TAK1). Activated TAK1 then phosphorylates I-jB kinase
beta (IKKb), leading to phosphorylation and degradation of
I-jB, which releases the NF-jB p50/p65 subunits and results
in the nuclear translocation and DNA binding of NF-jB. Trif-
dependent pathway is utilized by TLR3 and TLR4. It induces
type I interferon (IFN) and inflammatory cytokines through
the transcription factor interferon regulatory factor 3 (IRF3).

PAMPs and DAMPs

TLRs specifically bind to a wide range of pathogens
such as bacteria, fungi, and viruses through ‘‘PAMPs’’ rec-
ognition (Table 1) (2, 58). TLRs can also act as a stress sensor
in response to noninfectious tissue injury and recognize a
variety of endogenous danger molecules through ‘‘DAMPs’’
recognition (94).

LPS, one of the best-characterized bacterial ligand, is a
wall component of gram-negative bacteria. The extracellular
domain of TLR4 forms a complex to act as the LPS-binding
site of TLR4 (88, 89). TLR2 senses a wide range of PAMPs—
including lipopeptides, peptidoglycan, and lipoteichoic acid
from gram-positive bacteria. TLR2 usually forms hetero-
dimers with TLR1 or TLR6. TLR2/6 heterodimer senses
diacylated lipopeptides (125), whereas TLR1/2 distinguishes
triacylated lipopeptides (127). TLR5 responds to bacterial
flagella through flagellin (43). TLR11 responds to the pro-
tozoan parasite and uropathogenic bacteria through a profilin-
like molecule (137, 138). TLR3 recognizes double-strand
RNA, which can activate immune responses to express IFN
and cytokines to exhibit antiviral and antibacterial effects.
TLR7 and TLR8 recognize single-strand RNAs, as well as
imidazoquinoline compounds such as guanine analogues and
imiquimod (142, 143). At last, TLR9 recognizes cytidine-
phosphate-guanosine (CpG) DNA motifs with unmethylated
dinucleotides from bacteria and viruses (11, 96) and mito-
chondrial DNA (36, 76, 141).

DAMPs are produced by injured cells under both infec-
tious (e.g., sepsis) and noninfectious (e.g., trauma, ischemic
injury, and autoimmune disease) conditions (18, 29, 39, 64,
65, 71, 118, 149, 151). Some of the reported examples in-
clude heat-shock proteins, hyaluronic acid, glycoprotein 96
(Gp96), heparan sulfate, fibrinogen, HMGB1, RNA, DNA,
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amyloid b, and oxidized low-density lipoprotein (Table 1).
These endogenous pattern molecules, once released into the
extracellular space, are sensed by various TLRs and elicit the
host innate immune responses.

Severe acute respiratory syndrome coronavirus 2
and innate immune receptor recognition

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is a highly transmissible virus and has

caused the current global pandemic of acute respiratory
disease, named ‘‘coronavirus disease 2019’’ (COVID-19),
that threatens the global health and safety (52). SARS-
CoV-2, like other coronaviruses, contains the dsRNA that
is produced during viral genome replication and tran-
scription (60, 146) and can be recognized by several nu-
cleic acid sensors, including RIG-I and MDA5, in the
cytoplasma (70, 109) and/or by TLR3 in the endosome (78,
124). Activation of these innate immune receptors leads to
the antiviral type-I IFN signaling (68).

FIG. 1. TLRs: ligands and signaling pathways. All TLRs are transmembrane proteins. TLR1, TLR2, TLR4, TLR5, and
TLR6 are expressed on the cell surface, whereas TLR3, TLR7/8, and TLR9 are located almost exclusively in endosomes.
Different TLRs recognize different microbial components. For example, TLR2 recognizes lipopeptides or peptidoglycan, a
wall component of gram-positive bacteria. It also recognizes DAMPs such as HSPs and HMGB1. TLR2 heterodimerizes
either with TLR1 to recognize triacylated lipopeptide or with TLR6 to recognize diacylated lipopeptides. TLR4 senses
endotoxin, a wall component of gram-negative bacteria. TLR5 senses bacterial flagellin, a protein component of flagella.
TLR3 recognizes viral dsRNA, whereas TLR7 and TLR8 are the sensors for ssRNA. Finally, TLR9 senses bacterial CpG-
rich hypomethylated DNA (CpG DNA) motifs. Upon ligand binding, TLRs form dimers and recruit one or more adaptor
proteins, namely, MyD88, TIRAP, TRIF, or TRAM, to the cytoplasmic domains of the receptors through their TIR domain
interactions. All TLRs with the exception of TLR3 signal via the MyD88-dependent pathway. TIRAP acts as a bridge to
recruit MyD88 to TLR2 and TLR4 signaling, whereas TRIF is used in TLR3 signaling. In MyD88 signaling, MyD88
associates with IRAK4 and IRAK1. IRAK4 in turn phosphorylates IRAK1 and promotes their association with TRAF6,
which serves as a platform to recruit and activate the kinase TAK1. Activated TAK1 activates the IKK complex, composed
of IKKa, IKKb, and IKKc, which in turn catalyze phosphorylation and subsequent degradation of I-jB. I-jB degradation
lets NF-jB (i.e., p50/p65) free to translocate from the cytoplasm to the nucleus where it activates multiple inflammatory
cytokine gene expressions. The transcription factor IRF7 is activated as the downstream signaling molecule of TLR7/8 and
TLR9. It is directly phosphorylated by IRAK1 and then translocated into the nucleus to induce the expression of type I
IFN-a and IFN-inducible genes. In the Trif-dependent pathway, Trif activates sTBK1 and IKK-i, resulting in the IRF3
activation and translocation into the nucleus to activate the transcription of IFN-b and IFN-inducible genes. CpG, cytidine-
phosphate-guanosine; DAMP, damage-associated molecular pattern; dsRNA, double-stranded RNA; HMGB1, high-
mobility group box 1; HSP, heat-shock protein; IFN, interferon; IKK, I-jB kinase; IL, interleukin; IRAK, IL-1 receptor-
associated kinase; IRF, interferon regulatory factor; MyD88, myeloid differentiation factor 88; NF-jB, nuclear factor kappa
B; ssRNA, single-stranded RNA; TAK1, transforming growth factor-a activated kinase 1; TIR, toll/interleukin-1 receptor;
TIRAP, TIR domain-containing adaptor protein; TLR, toll-like receptor; TNF, tumor necrosis factor; TRAF6, TNF
receptor-associated factor 6; TRAM, Trif-related adaptor molecule; TRIF, TIR domain-containing adaptor inducing IFN-b-
mediated transcription factor. Color images are available online.
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Role of TLRs in Sepsis

Extensive preclinical work has documented the possible
role of TLRs in the sepsis pathogenesis. Many of these
studies have taken loss-of-function approaches, either in ge-
netically modified mouse models or pharmacological
blocking, to manipulate TLR signaling. Others have used
TLR ligands to activate TLR signaling. Table 2 summarizes
some of these findings.

TLR2

Both animal and human studies support the role of TLR2 in
sepsis-induced immune and multiple organ injuries, such as
cardiac, endothelial, and neutrophil dysfunction, and coagu-
lopathy (34, 47, 93, 103, 105, 114, 135, 136, 139, 145, 147,
150). For example, peptidoglycan-associated lipoprotein, a
natural TLR2 ligand and a ubiquitous gram-negative bacte-
rial membrane protein (72), inhibits cardiomyocyte function
(145) and activates endothelial function and coagulation
pathways (114). In mouse models of polymicrobial sepsis,
TLR2-/- mice have better survival, improved cardiac func-
tion, attenuated blood and myocardial cytokine production

(147), improved clotting function (135), less immune cell
depletion (82, 93), reduced mitochondrial reactive oxygen
species production, and improved mitochondrial function
(40) when compared with wild-type (WT) mice.

TLR3

TLR3 senses dsRNA and also endogenous RNA released
from necrotic tissues and mediates acute inflammation (16).
In a bacterial sepsis model, however, knockout of TLR3
confers a survival benefit and improved organ function (28,
35). Both bacterial and host RNAs are present in the circu-
lation of septic mice and could potentially function as the
agonists of TLR3. Interestingly, in a double-hit model,
treatment with the TLR3 ligand poly(I:C) of animals before
cecum ligation and puncture (CLP) enhances host immunity
and improves the survival (24).

TLR4

Extensive reports have demonstrated the role of TLR4 in
mediating cytokine storm, immune cell impairment, organ
injury, and mortality in endotoxin shock or in polymicrobial

Table 2. Role of Toll-Like Receptors in Endotoxin Shock and Bacterial Sepsis

TLRs Sepsis

TLR2 TLR2-/- mice have better survival, markedly improved cardiac function, attenuated systemic and myocardial
cytokine production (147), improved global clotting function, platelet counts, and near-normal plasma tissue
factor levels compared with WT mice 24 h after CLP (135).

Chimeric models demonstrate that it is nonhematopoietic TLR2 that contributes to neutrophil and cardiac
function impairment in sepsis (150).

Peptidoglycan-associated lipoprotein induces TLR2/MyD88 signaling cascade to activate cardiomyocyte
dysfunction and inflammatory responses (145).

TLR2 activation by bacterial lipoproteins stimulates endothelial function and coagulation pathways and
contributes to endothelial activation, coagulopathy, and vascular leakage in sepsis (114).

Complement factor B acts as a downstream effector of multiple TLRs and plays a critical role in bacterial
sepsis (148).

Circadian rhythms in immune cells mediate diurnal variations in murine sepsis severity via a TLR2-dependent
mechanism (47).

TLR2-mediated neutrophil depletion exacerbates bacterial sepsis (104).
TLR2 and TLR4 contribute to sepsis-induced depletion of spleen dendritic cells (82, 93).

TLR3 Systemic deletion of TLR3 confers a survival benefit, improved cardiac function, and reduced inflammatory cell
infiltration (28, 35).

TLR4 TLR4 mediates endotoxin-induced NF-jB activation, cytokine production, and cardiac dysfunction (61, 12).
Chimeric studies indicate that TLR4 in bone marrow-derived hematopoietic cells is responsible for cardiac

dysfunction during endotoxin shock (13, 119, 120).
TLR4 signaling leads to neutrophil migration impairment and dendritic cell depletion in polymicrobial sepsis

(6, 93).
While TLR4 deletion clearly confers a survival benefit in endotoxin shock (97) or lethal gram-negative bacterial

sepsis (105), it offers no survival benefit (26) or even deleterious effect in mild gram-negative or polymicrobial
sepsis (105, 140).

TLR5 Bacterial flagellin activates innate immune response and induces marked myocardial inflammation and
contractile dysfunction via TLR5 (107, 108).

Flagellin-TLR5 signaling promotes endothelial repair and survival in sepsis (144).
TLR7 TLR7 mediates coagulation activation and coagulopathy in murine sepsis (135).

Bone marrow-derived macrophages treated with TLR7 agonist (R837) exhibit marked increases in tissue factor
expression (135).

TLR7-/- mice have lower plasma cytokines, reduced circulatory shock, less organ injury, and significantly
improved survival compared with WT mice after CLP (54).

TLR9 TLR9 contributes to cytokine production, splenic apoptosis, and kidney injury during polymicrobial sepsis (128).
Compared with WT mice, TLR9-/- mice exhibited lower serum inflammatory cytokine levels, higher bacterial

clearance, and greater survival after CLP (95).

CLP, cecum ligation and puncture; NF-jB, nuclear factor kappa B; WT, wild type.
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sepsis (6). Animal endotoxemia induces NF-jB activation
(61) that leads to robust myocardial cytokine response and
myocardial dysfunction (12). This process involves signaling
via TLR4, CD14, IRAK1, MyD88, and Trif. The endotoxin-
mediated cardiac dysfunction may be an indirect effect sec-
ondary to immune cell activation rather than a direct effect on
cardiomyocytes as in vitro treatment with LPS fails to inhibit
cardiomyocyte function (120).

Chimeric models suggest that TLR4 in hematopoietic cells is
responsible for cardiac dysfunction during endotoxic shock (13,
119, 120). Both MyD88 and Trif play an equally important role
in endotoxin shock (31). Studies using tissue-specific MyD88
knockout models demonstrate that both cardiomyocyte- and
myeloid-MyD88 play a role in mediating cardiac dysfunction
and mortality during endotoxin shock (31). In animal models of
bacterial sepsis, the role of TLR4 is complex and may depend on
the type and severity of bacterial infection. For example, while
TLR4 deletion clearly confers a survival benefit in endotoxin
shock (97) or lethal gram-negative bacterial sepsis (105), it
offers no survival benefit (26) or even deleterious effect in mild
gram-negative or polymicrobial sepsis (105, 140).

These data seem to suggest that host may mobilize different
innate immune mechanisms in endotoxemia and bacterial
sepsis. Moreover, studies suggest that signaling via MyD88,
but not Trif, plays a predominant role in mediating cardiac
dysfunction, marked systemic inflammation, and mortality in a
lethal model of bacterial sepsis, whereas MyD88 and Trif are
equally important in systemic inflammation, organ dysfunc-
tion, and death during endotoxin shock (31).

Several possible mechanisms may explain the deleterious
effect of TLR4 deficiency in low-grade bacterial sepsis. First,
TLR4 is a part of the host immune defense against bacterial
invasion. WT mice exhibit more robust neutrophil migratory
and phagocytic functions compared with TLR4-/- mice. As a
result of bacterial dissemination in the absence of TLR4,
TLR4-/- mice have more cytokine production, bacterial load,
and higher mortality. Second, TLR4 signaling may play a
‘‘preconditioning-like’’ role during low-grade bacterial in-
fection. LPS pretreatment confers a cardioprotective effect
against hypoxic injury (14, 17). Studies have shown that
administration of low-dose endotoxin offers protection
against both subsequent endotoxin challenges and poly-
microbial infection (134). Finally, it should be pointed out
that there is substantial difference in endotoxin sensitivity
among different species. Controversies exist over whether or
how well endotoxin-challenged mice mimic endotoxemia
and acute inflammation in humans (22, 113, 116, 133).

TLR5

Bacterial flagellin, a TLR5 ligand, activates NF-jB-
mediated inflammatory response and induces myocardial
dysfunction (107, 108). In vivo, flagellin administration leads
to cytokine storm, increased myocardial neutrophil infiltra-
tion, and reversible cardiac dysfunction.

TLR7/TLR8

In addition to sensing viral single-stranded RNA, TLR7
may also sense endogenous extracellular RNAs released
from injured cells and plays a pivotal role in murine sepsis. In
a CLP model of polymicrobial sepsis, studies have found an
increased plasma RNA that is closely correlated with sepsis

severity (149). Plasma microRNA (miRNA) array revealed
upregulation of multiple miRNAs including miR-34, miR-
122, miR-145, miR-146a, miR-210 (Fig. 2) (149). Tissue
RNA extracts or RNA released from injured cells or miRNA
mimics induces proinflammatory cytokine production and
complement activation via a TLR7-dependent mechanism
(29, 30, 149). Moreover, compared with WT mice, mice
deficient of TLR7 had lower plasma cytokines, reduced cir-
culatory shock (lower core temperature), and significantly
improved survival (Fig. 3) (54). Finally, similar to humans,
septic mice develop sepsis-induced coagulopathy character-
ized by global clotting dysfunction, severe thrombocytope-
nia, decreased fibrinogen, and increased plasma tissue factor
(TF) and D-dimers (Fig. 4) (135). TLR7-/- septic mice ex-
hibited preserved global clotting function, platelet counts,
and near-normal plasma TF concentration (135).

TLR9

DNA and RNA isolated from Staphylococcus aureus and
Escherichia coli induce rat cardiomyocyte dysfunction (87).
Similarly, CpG-ODN, a TLR9 agonist, inhibits sarcomere
shortening of isolated mouse cardiomyocytes. In vivo, CpG-
ODN causes myocardial NF-jB activation and cytokine
production. Both effects are abolished in TLR9-deficient
mice (62). Compared with WT mice, TLR9-/- mice exhibited
lower serum inflammatory cytokine levels, higher bacterial
clearance, and greater survival after experimental peritonitis
induced by CLP. Protection of TLR9-/- mice after CLP was
associated with a greater number of peritoneal DCs and
granulocytes than in WT controls. Adoptive transfer of
TLR9-/- DCs was sufficient to protect WT mice from CLP
and increased the influx of peritoneal granulocytes (95).
Further studies indicate that host mitochondria-derived DNA
may be responsible for TLR9 activation and contributes to
sepsis-induced acute kidney injury (128).

Targeting TLRs in Sepsis: A Double-Edged Sword

It has long been recognized that systemic inflammatory
response is a major contributor to sepsis pathogenesis leading
to cardiovascular collapse, multiorgan injury, and mortality.
Such systemic response is highly complex and caused by both
infectious and noninfectious mediators. Manipulating this
process as a therapeutic strategy, while seeming attractive
and logical, has proven to be a double-edge sword. One such
example is targeting TLR4. Blocking or genetically deleting
TLR4 effectively protects animals from endotoxin-induced
circulatory shock, cardiac depression, and high mortality
(27, 31, 97, 98). Moreover, in a mouse model of lethal gram-
negative bacterial sepsis with more than 80% mortality,
TLR4 deletion or antibody blocking proves to be beneficial—
damping systemic cytokine storm (TNFa and IL-6) and
markedly improving the survival of septic animals (Fig. 5)
(105). However, as an essential part of innate immunity,
TLR4 also plays a critical role in host defense against bac-
terial invasion. In nonlethal gram-negative bacterial infection
or mild-form of polymicrobial sepsis, TLR4 deletion or an-
tibody blocking proves to be deleterious and leads to in-
creased blood bacterial loading, worse cardiac dysfunction,
and higher mortality (Fig. 5) (105, 140). Thus, it is evident
that sepsis severity is an important factor in determining the
outcome of TLR4-targeted sepsis intervention (Fig. 6).
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Targeting TLR4: The ACCESS Trials

There have been more than 100 phase 2 and phase 3 sepsis
clinical trials (77). The strategies have been to manipulate the
systemic inflammatory response by targeting the PAMP or
endogenous inflammatory mediators such as TNFa, IL-1, ei-
cosanoids, or platelet-activating factor, or by suppressing im-
mune response or coagulating cascade. One of the most recent
clinical trials for sepsis is eritoran. Eritoran is a synthetic li-
podisaccharide, with a structure similar to LPS, that binds to
MD2-TLR4 and competitively blocks LPS to TLR4 (89).

In a phase 1 trial (75), healthy volunteers were given eri-
toran before LPS. LPS, at a small dose of 3 ng/kg, induces
very robust production of C-reactive protein, TNFa, and
IL-6. Similar to animal studies, TLR4 blocking by eritoran in
these healthy humans completely eliminated all clinical signs
and cytokine production induced by LPS. In a subsequent
phase 2 trial (122), a prospective, randomized, double-
blinded, placebo-controlled multicenter study, two doses of
eritoran were tested: 45 mg versus 105 mg over the course of
6 days, q12 hours, and given within 12 h of sepsis diagnosis.

The study patients had predicted risk of mortality between
20% and 80%. Among a total of 300 septic patients—100 in
placebo and 200 in eritoran groups, 28-day all-cause mortality
in the placebo group was 33.3%, low-dose group 32%, and
high-dose group 26.6%, a substantial (20%) but not statistically
significant reduction. Poststratification analysis of APACHE II

score on 28-day all-cause mortality revealed that patients with
less severe sepsis (score 21) probably did worse with high-dose
eritoran compared with placebo. In contrast, patients with high
APACHE score 4—most severe sepsis—might have been
benefited from eritoran, a finding very similar to what had been
seen in animal studies noted above.

It was concluded that the trend toward a lower mortality
rate in patients with severe sepsis and high predicted risk of
mortality should be further investigated in the phase 3 trial
(ACCESS trial, NCT00334828) that involved 1961 septic
patients from 197 intensive care units (ICUs) worldwide (86).
Like phase 2, it was a randomized, double-blinded, placebo-
controlled multicenter study. Based on the phase 2 data, the
study only tests high dose at 105 mg total and given every
12 h. The study patients were highly heterogenous in terms of
(i) type of infection: G-, G+, mixed, fungi, and other un-
known, and (ii) infection sites: mostly in the lungs, abdomen,
and genitourinary track. At the end of the 5-year trial, there
was no difference in the 28-day all-cause mortality, which
was about 27%–28%. The 12-month mortality was also
identical between the eritoran and control groups at 40%.

Sepsis Clinical Trials: Lessons Learned

The cause of the failed ACCESS trial might be multifac-
torial (86): (i) patient heterogeneity: the septic patients

FIG. 3. TLR7-deficient mice have improved survival and attenuated plasma cytokine productions after poly-
microbial sepsis. (A) Survival rate of WT and TLR7-/- mice during sepsis. Mice were subjected to CLP surgery and
observed for survival for up to 11 days. **p < 0.01, n = 27 in WT and TLR7-/- group. (B) Rectal temperature at 24 h after
CLP surgery. ***p < 0.001, ****p < 0.0001 versus sham group. Unequal variance t-test, n = 11 per group. (C) Plasma
cytokines. IL-6 and TNFa are expressed as median with interquartile range and analyzed by Mann–Whitney U test. IL-1b
and CXCL2 are expressed as mean – SD and analyzed by unequal variance t-test [Jian et al. (54), used with permission].
WT, wild type. Color images are available online.

TARGETING TLR IN SEPSIS 1331



enrolled had various severity scores and comorbidities,
which could have impacted how patients responded to the
treatment; (ii) only a fraction (40.7%) of the septic patients
had elevated plasma endotoxin levels. Considering TLR4 as
the target, this might explain why some patients failed to

respond to eritoran, although a post hoc analysis did not find
survival benefit in endotoxin-positive patients either; (iii)
lower than anticipated mortality rate in the placebo group. In
the course of the trials, the sepsis mortality rate had been
gradually decreased from 40% to *27%, probably due to the

FIG. 4. Septic mice develop global coagulopathy. Wild-type C57BL/6 mice were subjected to CLP surgery, and killed
at the indicated time points for blood collection. Sham mice were killed at 24 h. (A) Representative pictures of rotational
thromboelastometry traces, a hemostatic viscoelastic test. Both representative EXTEM and FIBTEM traces from sham and
CLP mice are shown. EXTEM to test tissue factor-initiated clot formation; FIBTEM to test EXTEM in the presence of a
platelet inhibitor, cytochalasin. MCF is marked in each tracing at 30 min. (B, C) Time course of MCF values in EXTEM
assays (E-MCF) and FIBTEM assays (F-MCF) following CLP. *p < 0.05, **p < 0.01, ***p < 0.001. (D) Clotting factors in
sham and septic mice. *p < 0.05, **p < 0.01, ****p < 0.0001. [Williams et al. (135), used with permission]. EXTEM,
extrinsic thromboelastometry; FIBTEM, fibrinogen thromboelastometry; MCF, maximum clot firmness. Color images are
available online.

FIG. 5. Effect of anti-TLR4 antibodies on the survival of mice with lethal or nonlethal gram-negative bacterial
sepsis. (A) Anti-TLR4 antibodies decrease the mortality of lethal gram-negative infection. BALB/c mice were injected
i.p. with anti-TLR4 or control antibodies (200 mg/kg) given before an i.p. injection of 2 · 105 cfu inoculum of Escherichia
coli O18. (B) Anti-TLR4 antibodies increase the mortality of nonsevere gram-negative infections. Survival of C57BL/6
mice (n = 7 or 8) injected intranasally with 5.6 · 102 cfu of K. pneumoniae and i.p. with 40 mg/kg of anti-TLR4 or control
antibodies at 24 h postinfection. p < 0.002. [Roger et al. (105), modified and used with permission].
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Surviving Sepsis Campaign, which, along with other inter-
ventions, might alter the responsiveness to eritoran; (iv) too
late for intervention. The time for intervention was within
12 h after initial sepsis diagnosis, which might be too late for
intervention as ‘‘genie was out of bottle’’; and (v) different
pathogens. The study patients were infected with gram-
positive, gram-negative, fungi, and mixed ones. Each of these
pathogens is sensed via different TLRs and thus under-
standably, blocking TLR4 alone might be less efficacious.

Moving forward, the main challenges facing sepsis re-
search are multiple. The rodent models commonly used in
sepsis research are quite different from the septic patients we
see in hospital. Unlike young and healthy rodents used in
most laboratory research, septic patients are often old with
multiple comorbidities, such as diabetes, hypercholester-
olemia, hypertension, or other systemic and metabolic dis-
eases, and are often aggressively treated with multiple
medications in ICU. These underlying conditions could
profoundly impact how the body responds to infection as well
as to treatment. Therefore, establishing animal models that
closely simulate septic patients is of paramount importance.
Septic humans are highly heterogeneous in their clinical
presentations of infection (sites, pathogens, severity) and
responses to treatments, the underlying comorbidities, the
demographics, their genetic makeup and risk factor, and their
immune response to pathogen infection. Delineating these
complex biological, genetic, immunological, and clinical
factors in human sepsis is essential for future sepsis inter-
vention and trial design.

Summary

Sepsis is a deadly clinical syndrome induced by a host’s
dysregulated immune responses to infection. Acting via
pattern-recognition and converging signaling pathways with a

set of adaptor molecules, kinases, and transcriptional factors,
TLRs play a pivotal role in host defense against microbe
pathogens by launching a proinflammatory immune response.
Preclinical rodent studies have established the mechanistic role
of TLR signaling in sepsis pathogenesis. Targeting these innate
immune receptors and manipulating host inflammatory re-
sponses in sepsis, while attractive and logical, may yield op-
posite results depending on the severity of sepsis at the time of
intervention. Numerous clinical trials targeting innate immu-
nity, inflammation, and coagulation, including the eritoran
ACCESS trial, have failed to demonstrate therapeutic efficacy.

Future work will be needed to better understand the
complex biological mechanisms of sepsis pathogenesis, es-
tablish animal sepsis models more closely related to human
conditions, identify molecular basis—biochemical and im-
munological risk factors and biomarkers—for clinical het-
erogeneity of septic patients, and carefully design human
trials with clear clinical and immune stratifications and var-
ious levels of clinical outcomes.
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FIG. 6. Double-edged sword of
targeting TLR4 for sepsis interven-
tion. In lethal endotoxin shock or
gram-negative bacterial sepsis, TLR4
plays a deleterious role in mediating
cytokine storm, CV collapse, organ
damage, and death. In contrast, in
nonlethal or low-grade bacterial sep-
sis, TLR4 plays a beneficial defense
role in neutrophil migration, neutro-
phil phagocytosis, and bacterial
clearance. However, targeting TLR4
by genetic deletion or pharmacologi-
cal inhibition would thus generate
opposite outcomes. CV, cardiovascu-
lar. Color images are available online.
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Abbreviations Used

APACHE II¼Acute Physiology And Chronic
Health Evaluation II

CLP¼ cecum ligation and puncture
COVID-19¼ coronavirus disease 2019

CpG¼ cytidine-phosphate-guanosine
CV¼ cardiovascular

DAMPs¼ damage-associated molecular patterns
DCs¼ dendritic cells

ds¼ double-stranded
EXTEM¼ extrinsic thromboelastometry
FIBTEM¼ fibrinogen thromboelastometry

Gp96¼ glycoprotein 96
HMGB1¼ high-mobility group box 1

HSP¼ heat-shock protein
ICU¼ intensive care unit
IFN¼ interferon
IKK¼ I-jB kinase

IL¼ interleukin
IRAK¼ IL-1 receptor-associated kinase

IRF¼ interferon regulatory factor
LDL¼ low-density lipoprotein
LPS¼ lipopolysaccharide

MCF¼maximum clot firmness
MD2¼myeloid differentiation factor 2

MDA5¼melanoma-differentiation-associated gene 5
miRNA¼microRNA
mtDNA¼mitochondrial DNA
MyD88¼myeloid differentiation factor 88
NF-jB¼ nuclear factor kappa B

ODN¼ oligodeoxynucleotides
PAMPs¼ pathogen-associated molecular patterns

poly(I:C)¼ polyinosinic-polycytidylic acid
qRT-PCR¼ quantitative reverse-transcriptase–

polymerase chain reaction
RIG-I¼ retinoic-acid-inducible gene 1

SARM¼ sterile a- and heat-armadillo-motif-
containing protein

SARS-CoV-2¼ severe acute respiratory syndrome
coronavirus 2

ss¼ single-stranded
TAK1¼ transforming growth factor-a-activated

kinase 1
TBK1¼TRAF family member-associated NF-jB

activator (TANK) binding kinase-1
TF¼ tissue factor

TIR¼ toll/interleukin-1 receptor
TIRAP¼TIR domain-containing adaptor protein

TLRs¼ toll-like receptors
TNFa¼ tumor necrosis factor a

TRAF6¼TNF receptor-associated factor 6
TRAM¼Trif-related adaptor molecule

Trif¼TIR domain-containing adaptor inducing
IFN-b–mediated transcription factor

WT¼wild type
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