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ARTICLE INFO ABSTRACT

Keywords: To combat the recent coronavirus disease 2019 (COVID-19), academician and clinician are in search of new
Deep learning approaches to predict the COVID-19 outbreak dynamic trends that may slow down or stop the pandemic.
COVID-19

Epidemiological models like Susceptible-Infected—-Recovered (SIR) and its variants are helpful to understand

CNN the dynamics trend of pandemic that may be used in decision making to optimize possible controls from
LST™M the infectious disease. But these epidemiological models based on mathematical assumptions may not predict
the real pandemic situation. Recently the new machine learning approaches are being used to understand the
dynamic trend of COVID-19 spread. In this paper, we designed the recurrent and convolutional neural network
models: vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid CNN+LSTM model to capture the
complex trend of COVID-19 outbreak and perform the forecasting of COVID-19 daily confirmed cases of 7,
14, 21 days for India and its four most affected states (Maharashtra, Kerala, Karnataka, and Tamil Nadu). The
root mean square error (RMSE) and mean absolute percentage error (MAPE) evaluation metric are computed
on the testing data to demonstrate the relative performance of these models. The results show that the stacked

LSTM and hybrid CNN+LSTM models perform best relative to other models.
1. Introduction of COVID-19 cases. India is the second most populous country in the
world, where 68.84% and 31.16% India’s population lives in rural areas
The coronavirus disease 2019 (COVID-19) was identified in Wuhan and urban areas respectively. The population density in northeast India
city of China in December 2019 that arises due to severe acute res- is low in comparison to other states of India. The chance of getting
piratory syndrome coronavirus 2 (SARS-CoV-2) (Huang et al., 2020). infection depends on the spatial distance between the contacts and
It is categorized as an infectious disease and spreads among people low-density population is less prone in comparison to high density
through coming in close contact with infected people generally via population. Individual personal behaviour (social distancing, frequent

small droplets due to coughing, sneezing, or talking, and through the hand sanitation, and wearing a mask, etc.) also plays a key role to
infected surface. On March 11, 2020, the World Health Organization control the COVID-19 spread.

(WHO) declared the COVID-19 as a pandemic of infectious disease. In
India, the first case of COVID-19 was reported in Kerala on January
30, 2020 and gradually spread throughout India especially in urban
area, and India witnessed the first wave of COVID-19. India witnessed
the second wave in March 2021, which was much more devastating
than the first wave, with shortages of hospital beds, vaccines, oxygen
cylinder and other medicines in parts of the country. To fight with
the COVID-19, the country has vaccination, herd immunity, and epi-
demiological interventions as few possible options. In the early stage
of COVID-19, India had imposed complete as well as partial lockdown
as epidemiological interventions during the first wave that slowed the ematical models for infectious diseases such Logistic models (Turner,
transmission rate and delayed the peak, and resulted in a lesser number Bradley, Kirk, & Pruitt, 1976), generalized growth models (Chowell,

Prediction of COVID-19 new cases per day will help the administra-
tion and planners to take the proper decision and help them in making
effective policy to tackle the pandemic situation. The epidemiological
models are very helpful to understand the trend of COVID-19 spread
and useful in predicting the spread rate of the disease, the duration
of the disease, and the peak of the infectious disease. It can be used
for short term and long term predictions for new confirmed COVID-
19 cases per day that may be used in decision making to optimize
possible controls from the infectious disease. In literature, several math-
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2017), Richards’s models (Richards, 1959), sub epidemics wave mod-
els (Chowell, Tariq, & Hyman, 2019), Susceptible-Infected-Recovered
(SIR) model (Kermack & McKendrick, 1927), and Susceptible-Exposed—
Infectious-Removed (SEIR) have been introduced. The SIR model is a
compartmental model that considers the whole population as a closed
population and divides this closed population into susceptible, infected,
and recovered compartments. Few infected persons infect some other
persons at an average rate R0, known as the basic reproduction number.
Recently, some works have been reported in the literature using the
SIR and its variants model to predict the COVID-19 outbreak (Ardabili
et al.,, 2020; Bagal, Rath, Barua, & Patnaik, 2020; Chen, Lu, Chang,
& Liu, 2020; Cooper, Mondal, & Antonopoulos, 2020; Verma, Gupta, &
Niranjan, 2020). These epidemiological models are good in understand-
ing the trend of COVID-19 spread but are designed based on several
assumptions that would not hold generally on real-life data (Chimmula
& Zhang, 2020). It is unreliable due to the complex trend of spread of
the infection as it depends on population density, travel, and individual
social aspects like cultural and life styles. Therefore, there is a need for
deep learning approaches to accurately predict the COVID-19 trends in
India. In deep learning, convolutional neural network (CNN) (LeCun
et al., 1989) is one form of deep learning architecture for processing
data that has a grid like topology. It includes the time series data
that can be considered as 1D grid taking samples at regular time
intervals and image data considered as 2D grid of pixels. A typical end-
to-end CNN network consists of different layers such as convolution,
activation, max-pooling, softmax layer etc.

Recurrent neural network (RNN) (Rumelhart, Hinton, & Williams,
1986) derived from the feedforward neural networks can use their
internal states (memory) to process variable length sequences of data
suitable for the sequential data. Long Short-Term Memory (LSTM)
has been introduced by Hochreiter and Schmidhuber (1997) which
overcomes the vanishing and exploding gradient problem in RNN and
have long dependencies that proved to be very promising for modelling
of sequential data. A common LSTM unit is composed of a cell, an
input gate, an output gate and a forget gate. The cell remembers values
over arbitrary time intervals and the three gates regulate the flow
of information into and out of the cell. For a given input sequence
x = (xq,Xy,...,xy) from time r = 1 to T, LSTM calculates an output
sequence y = y,, y,, ..., yy, mathematically represented as (Hochreiter
& Schmidhuber, 1997):

i, =0c(W;x, +W;,m_; +W,;.c,_; +b) 1)
ip=0(Wpx,+Wg,m_ +Wgee +by) 2)
¢ =f0c¢_1+i,0gW. x, +W_,m_; +b.) 3)
0,=0c(W,x,+ W, m_ +W,.c,_+b,) 4)
m, = 0, © h(c,) 5)
Vi = GW,m, +b,) ®)

From Eq. (1) to Eq. (6), i,0, f and c represent the input gate, output
gate, forget gate and cell activation vector respectively, m depicts
hidden state vector also known as output vector of the LSTM unit.
W denotes the weight matrix, for example W,, means weight matrix
from input gate to input. The © stands for element wise multiplication,
and b denotes the bias term, whereas g and & are used for activation
functions at the input and output respectively. o represents logistic
sigmoid function.The LSTM cell is depicted in Fig. 1.

LSTM is a method having multiple layers which can map the input
sequence to a vector having fixed dimensionality, in which the deep
LSTM decodes the target sequence from the vector. This deep LSTM
is essential for a recurrent neutral network model except on the input
sequence. The LSTM can solve problems with long term dependencies
which may be caused due to the introduction of many short term
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Fig. 1. Architecture of LSTM cell (Van Houdt, Mosquera, & Népoles, 2020).

dependencies to the dataset. LSTM has the ability to learn successfully
on data having a long range of temporal dependencies because of the
time lag between the input and their corresponding outputs (Sutskever,
Vinyals, & Le, 2014). LSTM can be used for predicting time series and it
is beneficial for sequential data (Abdollahi, Irani, & Nouri-Moghaddam,
2021).

Deep learning models such as LSTM and CNN are well suited for
understanding and predicting the dynamical trend of COVID-19 spread
and have recently been used in prediction by several researchers (Bedi,
Dhiman, Gole, Gupta, & Jindal, 2021; Dairi, Harrou, Zeroual, Hit-
tawe, & Sun, 2021; Devaraj et al.,, 2021; Igbal et al., 2021; Nabi,
Tahmid, Rafi, Kader, & Haider, 2021; Shastri, Singh, Kumar, Kour,
& Mansotra, 2020; Wang, Zheng, Ai, Liu, & Zhu, 2020). Chandra,
Jain, and Chauhan (2021) used the LSTM and its variants for ahead
prediction of COVID-19 spread for India with split the training and
testing data as static and dynamics. LSTMs have been used for COVID-
19 transmission in Canada by Chimmula and Zhang (2020) and results
show the linear transmission in the Canada. Arora, Kumar, and Pan-
igrahi (2020) performed forecasting of the COVID-19 cases for India
using LSTMs variants and categorized the Indian states in different
zones based on COVID-19 cases. With combining the Susceptible—
Infectious-Recovered-Deceased and machine learning strategies, the
novel forecasting data-driven method has been introduced by Ama-
ral, Casaca, Oishi, and Cuminato (2021), where mathematical model
parameters are determined through the artificial neural network and
predicted COVID-19 cases in Sao Paulo and Brazil. Wieczorek, Sitka,
and Wozniak (2020) designed the neural network powered COVID-19
spread forecasting model by using NAdam optimizer and with finding
the best time-step in which the data fed in the network, and compare
with the classic statistical approaches. The experimental results show
the better accuracy for some regions.

In this paper, we employ the vanilla LSTM, stacked LSTM, ED_LSTM,
BiLSTM, CNN, and hybrid CNN+LSTM model to capture the dynamic
trend of COVID-19 spread and predict the COVID-19 daily confirmed
cases for 7, 14 and 21 days for India and its four most affected states:
Maharashtra, Kerala, Karnataka, and Tamil Nadu. To demonstrate the
performance of deep learning models, RMSE and MAPE errors are
computed on the testing data. The flowchart of the designed model is
represented in Fig. 2.

The rest of the manuscript is organized as follows. Section 2, de-
scribes the deep learning model along with experimental setup and
evaluation metrics. In Section 3, we present the COVID-19 dataset and
experimental results and discussions. Finally, the conclusion is made in
Section 4.

2. Methods
2.1. Experimental setup

The COVID-19 outbreak trend is highly dynamic and depends on
imposing various intervention strategies. To capture the complex trend,
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Fig. 2. Flowchart describing the entire experimental work for designed model. The details of designed model: vanilla LSTM, stacked LSTM, BiLSTM, ED_LSTM, CNN, and CNN+LSTM

are depicted in Figs. 3-8, respectively.

in this study, we proceed the following steps during the training, testing
and forecasting.

* We used early COVID-19 data up to July 10, 2021, and split
the COVID-19 time series data into training and testing data by
taking the last 20 days data as testing data and remaining data as
training data.

To avoid the inconsistency in COVID-19 time series data, the data
is normalized in the interval [0, 1] using ‘MinMaxScaler’ Keras
function.

The COVID-19 time series data is reshaped into the input shape
data by taking time step (time-lag) or observation window 15
and number of features is one as for the univariate model. The
observation window 15 means, we are using previous 15 days
COVID-19 time series data to predict the next day, that is the 16th
day. In a univariate model the input contains only one feature.
Further, we train and test the recurrent and convolutional neural
network approaches on COVID-19 time series data and setup
the model with setting hyper parameters through manual search.
COVID-19 daily confirmed cases predictions are performed up to
July 17, 2021(7 days), up to July 24, 2021 (14 days) and up to
July 31, 2021(21 days) from July 10, 2021 using vanilla LSTM,

stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid CNN+LSTM
for India and its four most affected states Maharashtra, Kerala,
Karnataka and Tamil Nadu. The experimental work is summa-
rized in Fig. 2.

RNN abd CNN approaches viz. vanilla LSTM, stacked LSTM,
ED_LSTM, BiLSTM, CNN, and hybrid CNN+LSTM have been imple-
mented in Python using Keras module of Tensorflow and consider the
prediction by taking univariate approaches.

2.2. Vanilla LSTM

A vanilla LSTM is an LSTM model that has a single hidden layer
of LSTM units. The encoder is responsible for interpreting and reading
the input sequence whereas the output encoder has a fixed-length
vector (Brownlee, 2018b). Vanilla LSTM has a property to isolate the
effect due to change on the performance variant. So, when vanilla
LSTM is used as a baseline it evaluates with all of its variants and
allows the isolating effect for the changes made in each of the variants.
The performance of vanilla LSTM is reasonably well on various data
sets (Greff, Srivastava, Koutnik, Steunebrink, & Schmidhuber, 2016).
This vanilla LSTM is kind of art model for different variety of machine
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learning programs. So, vanilla LSTM neural networks predict with
accuracy making most of the long short-term memory when the cases
are complicated while operating (Wu, Yuan, Dong, Lin, & Liu, 2018).
The designed vanilla LSTM model is depicted in Fig. 3 and its hyper
parameters are shown in Table 1.

2.3. Stacked LSTM

Stacked LSTM has more than one LSTM sub-layers that are con-
nected together using various weight parameters. On a single-layer
LSTM, stacked LSTM overlays the hidden layers of LSTM (Sun, Wang,
He, Li, Peng, & Wang, 2020). In stacked LSTM each edge weight
corresponds to weight value and the cell is the time unit. The data
transformation process performed in stacked LSTM is mathematically
shown below,

M
jnext — f(z(wzcxt %0, + bnext)) @
n=1

Here, f is the activation function, i"**’ is the input data for the next
hidden layer, weight of edge connected to previous output and next
layer input is defined in w!*, o,, contains output value of one cell and
b"*" contains bias. For feature extraction the stacked LSTM proves to
improve the extraction process (Yu, Si, Hu, & Zhang, 2019). The de-
signed stacked LSTM model is shown in Fig. 4 and its hyper parameters
are tabulated in Table 1.

2.4. Bidirectional-LSTM

Bidirectional Long Short-Term memory (BiLSTM) is a deep learning
algorithm applied for forecasting the time series data. It is adopted
to learn from the framework providing better understanding from
the learning context (Abdollahi et al., 2021). As BiLSTM is a mul-
tivariate time series it allows multiple time series dependent which
can be designed together to predict the correlations along with the
series recorded or captured variables varying simultaneously over time
period (Said, Erradi, Aly, & Mohamed, 2021). BiLSTM is a deep learn-
ing models for the sequential prediction without much error (Shahid,
Zameer, & Muneeb, 2020). It has many more features like handling
temporal dependencies along with time series data distributing free
learning models and flexibility in modelling non-linear features. In
other words, BiLSTM is an enhanced version of LSTM algorithm in
which it can deal with the combination of two variants having hidden
states that allows information to come from the backward layer as well

as from the forward layer. The BiLSTM is helpful for situation that
require context input. It is widely used in classification especially like
text classification, sentiment classification and speed classification and
recognition and load forecasting. As BiLSTM is a deep learning models
having capacity to capture non-linearity process and being flexible in
modelling time-dependent data; so now-a-days BiLSTM have been using
for real-time forecasts of the daily events (Zeroual, Harrou, Dairi, &
Sun, 2020). The designed BiLSTM model is depicted in Fig. 5 and its
hyper parameters are presented in Table 1.

2.5. Encoder Decoder-LSTM

ED_LSTM (Encoder Decoder) is a network of sequence-to-sequence
model for mapping a fixed-length input to a fixed-length output. It
handles variable length input and output first by encoding the input
sequence, then decoded from the representation. This method can
compute a sequence having hidden states. In ED_LSTM, the encoder
and decoder improved the continuity of learning input and output
sequences. It experiences reuse for reading input sequence and writing
output sequence many times sequentially. And the times of reuse skill
depend on the length of the input and output sequences. ED_LSTM
model is so consistent and its outputs are stable, reliable and accurate.
It can even effectively mimic the long-term dependence between vari-
ables (Kao, Zhou, Chang, & Chang, 2020). The advantage of ED_LSTM
is that the network of models can be constructed from the model defi-
nition which consists of a list of input and outputs. So, the models can
be automatically trained from the provided dataset. This advantage of
ED_LSTM help to reduce the model construction and training cost (Ellis
& Chinde, 2020). The designed ED_LSTM model is depicted in Fig. 6
and its hyper parameters are shown in Table 1.

2.6. Convolution Neural Network (CNN)

CNN is one of the algorithms in deep learning that automatically
captures and identifies the important features without the need of
human supervision (Gu et al.,, 2018). Local connections and shared
weights employed in the CNN are useful in extracting features from
2-D input signals such as image signals. Basically, CNN has three
kinds of layers: convolution layer, pooling layer and fully connected
layer. Convolution layer is primarily associated with the identification
of features from raw data. This is achieved by applying filters hav-
ing predefined size followed by convolution operation. Pooling layer
applies a pooling operation that reduces the dimension of feature
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maps while retaining the important features (Albawi, Mohammed, &
Al-Zawi, 2017). Some of the pooling methods are max pooling and
average pooling. The fully connected layer or the dense layer generates
forecasting after features extracting process. The final fully connected
layers have flattened features arising after applying convolution and
pooling operations (Alzubaidi et al., 2021; Zhou, Hong, Su, & Zhao,
2016).

(I) The convolutional layer in CNN architecture consists of multiple
convolutional filters. These filters are also known as kernels. Convo-
lution operation is performed between the raw data that is in the
form of a matrix and these kernels that generate an output feature
map. The numbers present in the kernel is the kernel weight of the
kernel. The initial values of the kernel are random in nature, during
the training process the kernel values are adjusted to help in extracting
important features from the data. In convolutional operation the CNN
input format description is present. In convolution operation let us say
in 10%10 grey-scale image a randomly initialized kernel slides vertically
and horizontally and the dot product between them is computed. In
1D-CNN the kernel function moves in one direction only. Similarly,
in 2D-CNN and 3D-CNN the kernel function moves in two and three
directions respectively. The computed values are multiplied to create a
single scalar value. The data processed by the kernel of CNN sometimes
may require padding. It is a process of extracting border information
from the input data. Padding refers to the adding layers of extra pixels
(zeros) to the input data that helps to preserve information present on
the borders (Albawi et al., 2017).

(II) Pooling layer: The feature maps generated from the convolutional
operations are sub-sampled in the pooling layer. This reduces the large
size feature maps to generate smaller feature maps. The pooling layer
reduces the dimension of the feature map resulting in reduction in
the number of parameters to learn. It also reduces the computation
that needs to be performed. There are various types of pooling such
as average pooling, max pooling, min pooling, global average pooling
(GAP) etc. It may be possible sometimes that the performance output
of CNN model decreases because of the pooling layer as it focuses
primarily on ascertaining the correct location of a feature rather than
focusing on particular features available in the data (Alzubaidi et al.,
2021; Gu et al., 2018; Zhou et al., 2016).

(I11). Activation function (Transfer function): In a neural network based
on the weighted sum of the neuronal input activation function trans-
forms it into output form. It performs mapping of the input to the

output depending upon the neuronal input so as to fire a particular
neuron or not. Activation functions can be linear or non-linear func-
tions. Some of the activation function used in CNN are described below:
(a) Rectilinear Unit (ReLU): The ReLU function converts the input to a
piecewise linear function to a positive output otherwise it will output
zero. It is one of the common activation functions in most of the neural
networks. One of the advantages of using ReLU over other activation
functions is that it has lower computational load (Albawi et al., 2017).
Mathematically it is represented as below,

S X)pery = max{0,x} (8)

(b) Sigmoid: In this the input are real numbers and the output is
constrained to be in between zero and one. It is S-Shaped function and
is mathematically represented as shown below,

f(x)sigmoid = 1_'_17 )]
(c) Tanh: In Tanh activation function the input is real numbers and
output is in between —1 and 1. It is described mathematically as shown
below,
X __ p,—X

fOhann = s (10)
(IV). Fully Connected layer: In this layer each neuron is fully connected
to other neurons of the other layer, hence the name Fully Connected
(FC) layer. It is located at the end of the CNN architecture and it
forms the last few layers in the network. The final pooling layer that is
flattened is the input to the FC layer. Flattening is a process in which a
matrix is unrolled at its values to form a vector (Albawi et al., 2017).
(V). Loss function: Loss functions are used in the output layer to
compute the predicted error created during training samples in CNN.
This error is the difference between the actual output and the predicted
values. Some of the loss functions used in neural network are Mean
Squared Error (MSE), Cross-Entropy or Softmax loss function, Euclidean
loss function and Hinge loss function (Albawi et al.,, 2017). The
designed CNN model is depicted in Fig. 7 and its hyper parameters are
shown in Table 2.

2.7. Hybrid CNN+LSTM

Hybrid CNN+LSTM deep learning architecture combines the bene-
fits of both the LSTM and CNN. The LSTM in this hybrid model learns
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the temporal dependencies that are present in the input data. The
CNN is integrated such that it can process high dimensional data. The
components of LSTM are input gate, forget gate, output gate, memory
cell, candidate memory cell and hidden state (Li, Hua, & Wu, 2020).
The 1-D CNN finds the important features from temporal feature space
using non-linear transformation generated by LSTM. The convolution
layers are wrapped with a time-distributed layer in the model and
it is ensured that data is transformed appropriately. The layers used
in the model are two convolutional layers, max-pooling layer, flatten
layer, time-distributed layer, followed by LSTM layers (Li et al., 2020;
Liu, Bao, Wang, & Zhang, 2018). The designed CNN+LSTM model is
presented in Fig. 8 and its hyper parameters are tabulated in Table 2.

2.8. Evaluation metrics

To demonstrate the relative performance of various deep learning
models, the root mean square error (RMSE) and mean absolute per-
centage error (MAPE) have been computed, which is mathematically
defined as:

1D

1Z(y,- — 5

MAPE——Z‘y’ ‘XIOO

RMSE =

(12)

here y; denote the actual confirmed cases, y; is the predicted daily
confirmed cases using the deep learning model, and n is the total
number of observation under the study. The small value of RMSE
and MAPE represents the better performance of that model. In this
study, RMSE and MAPE are computed on the test data where the
actual and predicted values of various other models are available.
Throughout all predictions of 7, 14, and 21 days, we also computed the
confidence interval (Gupta & Kapoor, 1994) at 95% for the predicted
new confirmed COVID-19 cases counts per day. The confidence interval
gives a range of values for new cases and it gives the probability with
which an estimated interval will contain the true value of the confirmed
cases.

3. Results and discussions

For the analysis and forecasting of the daily confirmed COVID-19
cases for training and testing the RNN and CNN models are considered.

In our study we used vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM,
CNN, and hybrid CNN+LSTM to build a map that captures the complex
trend in the given sequence of COVID-19 time series data and performs
forecasting using these maps. The details are discussed in the following
subsections:

3.1. COVID-19 data and preprocessing

In this study, daily new COVID-19 cases have been predicted for 7
days, 14 days and 21 days for the whole country (India) and four of its
most affected states (Maharashtra, Kerala, Karnataka, and Tamil Nadu)
using deep learning approaches. Previous COVID-19 time series data
is accessed from COVID-19India.org during January 30, 2020 to July
10, 2021, where numbers of daily confirmed, recovered and deceased
cases are publicly available online at https://api.covid19india.org/
documentation/csv/. We use data up to July 10, 2021 as illustrated in
Fig. 9 to train and test the recurrent and convolutional neural network
models. The trends of COVID-19 time series data is highly inconsistent
in nature and it may be due to the rate of individual infections, number
of reporting of the cases, individual behaviour, effect of lockdown,
and non-pharmaceuticals measures. India and its states witnessed two
waves and new cases count per day during peak of the second wave
were much more than the first wave as depicted in Fig. 9. Due to higher
consistency in per day count, these data are normalized in the interval
of [0, 1] using ‘MinMaxScaler’ of the keras function in the preprocessing
step before applying the deep learning models.

The ‘MinMaxScaler’ function normalizes the given time series data
(x) using the formula X, = (X = X,in)/ X max — Xmin)» Where x,, .. and

Xin TEpresents the maximum and minimum value of data (x). After the
forecasting of the confirmed cases count per day that lies in the interval
[0, 1] it is again re-transformed into the corresponding actual number
by applying reverse operation using ‘inverse_trans form’ keras function.

3.2. Hyper parameter tuning

The hyper parameters in vanilla LSTM, stacked LSTM, ED_LSTM,
BiLSTM, CNN, and hybrid CNN+LSTM models are summarized in Ta-
bles 1 and 2. To avoid the over-fitting, we regularize the model on the
training data using L1 regularizer (bias/kernel) with different settings
along with Dropout as shown in Tables 1 and 2. Around 20% to 40%
neurons are dropped through the Dropout layers. In CNN and hybrid
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Fig. 9. Daily confirmed COVID-19 cases for India from Jan 20, 2020 to Jul 10, 2021 and its states Maharashtra, Kerala, Karnataka, and Tamil Nadu from Mar 14, 2020 to Jul

10, 2021.
Table 1
Hyper parameter and structure of vanilla LSTM, stacked LSTM, ED-LSTM, BiLSTM models.
Models Layers Number Bias Models Layers Number Bias
of units regularizer of units regularizer
L1 L1
Vanilla LSTM LSTM 200 0.02 BiLSTM Bidirectional 250 0.4
Dropout 0.2 - Dropout 0.2 -
Dense 1 - Dense 1 -
Stacked LSTM LSTM 130 0.04 ED_LSTM LSTM 125 0.02
Dropout 0.4 - Dropout 0.2 -
LSTM 100 0.04 Repeat Vector 4 -
Dropout 0.4 - LSTM 75 0.02
LSTM 75 0.04 Dropout 0.2 -
Dense 1 - Dense 1 -
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Fig. 10. Predicted and actual cases for India ahead of different days.

CNN+LSTM, we use the ConvlD layer along with the kernel size 2,
depicted in Table 2. Throughout the entire experiment ‘ReLu’ activation
function, ‘adamax’ optimizer and ‘MSE’ loss function is considered in
our study. As tuning the training epochs, we setup the ‘EarlyStopping’
callback with number of epochs 1000, batch size 64 along with pa-
tience=250. This setup checks the performance of the respective model
on train and validation datasets and stops the training if it looks like
that if the model is starting to over learn or over fit. The learning
algorithm is stochastic in nature therefore the results may be varying
in nature (Brownlee, 2018a). To address this issue, we have run each
deep learning model up to 10 times and saved the better model and
noted their corresponding performance results in our experiment.

3.3. Prediction performance

In this section, we discuss the prediction performance of deep learn-
ing models for India and four it states, individually in the following
subsections:

3.3.1. India

India is the second most populous country in the world, it may lead
to higher threats because of the spread of COVID-19. The daily con-
firmed cases in India from Jan 30, 2020 to July 10, 2021 are depicted
in Fig. 9(a). It is observed that the new confirmed cases per day are
highly inconsistent. India witnessed two waves, in second waves around
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Table 2
Hyper parameter and structure of CNN, and CNN+LSTM models.

Models Layers Number kernel Bias Kernel
of filters/ size regularizer regularizer
units L1 L1

CNN ConvlD 100 2 0.4 0.002

ConvlD 75 2 0.4 0.002
MaxPooling1D - 2 - -
Flatten - - - -
Dense 64 - - -
Dense 1 - - -
CNN+LSTM ConvlD 100 2 - 0.002
MaxPooling1D - 2 - -
Flatten - - - -
LSTM 64 - 0.5 -
Dropout 0.3 - - -
Dense 1 - - -

4,00,000 new cases were reported per day. To address this issues, we
train and test the vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM,
CNN, and CNN+LSTM models on the India normalized time series data
to capture the real trend with setting the hyper parameter, shown in
Tables 1 and 2, with manual tuning of hyper parameters. The predicted
new cases of COVID-19 for 7, 14, and 21 days are calculated from July
10, 2021 using various recurrent and CNN model and determine the
corresponding performance metrics: RMSE and MAPE as presented in
Table 3. RMSE and MAPE are computed for the actual and predicted
daily confirmed case from June 21, 2021 to July 10, 2021 on the test
data. From Table 3, it can be seen that the RMSE and MAPE (7.57%-—
11.36%) are comparatively smaller for the stacked LSTM and hybrid
CNN+LSTM. In some cases RMSE and MAPE (7.36%-12.96%) is less for
BiLSTM and ED_LSTM on the test data but the predicted new cases per
day is far from the actual cases (Fig. 10). BILSTM and ED_LSTM models
have the over-fitting problem. The predicted and actual (red colour)
cases for India for 7 days (up to July 17, 2021), 14 days (up to July 24,
2021) and 21 days (up to July 31, 2021) are shown in Fig. 10. It can be
observed that the stacked LSTM and hybrid CNN+LSTM provide better
prediction as forecasting in count cases is close to actual count per day.
The predicted new cases for 7, 14 and 21 days with various models
along with 95% level confidence intervals are shown in Table 4. In our
study, for India, we found that stacked LSTM and hybrid CNN+LSTM
performed best in terms of prediction consistency among all six deep
learning models.

3.3.2. Maharashtra

Maharashtra was one of the worst-affected states in India during the
second wave with COVID-19. The new cases count per day is depicted
in Fig. 9(b), which shows that the number of daily cases might count
nearly 70,000 in the second waves and outbreak scenario being highly
dynamic. To capture the dynamic trend of data, we train and test
the vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid
CNN+LSTM model on Maharashtra time series data with setting the
hyper parameters, illustrated in Tables 1 and 2, and computed RMSE
and MAPE on test data, presented in Table 3. Further forecasting of
confirmed new cases per day for 7 days (up to July 17, 2021), 14 days
(up to July 24, 2021) and 21 days (up to July 31, 2021) from July 10,
2021 are shown in Table 4. Fig. 11 illustrates the predicted and actual
cases using deep learning models. In 7 days prediction, the stacked
LSTM (MAPE=15.55%) and BiLSTM (MAPE=9.95%) forecasts value
close to the actual values whereas in 14 days prediction the BiLSTM
and ED_LSTM forecasts cases close to actual cases. Table 4 shows 95%
confidence interval for the predicted confirmed cases per day up to July
31, 2021.
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3.3.3. Kerala

We train and test the different recurrent and convolution neural
network models: vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN,
and CNN+LSTM models on Kerala COVID-19 early data from Mar 14,
2020 to Jul 10, 2021 (Fig. 9(c)) with setting the hyper parameters
(Tables 1 and 2) to capture the trend of daily confirmed cases and
computed RMSE and MAPE ( Table 3) on test data (last 20 days data).
The RMSE and MAPE (=9.55%) values for vanilla LSTM is smallest
on test data among six models. Using different learning models the
prediction of 7 days (up to July 17, 2021), 14 days (up to July 24,
2021) and 21 days (up to July 31, 2021) has been done as shown in
Table 4 and their comparison is illustrated in Fig. 12. Due to the highly
dynamic trend (zigzag) of the Kerala time series data it is difficult to
capture its trend. In 7 and 14 days prediction, CNN+LSTM forecasts the
confirmed cases per day close to the actual cases counts per day and in
21 days prediction the stacked LSTM forecasting value is close to actual
values.

3.3.4. Karnataka

The time series data of Karnataka depicted in Fig. 9(d) shows
the dynamic trend of data during the first and the second wave. To
address these issues and capture the trend of new cases count per
day, vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid
CNN-+LSTM models are trained and tested on Karnataka data with
the hyper parameters shown in Tables 1 and 2. Further prediction is
performed for 7 days (up to July 17, 2021), 14 days (up to July 24,
2021) and 21 days (up to July 31, 2021) as displayed in Table 4. The
comparisons between the predicted and actual case by different models
are illustrated in Fig. 13. In 14 days prediction stacked LSTM gives less
MAPE (=13.43%) error among other models and also predicted new
cases per day close to the actual cases, whereas in 7 days prediction
the hybrid CNN+LSTM provides predicted cases per day close to actual
cases. The ED_LSTM performance is better in 21 days prediction but in
14 days prediction the predicted cases are far from the actual cases that
may be because of over fitting.

3.3.5. Tamil Nadu

The new cases count per day in Tamil Nadu is depicted in Fig. 9(e)
which shows that the number of daily cases might count nearly 35,000
in the second wave and outbreak scenario being inconsistent in nature.
Further forecasting of new confirmed cases per day for 7 days (up to
July 17, 2021), 14 days (up to July 24, 2021) and 21 days (up to July
31, 2021) from July 10, 2021 is shown in Table 4. The comparison of
predicted and actual cases per day for 7, 14, and 21 days using deep
learning models are illustrated in Fig. 14. All models except ED_LSTM
are able to capture the declining cases in Tamil Nadu. In 14 and 21
days prediction, forecasting of the case counts per day by vanilla LSTM,
stacked LSTM, BiLSTM, CNN, and hybrid CNN+LSTM models are close
to actual cases (Fig. 14).

4. Conclusion

The COVID-19 outbreak is a potential threat due to its dynamical
behaviour and more threatening in a country like India because it is
very densely populated. The researchers are engaged in seeking new
approaches to understand the COVID-19 dynamics that will overcome
the limitation of existing epidemiological models. In this study, we
designed the vanilla LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and
hybrid CNN+LSTM model to capture the complex dynamical trends of
COVID-19 spread and perform forecasting of the COVID-19 confirmed
cases of 7, 14, 21 days for India and its four most affected states:
Maharashtra, Kerala, Karnataka, and Tamil Nadu. These deep learning
approaches overcome the problem of mathematical modelling that
depends on various situations. The RMSE and MAPE errors on the
testing data are computed to demonstrate the relative performance of
the deep learning models, which is in some case the RMSE and MAPE
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Table 3
RMSE and MAPE with various model from June 21, 2021 to July 10, 2021.
Country/States Models Next 7 days Next 14 days Next 21 days
prediction prediction prediction
RMSE MAPE RMSE MAPE RMSE MAPE
India Vanilla LSTM 9746.6 19.57 8454.28 17.01 11912.86 24.09
Stacked LSTM 4687.34 8.68 5273.4 9.99 6023.1 11.36
BiLSTM 3889.28 7.34 5349.35 10.3 6369 12.29
ED_LSTM 4067.74 7.95 4385.09 8.1 4431.91 8.75
CNN 6729.1 12.61 5320.62 10.89 4304.57 7.6
CNN+LSTM 4831.59 9.07 4916.03 7.86 4431.45 7.57
Maharashtra Vanilla LSTM 1455.74 14.63 2594.56 25.73 1075.67 10.69
Stacked LSTM 1505.12 15.55 1046.71 10.21 1125.31 10.8
BiLSTM 1038.16 9.95 1339.5 14.08 1041.19 10.24
ED_LSTM 1889.96 19.36 1288.35 13.8 1363.88 14.56
CNN 1871.02 19.54 1140.99 11.5 1232.49 12.65
CNN+LSTM 1413.44 13.61 1231.39 11.83 1328.62 12.76
Kerala Vanilla LSTM 3758.49 22.17 2219.32 13.78 1470.86 9.55
Stacked LSTM 3747.23 23.48 2740.37 19.24 1801.96 13.2
BiLSTM 2468.36 18.21 3015.41 21.99 1778.38 13.56
ED_LSTM 2436.79 17.05 2700.32 19.71 2304.13 16.57
CNN 1836.93 13.6 1839.97 13.58 2436.62 17.26
CNN+LSTM 2641.06 19.17 1950.78 13.54 4276.85 28.01
Karnataka Vanilla LSTM 948.58 27.13 461.05 14.14 460.7 13.72
Stacked LSTM 616.77 19.12 482.77 13.43 876.11 25.35
BiLSTM 702.86 21.95 632.44 19.64 549.77 17.01
ED_LSTM 495.17 15.81 497.36 15.42 720.96 21.64
CNN 539.86 17.15 767.04 22.86 767.9 22.64
CNN+LSTM 659.5 21.37 513.75 15.96 590.59 18.37
Tamil Nadu Vanilla LSTM 1096.36 25.25 1437.03 33.79 1571.95 36.87
Stacked LSTM 1527.06 35.82 671.79 14.99 1253.73 29.34
BiLSTM 1716.46 40.13 393.62 8 779.47 17.67
ED_LSTM 700.86 14.66 768.71 15.97 826.78 17.26
CNN 1516.43 35.44 1040.41 24.12 1134.7 26.52
CNN+LSTM 594.12 11.8 823.92 15.37 1419.17 31.53

Table 4
Prediction of new confirmed case ahead of 7, 14 and 21 days with various models.
Country/States Models Next 7 days prediction Next 14 days prediction Next 21 days prediction
predicted 95% confidence predicted 95% confidence predicted 95% confidence
on interval on interval on interval
17-07-2021 24-07-2021 31-07-2021
India Vanilla LSTM 31759 [29437, 30832] 35003 [30647, 32344] 41310 [26377, 30991]
Stacked LSTM 44617 [38520, 42429] 42595 [36814, 39217] 48593 [36012, 39710]
BiLSTM 43071 [39296, 41623] 33485 [31856, 33257] 61464 [39453, 46424]
ED_LSTM 55588 [48027, 53046] 72134 [55317, 63396] 156472 [75427, 104118]
CNN 72572 [59971, 68365] 54217 [43309, 48319] 81682 [56401, 65913]
CNN+LSTM 35746 [36094, 37051] 39876 [40839, 41877] 35664 [37370, 38641]
Maharashtra Vanilla LSTM 11080 [10708, 10971] 17372 [14738, 16075] 13909 [10731, 11978]
Stacked LSTM 6729 [6812, 6656] 12500 [10553, 11445] 15587 [11992, 13394]
BiLSTM 9497 [9303, 9429] 6446 [6696, 6974] 9979 [9229, 9532]
ED_LSTM 6109 [6149, 6279] 7278 [7377, 7502] 7254 [7291, 7356]
CNN 6057 [6131, 6332] 9113 [8616, 8847] 8459 [8199, 8295]
CNN+LSTM 10164 [9945, 10115] 9464 [9225, 9343] 10693 [10213, 10461]
Kerala Vanilla LSTM 5296 [5390, 6225] 17549 [11776, 14275] 38564 [23776, 29651]
Stacked LSTM 6866 [6736, 7182] 34136 [23184, 28533] 25395 [17505, 20351]
BiLSTM 21663 [17734, 20477] 30926 [21760, 25726] 15940 [14720, 15209]
ED_LSTM 10229 [10010, 10313] 25344 [20536, 22902] 11223 [11206, 11425]
CNN 18715 [16398, 17947] 23336 [18276, 20758] 12219 [11081, 11496]
CNN+LSTM 9224 [9366, 9829] 17342 [14624, 15881] 4495 [4828, 5390]
Karnataka Vanilla LSTM 1156 [1128, 1154] 2537 [2246, 2358] 2627 [2423, 2490]
Stacked LSTM 3688 [3275, 3541] 1581 [1732, 1921] 1107 [1014, 1073]
BiLSTM 2525 [2575, 2719] 1611 [1563, 1607] 4128 [2505, 3068]
ED_LSTM 3725 [3095, 3509] 5910 [3130, 4307] 1730 [1315, 1438]
CNN 3966 [3130, 3685] 1959 [1552, 1712] 4246 [2200, 2916]
CNN+LSTM 747 [815, 1120] 1480 [1607, 1773] 1762 [2131, 2402]
Tamil Nadu Vanilla LSTM 2093 [1096, 2048] 980 [996, 1115] 2540 [1443, 1810]
Stacked LSTM 1036 [1055, 1196] 1923 [2042, 2209] 551 [814, 1063]
BiLSTM 832 [895, 1067] 3247 [3358, 3493] 977 [1326, 1650]
ED_LSTM 6263 [4765, 5754] 7711 [5521, 6578] 13661 [7504, 9848]
CNN 1078 [1034, 1086] 1698 [1677, 1749] 537 [683, 908]
CNN+LSTM 3923 [3618, 4018] 2317 [2485, 2664] 278 [826, 1232]
value reaches below 7.50% and 400 respectively. The predicted COVID- Maharashtra, Kerala, Karnataka, and Tamil Nadu along with confidence
19 confirmed cases of 7, 14, and 21 days for entire India and its states: intervals results shows that predicted daily confirmed cases by most of
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Fig. 13. Predicted and actual cases for Karnataka ahead of different days.
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Fig. 14. Predicted and actual cases for Tamil Nadu ahead of different days.

the models studied are very close to actual confirmed cases per day. The
stacked LSTM and hybrid CNN+LSTM models perform better among
the six models and its predicted confirmed cases values mostly occurs
in the confidence interval. These accurate predictions can help the
government authority, academician and planner to managing services
and take decisions accordingly and create more infrastructures if re-
quired. The designed models also applicable to other country/regions as

well.
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