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A recent study showed that peroxiredoxins (Prxs) play an important role in the development of pathological cardiac hypertrophy.
However, the involvement of Prx5 in cardiac hypertrophy remains unclear. Therefore, this study is aimed at investigating the role
and mechanisms of Prx5 in pathological cardiac hypertrophy and dysfunction. Transverse aortic constriction (TAC) surgery was
performed to establish a pressure overload-induced cardiac hypertrophy model. In this study, we found that Prx5 expression was
upregulated in hypertrophic hearts and cardiomyocytes. In addition, Prx5 knockdown accelerated pressure overload-induced
cardiac hypertrophy and dysfunction in mice by activating oxidative stress and cardiomyocyte apoptosis. Importantly, heart
deterioration caused by Prx5 knockdown was related to mitogen-activated protein kinase (MAPK) pathway activation. These
findings suggest that Prx5 could be a novel target for treating cardiac hypertrophy and heart failure.

1. Introduction

Pathological cardiac hypertrophy is a common pathophysi-
ological process of various cardiovascular diseases, including
hypertension, myocardial infarction, and heart failure [1–3].
It presents as thickening of the ventricular wall and
decreased compliance of the ventricular wall [4–6]. Multiple
mechanisms have been identified in the regulation of patho-
logical cardiac hypertrophy, including oxidative stress,
inflammation, autophagy, and cardiomyocyte apoptosis

[7–9]. Thus, targeting molecules or genes associated with
the above processes is crucial for the treatment of patholog-
ical cardiac hypertrophy.

Peroxiredoxins (Prxs) are a superfamily of antioxidant
peroxidases that scavenge hydrogen peroxide (H2O2) and
alkyl hydroperoxides [10–13]. At present, Prxs are identified
as important regulators of redox homeostasis and participate
in a series of cell functions. Many studies have shown that
some family members of Prxs play an important role in
the development of pathological cardiac hypertrophy [14,
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15]. Cardiomyocyte-specific Prx1 overexpression in mice
attenuates cardiac hypertrophy and dysfunction under pres-
sure overload [14]. Similarly, overexpression of Prx3 pre-
vents cardiac hypertrophy and failure after myocardial
infarction in mice [15]. As an important member of the
Prx family, Prx5 has antioxidant protective functions and
can effectively remove reactive oxygen species (ROS) [16,
17]. However, the involvement of Prx5 in cardiac hypertro-
phy remains unclear.

In this study, we explored the role and mechanisms of
Prx5 in pathological cardiac hypertrophy and dysfunction.
We confirmed that Prx5 knockdown accelerates pressure
overload-induced cardiac hypertrophy and dysfunction in
mice by activating oxidative stress and cardiomyocyte apo-
ptosis. Importantly, heart deterioration caused by Prx5
knockdown was related to mitogen-activated protein kinase
(MAPK) activation. These findings suggest that Prx5 could
be a novel target for treating cardiac hypertrophy and heart
failure.

2. Materials and Methods

2.1. Animals and Animal Model. All animal procedures in
this study were approved by the Animal Care and Use
Committee of Anhui Medical University. Male C57BL/6
mice (8-10 weeks, 23-26 g) were purchased from Beijing
HFK Bioscience Co., Ltd. (Beijing, China) and were housed
in a well-ventilated environment. Transverse aortic constric-
tion (TAC) surgery was performed to establish pressure
overload-induced cardiac hypertrophy model as previously
described [18]. Two weeks before TAC surgery, mice
received a heart injection of AAV9-shPrx5 (1 × 1011 viral
particles/mouse) to knockdown Prx5 in the myocardium.
Four weeks after TAC or the sham procedure, mice were
euthanized by intraperitoneal injection of 200mg/kg pen-
tobarbital sodium. Then, the hearts, lungs, and tibia were
harvested and measured to calculate the heart weight/body
weight (HW/BW, mg/g), lung weight to body weight (LW/
BW, mg/g), heart weight to tibia length (HW/TL, mg/mm),
and lung weight/tibia length (LW/TL, mg/mm) ratios in
the mice.

2.2. Echocardiography Analysis. Cardiac function was
detected using a Vivid 7000 ultrasound equipped with a
14MHz transducer. In short, the mice were anesthetized,
and the left ventricle (LV) geometry was assessed in both
parasternal long-axis and short-axis views. The heart rate
(HR), LV internal diameter at end-diastole (LVIDd), LV
internal diameter at end-systole (LVIDs), LV posterior wall
thickness of end systolic (LVPWs), LV posterior wall thick-
ness of end diastolic (LVPWd), interventricular septal thick-
ness at end-diastole (IVSd), interventricular septal thickness
at end-systole (IVSs), and LV fractional shortening (LVFS)
were determined.

2.3. Histological and TUNEL Analysis. The mice were sacri-
ficed immediately after echocardiography measurements,
and the hearts were harvested and then placed in 4% para-
formaldehyde. Then, the heart sections were prepared and

stained with hematoxylin and eosin (HE) and wheat germ
agglutinin (WGA) for morphological analyses and evalua-
tion of the cross-sectional area (CSA). In addition, heart sec-
tions were stained with picrosirius red (PSR) to assess
collagen deposition. To detect cardiomyocyte apoptosis,
TUNEL staining was performed as described in our previous
study. The sections were visualized using microscopy, and all
images were analyzed using Image-Pro Plus 6.0.

2.4. Neonatal Rat Cardiomyocyte (NRCM) Culture and
Treatment. Primary neonatal rat cardiomyocytes (NRCMs)
were isolated from 1- to 2-day-old Sprague-Dawley rats as
previously described [19]. Then, the NRCMs were cultured
in plating medium consisting of DMEM/F12 containing
15% fetal bovine serum (FBS), 0.1mM BrdU, and 100mg/
mL penicillin/streptomycin. To knockdown Prx5 in vitro,
Prx5 siRNA was used according to manufacturer’s instruc-
tions. Then, the NRCMs were stimulated with angiotensin
II (Ang II, 1μM) for 48 h.

2.5. Immunofluorescence Analysis. The NRCMs were fixed
with 4% paraformaldehyde and permeabilized with 0.2%
Triton X-100. Then, the NRCMs were stained with α-actinin
and the indicated fluorescent secondary antibody and then
stained with DAPI. Finally, the NRCMs were visualized
under a fluorescence microscope, and all images were ana-
lyzed using Image-pro Plus 6.0.

2.6. Quantitative Real-Time PCR. Total mRNA was
extracted from ventricular tissue and NRCMs and then con-
verted to cDNA using the RNA PCR Kit). PCR amplification
was performed and quantified using an ABI PRISM 7000
Sequence Detection System. The relative mRNA expression
levels of target genes were analyzed and normalized to the
mRNA expression level of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). The sequences of the primers
used are presented in Table 1.

2.7. Western Blotting. Protein lysates of ventricular tissue
and NRCMs were prepared and the protein concentrations
were then measured. The proteins were loaded and run on
SDS-PAGE and transferred to a PVDF membrane. The
PVDF membranes were subsequently blocked with 5%
PVDF and incubated with primary antibodies against Prx5,
GAPDH, Bax, Bcl-2, ERK, p-ERK, JNK, p-JNK, p38, and
p-p38. After washing, the PVDF membranes were incubated
with a secondary antibody and visualized with an infrared
imaging system according to manufacturer’s protocol. The
specific protein expression levels were normalized to that
of GAPDH.

2.8. Measurement of Oxidative Stress Level. Dihydroethi-
dium (DHE) staining was performed according to manufac-
turer’s protocol. In short, frozen sections of ventricular
tissue were incubated with 10μM DHE in PBS in a humidi-
fied and light-protected chamber. The images were then
taken with a laser microscope and analyzed using Image-
Pro Plus 6.0. In addition, superoxide dismutase (SOD), glu-
tathione (GSH), malondialdehyde (MDA), and H2O2 in LV
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Table 1: Primer sequences for RT-PCR assays.

Gene Species Sequence (5′-3′)

PRDX5 Mouse
Forward GCTGCAAAGCCAGTTCTGTG

Reverse CCACTGAGGGAATGGCATCTC

PRDX5 Rat
Forward GCAAGGTTCAGCTCCTGGCT

Reverse CAGGTGAGGCCTGTGCCATC

ANP Mouse
Forward CCTGTGTACAGTGCGGTGTC

Reverse AAGCTGTTGCAGCCTAGTCC

ANP Rat
Forward AAAGCAAACTGAGGGCTCTGCTCG

Reverse TTCGGTACCGGAAGCTGTTGCA

BNP Mouse
Forward CTCAAGCTGCTTTGGGCACAAGAT

Reverse AGCCAGGAGGTCTTCCTACAACAA

BNP Rat
Forward CAGCAGCTTCTGCATCGTGGAT

Reverse TTCCTTAATCTGTCGCCGCTGG

β-MHC Mouse
Forward TCTACCCAGCCAAGATCAAAGT

Reverse CCCATTCCTAATAAGCTGTGTGG

β-MHC Rat
Forward TCTGGACAGCTCCCCATTCT

Reverse CAAGGCTAACCTGGAGAAGATG

Myh7 Mouse
Forward ACTGTCAACACTAAGAGGGTCA

Reverse TTGGATGATTTGATCTTCCAGGG

Myh7 Rat
Forward TGCTGTTATTGCTGCCATTG

Reverse AGGAGTTATCATTCCGAACTGTC

TGF-β Mouse
Forward TGCTTCAGCTCCACAGAGAA

Reverse TGGTTGTAGAGGGCAAGGAC

TGF-β Rat
Forward ATTCCTGGCGTTACCTTGG

Reverse AGCCCTGTATTCCGTCTCCT

CTGF Mouse
Forward TGTGTGATGAGCCCAAGGAC

Reverse AGTTGGCTCGCATCATAGTTG

CTGF Rat
Forward ACACAAGGGTCTCTTCTGCG

Reverse ACAGGGTGCACCATCTTTGG

Collagen I Mouse
Forward TGGTACATCAGCCCGAAC

Reverse GTCAGCTGGATAGCGACA

Collagen I Rat
Forward TGGACATTAGGCGCAGGAA

Reverse GAGAGAGCATGACCGATGGATT

Collagen III Mouse
Forward ACGTAGATGAATTGGGATGCAG

Reverse GGGTTGGGGCAGTCTAGTC

Collagen III Rat
Forward CCCAACCCAGAGATCCCATT

Reverse GAAGCACAGGAGCAGGTGTAGA

IL-1β Mouse
Forward GGGCCTCAAAGGAAAGAATC

Reverse TACCAGTTGGGGAACTCTGC

IL-6 Mouse
Forward AGTTGCCTTCTTGGGACTGA

Reverse TCCACGATTTCCCAGAGAAC

IL-17 Mouse
Forward TCCAGAAGGCCCTCAGACTA

Reverse AGCATCTTCTCGACCCTGAA

TNF-α Mouse
Forward CCCAGGGACCTCTCTCTAATC

Reverse ATGGGCTACAGGCTTGTCACT

GAPDH Mouse
Forward AACTTTGGCATTGTGGAAGG

Reverse CACATTGGGGGTAGGAACAC

GAPDH Rat
Forward GACATGCCGCCTGGAGAAAC

Reverse GACATGCCGCCTGGAGAAAC
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tissue or NRCMs were detected using kits purchased from
Beyotime Biotechnology Corporation (China).

2.9. Statistical Analysis. The data are expressed as the mean
± standard deviation. Comparisons between two groups were
analyzed using an unpaired Student’s t test. Differences among
multiple groups were assessed using an analysis of variance
followed by one-way analysis of variance. A value of P < 0:05
was considered statistically significant.

3. Results

3.1. Prx5 Expression Is Increased in Hypertrophic Hearts and
Isolated NRCMs. The results showed that Prx5 expression
was gradually upregulated in the hearts of mice subjected
to TAC surgery (Figure 1(a)). In accordance with this,
higher Prx5 levels were also detected in isolated NRCMs

after Ang II stimulation (Figure 1(b)). Together, these data
suggest that Prx5 may participate in the development of car-
diac hypertrophy.

3.2. Prx5 Knockdown Accelerates Pressure Overload-Induced
Cardiac Dysfunction. After TAC surgery, animals exhibited
LV dilatation and thickening, as indicated by increased
LVIDd, LVIDs, LVPWd, LVPWs, IVSd, and IVSs and
decreased FS. However, Prx5 knockdown further aggravated
pressure overload-induced cardiac dysfunction (Table 2). In
addition, there were no significant differences in HR among
the four groups.

3.3. Prx5 Knockdown Accelerates Pressure Overload-Induced
Cardiac Hypertrophy. As shown in Figure 2, AAV9-shPrx5
caused decreased expression of Prx5 in hearts (Figure 2(a)).
Four weeks after TAC surgery, Prx5 knockdown accelerated
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Figure 1: Prx5 expression is increased in hypertrophic hearts and isolated NRCMs. (a) The expression of Prx5 in heart tissues was measured
by Western blotting and RT-PCR (n = 4, ∗P < 0:05 vs. the sham group). (c) The expression of Prx5 in heart tissues was measured by Western
blotting and RT-PCR (n = 4, ∗P < 0:05 vs. the PBS group).

Table 2: Echocardiographic data of each group.

Groups Sham+AAV9-shRNA Sham+AAV9-shPrx5 TAC+AAV9-shRNA TAC+AAV9-shPrx5

HR (bpm) 523± 48 519± 39 511± 40 516± 44

LVEDd (mm) 3.51± 0.23 3.63± 0.35 4.51± 0.36∗ 5.32± 0.29#

LVEDs (mm) 1.93± 0.16 1.88± 0.12 3.18± 0.21∗ 4.23± 0.29#

LVPWd (mm) 0.66± 0.06 0.64± 0.05 1.21± 0.11∗ 1.43± 0.13#

LVPWs (mm) 1.06± 0.10 1.05± 0.09 1.83± 0.13∗ 2.33± 0.15#

IVSd (mm) 0.64± 0.05 0.63± 0.06 1.17± 0.09∗ 1.46± 0.13#

IVSs (mm) 1.06± 0.11 1.04± 0.10 1.82± 0.15∗ 2.24± 0.16#

FS (%) 45.41± 2.68 46.53± 2.81 29.76± 3.03∗ 20.34± 2.54#

n = 8 for each group. ∗P < 0:05 vs. the sham group; #P < 0:05 vs. the TAC group.
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pressure overload-induced cardiac hypertrophy, as evidenced
by increased HW/BW, HW/TL, LW/BW, and LW/TL ratios
and increased CSA (Figures 2(b) and 2(c)). In addition, higher
mRNA levels of atrial natriuretic peptide (ANP), brain natri-
uretic peptide (BNP), β-myosin heavy chain (β-MHC), and
Myosin Heavy Chain 7 (Myh7) were also found in the Prx5
knockdown group after TAC surgery (Figure 2(c)).

3.4. Prx5 Knockdown Accelerates Pressure Overload-
Induced Cardiac Fibrosis. As shown in Figure 3, dramatic
collagen deposition was observed in the mice after TAC
surgery and was further increased in the Prx5 knockdown
group (Figure 3(a)). Similarly, after TAC surgery, the
mRNA expression levels of several fibrosis markers,
including collagen I, collagen III, transforming growth
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Figure 2: Prx5 knockdown accelerates pressure overload-induced cardiac hypertrophy. (a) The levels of Prx5 after injection with AAV9-
shPrx5 (n = 4). (b) Results for the HW/BW ratio, HW/TL ratio, LW/BW ratio, LW/TL ratio, and CSA of each group (n = 6). (c) HE and
WGA staining were performed in each group (n = 6; scale bar, 50μm). (d) The expression of ANP, BNP, β-MHC, and Myh7 was
measured by RT-PCR in each group (n = 5). ∗P < 0:05 vs. the sham group; #P < 0:05 vs. the TAC group.
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Figure 3: Prx5 knockdown accelerates pressure overload-induced cardiac fibrosis. (a) PSR staining was performed in each group (n = 6;
scale bar, 50 μm). (b) The expression of collagen I, collagen III, TGF-β, and CTGF was measured by RT-PCR in each group (n = 6).
∗P < 0:05 vs. the sham group; #P < 0:05 vs. the TAC group.
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Figure 4: Prx5 knockdown accelerates pressure overload-induced oxidative stress and apoptosis. (a) DHE staining was performed in each
group (n = 5; scale bar, 100 μm). (b) Quantitative results of SOD activity and GSH, MDA, and H2O2 levels in the hearts of each group (n = 6).
∗P < 0:05 vs. the sham group; #P < 0:05 vs. the TAC group.
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factor (TGF)-β, and connective tissue growth factor
(CTGF), were also further increased in the Prx5 knock-
down group (Figure 3(b)).

3.5. Prx5 Knockdown Accelerates Pressure Overload-
Induced Oxidative Stress and Apoptosis in Mice. DHE
staining was used to evaluate in vivo oxidative stress levels.
The results showed that the oxidative stress level was dra-
matically increased in the Prx5 knockdown group after
TAC surgery (Figure 4(a)). Moreover, Prx5 knockdown
markedly decreased SOD activity and GSH levels and
increased MDA and H2O2 levels in TAC-treated mice
(Figure 4(b)).

3.6. Prx5 Knockdown Accelerates Pressure Overload-Induced
Apoptosis in Mice. TUNEL staining was used to evaluate apo-
ptosis levels in the heart. The results showed that the number
of TUNEL-positive cells was dramatically increased in the
Prx5 knockdown group after TAC surgery (Figure 5(a)).
Moreover, Prx5 knockdown increased Bax and decreased
Bcl-2 levels in TAC-treated mice (Figure 5(b)).

3.7. Prx5 Knockdown Accelerates AngII-Induced
Cardiomyocyte Hypertrophy In Vitro. Consistent with the
in vivo results, si-Prx5 led to decreased expression of Prx5
in NRCMs (Figure 6(a)). After 48 h of AngII stimulation,
the NRCMs exhibited clear hypertrophy by augmentation

in CSA and increased mRNA levels of ANP, BNP, β-
MHC, and Myh7 (Figures 6(b) and 6(c)). Interestingly,
Prx5 knockdown accelerated AngII-induced cardiomyocyte
hypertrophy in vitro (Figures 6(b) and 6(c)).

3.8. Prx5 Knockdown Accelerates AngII-Induced Oxidative
Stress and Apoptosis In Vitro. The results showed that
AngII treatment markedly decreased SOD activity and
GSH levels and increased MDA and H2O2 levels in vitro,
while these effects were further augmented by Prx5 knock-
down (Figure 7(a)). TUNEL staining further showed that
Prx5 knockdown further increased the number of TUNEL-
positive cells in vitro (Figure 7(b)).

3.9. Effect of Prx5 on the MAPK Signaling Pathway. Previous
research has widely implicated MAPK signaling in cardiac
hypertrophy. Thus, we investigated whether the effects of
Prx5 are associated with the MAPK signaling pathway. The
results showed that the phosphorylated levels of ERK, p38,
and JNK were significantly increased in TAC-treated mice.
However, these effects were further augmented by Prx5
knockdown (Figure 8(a)). Consistent with the in vivo results,
Prx5 knockdown also increased the phosphorylation levels
of ERK, p38, and JNK in NRCMs after AngII treatment
(Figure 8(b)).
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Figure 5: Prx5 knockdown accelerates pressure overload-induced apoptosis in mice. (a) TUNEL staining was performed in each group
(n = 4; scale bar, 50μm). (b) The expression of Bax and Bcl-2 was measured by Western blot in each group (n = 4). ∗P < 0:05 vs. the
sham group; #P < 0:05 vs. the TAC group.
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4. Discussion

In the present study, we uncovered a novel role of Prx5 in
pressure overload-induced cardiac hypertrophy. The results
showed that the mRNA and protein expression of Prx5 were
noticeably upregulated in hypertrophic hearts and AngII-
stimulated cardiomyocytes. In addition, Prx5 knockdown
accelerated pressure overload-induced cardiac hypertrophy
and dysfunction in mice by activating oxidative stress and
cardiomyocyte apoptosis. Importantly, heart deterioration
caused by Prx5 knockdown was related to MAPK activation.
These findings suggest that Prx5 could be a novel target for
treating cardiac hypertrophy and heart failure.

Prx5, also called PrxV/AOEB166/PMP20/PLP/ACR1,
was discovered twenty years ago and is widely expressed in
mammalian tissues [20]. As an important member of the
Prxs family, Prx5 plays a central role in redox signal trans-
duction and exhibits high scavenging activity toward oxida-
tive stress [16] [21]. Previous research has shown that Prx5
exhibits a protective role in a variety of diseases, including
brain lesions, aging, obesity, and cancer [22–24]. Recombi-
nant Prx5 administration provided protection against N-
methyl-D-aspartate-mediated brain lesions and neuronal

death in newborn mice [22]. In an obesity model induced
by a high-fat diet, deletion of Prx5 increased susceptibility
to obesity and adipogenesis by increasing ROS generation
and adipogenic gene expression [23]. However, little is
known about the exact role and mechanisms of Prx5 in the
development of cardiac hypertrophy and dysfunction. In
the present study, we first confirmed that Prx5 was upregu-
lated in hypertrophic mouse hearts and AngII-stimulated
NRCMs, indicating that Prx5 might be involved in the pro-
gression and development of pathological cardiac hypertro-
phy. In addition, AAV9-shPrx5 was used to knock down
Prx5 in the myocardium. The results showed that Prx5
knockdown accelerates pressure overload-induced cardiac
dysfunction, hypertrophy, and fibrosis in mice. Consistent
with the in vivo results, Prx5 knockdown also accelerated
AngII-induced cardiomyocyte hypertrophy in vitro.

Oxidative stress is described as a common pathological
feature of various cardiovascular diseases [25–28]. As a nat-
ural byproduct of the metabolic utilization of oxygen, ROS
are oxygen-containing molecules with highly reactive prop-
erties and represent crucial drivers of oxidative stress
[29–31]. Under pathological conditions of pressure over-
load, excessive ROS result in cardiomyocyte death or
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Figure 6: Prx5 knockdown accelerates AngII-induced cardiomyocyte hypertrophy in vitro. (a) The levels of Prx5 were measured by Western
blot (n = 4). (b) Immunofluorescence staining for α-actinin was performed in each group (n = 4; scale bar, 25 μm). (c) The expression of
ANP, BNP, β-MHC, and Myh7 was measured by RT-PCR in each group (n = 6). ∗P < 0:05 vs. the PBS group; #P < 0:05 vs. the AngII group.
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functional damage and ultimately cardiac dysfunction
[32–34]. There is likely benefit from the suppression of oxi-
dative stress and countering excessive production of ROS in
pathological cardiac hypertrophy therapy.

Many studies have shown that Prx5 has antioxidant pro-
tective functions and can effectively remove oxidative stress
[17] [23]. Thus, we investigated whether Prx5 is involved
in the occurrence of cardiac hypertrophy and dysfunction
by regulating oxidative stress. The results showed that Prx5
knockdown markedly decreased SOD activity and GSH
levels and increased MDA and H2O2 levels in TAC-treated
mice. DHE staining results also showed that the oxidative
stress level was dramatically increased in the Prx5 knock-
down group after TAC surgery. Consistent with the in vivo
results, Prx5 knockdown accelerated AngII-induced oxida-
tive stress in vitro. These results indicate that the deteriora-
tion effect of Prx5 knockdown is related to oxidative stress.

Apoptosis is known to contribute to various cardiovas-
cular diseases, including heart failure, myocardial infarct,
and reperfusion injury [35, 36]. Previous research has also
shown that cardiac hypertrophy is related to a reduced cell
number due to enhanced apoptosis [37, 38]. In addition, oxi-
dative stress has been shown to be responsible for cardio-
myocyte apoptosis [39–41]. Thus, we asked whether Prx5
affects cardiomyocyte apoptosis in pathological cardiac
hypertrophy. The results showed that the expression of Bax
was upregulated, the expression of Bcl-2 was lower, and

there were more TUNEL-positive cells in the TAC group
than in the sham group. These effects were further aug-
mented by Prx5 knockdown. In addition, the results further
confirmed the in vitro cell experiments, indicating that the
deterioration effect of Prx5 knockdown is associated with
cardiomyocyte apoptosis.

As intracellular signaling proteins, MAPKs have been
shown to regulate various cellular processes, including cell
size, cell growth, and cell survival, in response to extracellu-
lar stimuli [41–43]. It is well established that the activation
of MAPK signaling increases cardiac damage and exacer-
bates pathological cardiac hypertrophy [44–46]. In this
study, Prx5 knockdown accelerated pressure overload-
induced cardiac hypertrophy and dysfunction. However,
the role of Prx5 in MAPK signaling activation in pathologi-
cal cardiac hypertrophy was unclear. Thus, we examined the
phosphorylation and total expression of ERK/JNK/p38 in
hypertrophic hearts and AngII-stimulated cardiomyocytes.
The results showed that Prx5 knockdown significantly
induced the phosphorylation of ERK/JNK/p38 in the TAC
group, but the expression of total ERK/JNK/p38 remained
unchanged. These results indicate that the deterioration
effect of Prx5 knockdown is associated with activation of
MAPK signaling.

4.1. Clinical Significance. Pathological cardiac hypertrophy is
a common pathophysiological process of various
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Figure 7: Prx5 knockdown accelerates AngII-induced oxidative stress and apoptosis in vitro. (a) Quantitative results of SOD activity and
GSH, MDA, and H2O2 levels in the hearts of each group (n = 6). (c) TUNEL staining was performed in each group (n = 4; scale bar,
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cardiovascular diseases, including hypertension, myocardial
infarction, and heart failure. Currently, there is no specific
treatment to effectively reverse cardiac pathological hyper-
trophy and reduce the morbidity and mortality of heart fail-
ure. In this study, we demonstrated that Prx5 knockdown
accelerated pressure overload-induced cardiac hypertrophy
and dysfunction in mice by activating oxidative stress and
cardiomyocyte apoptosis. Importantly, heart deterioration
caused by Prx5 knockdown was related to MAPK activation.
These findings provided a new target for the prevention and
treatment of cardiac hypertrophy and heart failure.

4.2. Study Limitations. This study was subject to the follow-
ing limitations. First, as pathological cardiac hypertrophy is
a multifactorial syndrome, we cannot exclude the possibility
that Prx5 utilizes other pathways to protect the heart under
pressure overload. Thus, more research is needed to deter-
mine the mechanism underlying the cardioprotective effects
of Prx5. In addition, in our study, mice received a heart
injection of AAV9-shPrx5 to knock down Prx5 in the myo-
cardium. However, animals with cardiac-specific overex-
pression or knockout of Prx5 may more precisely
demonstrate the important function of Prx5 in pathological
cardiac hypertrophy and dysfunction.

Taken together, our results have uncovered novel
insights into the regulation of pathological cardiac hypertro-

phy and dysfunction by Prx5. The results showed that Prx5
knockdown accelerates pressure overload-induced cardiac
hypertrophy and dysfunction. Our data indicate that Prx5
may be an attractive target for the prevention and treatment
of pathological cardiac hypertrophy and heart failure.
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