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Summary

Transcription factors (TFs) regulate gene expression by binding to DNA sequences and 

modulating transcriptional activity through their effector domains. Despite the central role of 

effector domains in TF function, there is a current lack of a comprehensive resource and 

characterization of effector domains. Here, we provide a catalog of 924 effector domains across 

594 human TFs. Using this catalog, we characterized the amino acid composition of effector 

domains, their conservation across species and across the human population, and their roles in 

human diseases. Further, we provide a classification system for effector domains that constitutes a 

valuable resource and a blueprint for future experimental studies of TF effector domain function.

Introduction

Transcription factors (TFs) play a central role in the regulation of gene expression, and 

thereby affect diverse biological processes such as cell differentiation and de-differentiation 

(Takahashi et al., 2007; Tapscott et al., 1988), development (Davidson and Erwin, 2006), 

and immune regulation (Carrasco Pro et al., 2018; Santoso et al., 2020). Most TFs contain 

two main types of protein domains to accomplish their functions: DNA-binding domains 

(DBDs) and effector domains (Frankel and Kim, 1991; Lambert et al., 2018; Vaquerizas 

et al., 2009). DBDs direct TFs to their target genomic regulatory regions by recognizing 
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specific DNA sequences. DBDs are well-conserved structural classes and are often used to 

classify TFs into families. For example, the current list of 1,639 human TFs is classified 

into 25 DBD families, the largest of which are zinc fingers Cys2His2 (ZF-C2H2) and 

homeodomains (Lambert et al., 2018). Alternatively, effector domains can activate or repress 

target gene expression through several mechanisms such as interactions with cofactors, 

enzymes, and mediator, leading to histone modifications, changes in DNA methylation 

states, and recruitment of RNA Pol II (Frietze and Farnham, 2011; Reiter et al., 2017) 

(Figure 1A). Broadly, we can classify these effector domains as activator domains (AD), 

also known as trans-activator domains, repressor domains (RD), and bifunctional (Bif) 

domains (i.e., those that can activate or repress gene expression depending on the cellular 

and chromatin contexts).

While there are multiple resources and annotations of TF DBDs, there are currently 

no comprehensive annotations of TF effector domains. This is because effector domains 

are generally less conserved across paralogs and orthologs than DBDs and often do not 

have well-defined structures, rendering predictions based on sequence or structure largely 

ineffective (Staller et al., 2018). Therefore, effector domains have mostly been identified by 

deletion experiments, and their annotation is scattered across the literature.

The transcriptional regulation field has made substantial contributions to our understanding 

of the molecular mechanisms of gene expression and the role of effector domains in the 

recruitment of the preinitiation complex, chromatin organization, cofactor recruitment, RNA 

Pol II regulation, and DNA methylation (Roeder, 2019). Given the extensive and important 

research by thousands of scientists in this field, the goal of this manuscript is not to offer 

a historical perspective on these key contributions, but rather to synthesize the currently 

available information and provide a novel resource to obtain a big-picture comparative 

perspective on TF effector domains.

Here, we review more than three decades of literature to manually annotate 924 effector 

domains across 594 human TFs. We use this resource to characterize effector domains 

and their amino acid composition, sequence conservation, and roles in human diseases. In 

addition, we implement a web server annotating the known effector domains, as well as to 

predict effector domains across paralogs and within TF isoforms. Collectively, our data and 

analyses provide a novel and important resource for future studies of TF effector domains.

Methods to identify and characterize effector domains

The ability of effector domains to modulate transcriptional activity has been mapped and 

characterized using different experimental approaches (Figure 1B and Table S1). Most 

of these approaches require recruiting either a full-length TF or a TF fragment to a 

transcriptional control region, followed by quantifying the transcriptional activity of a 

downstream target gene. Recruitment of the TF can be achieved using the intrinsic DBD 

of the TF and a promoter region known to bind the TF (Han et al., 2020; Ma and Ptashne, 

1987; Roose et al., 1998). The target gene can either be an endogenous target gene whose 

expression can be measured by RT-qPCR, or a reporter gene measured by enzymatic 

activity (e.g., luciferase, chloramphenicol acetyltransferase, or β-galactosidase) (Ma and 
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Ptashne, 1987; Meijer et al., 1992; Roose et al., 1998). These experiments involve protein 

deletions to identify the amino acid sequences that are necessary for activating or repressing 

transcription (i.e., if the regions is removed the transcriptional effect is totally or partially 

lost). However, these assays rarely demonstrate that these sequences, on their own, are 

sufficient to elicit their transcriptional effect. To show sufficiency, complementary reporter 

assays are used in which TF fragments are fused to DBDs from heterologous TFs that have 

well-characterized DNA-binding sites, such as the yeast Gal4 and the bacterial LexA (Braun 

et al., 1990; Brent and Ptashne, 1985; Hope and Struhl, 1986). This allows for recruitment 

of TF fragments of any size to test their effect on reporter gene expression. Moreover, these 

experiments are not compromised by effects that deletions in the native TF may have on 

its ability to bind its natural DNA binding sites. To avoid mapping regions that affect the 

overall function of the TF (i.e., necessary but not sufficient) or regions that are active in a 

heterologous context but not within the TF sequence (i.e., sufficient but not necessary), both 

types of experiments showing necessity and sufficiency are recommended.

Most of the assays listed above are low-throughput, in particular protein deletion 

experiments, as they require custom-designed sequences for each TF tested. In addition, 

studies of different TFs may require different cell types expressing the appropriate cofactors, 

and varying experimental conditions such as different ligands and stimuli (Figure 1A). 

Recently, exogenous DBD or dCas9 fusion experiments have been adapted for high-

throughput transcriptional activity screens using libraries coding for thousands of peptide 

sequences (Figure 1B). These peptide libraries can include fragments of protein-coding 

genes (including TFs), comprehensive mutagenesis of selected peptide sequences to identify 

key amino acids within the peptides involved in transcriptional activity, or random peptides 

to screen for activating and repressive functions (Alerasool N., 2021; Arnold et al., 2018; 

Erijman et al., 2020; Ravarani et al., 2018; Staller et al., 2018; Tycko et al., 2020). 

In these experiments, the reporter used allows for the separation of cells harboring a 

transcriptionally active (or repressive) DBD-peptide fusion within a pool (e.g., GFP reporter 

using fluorescence-activated cell sorting, or a surface marker using magnetic separation), 

followed by sequencing of the enriched peptide sequences.

Additionally, protein-protein interaction (PPI) studies have provided indirect evidence of 

transcriptional regulatory activity by identifying TF fragments that interact with cofactors 

or other proteins that modulate transcription (Figure 1B). For example, pull-down assays 

have been extensively used to identify interactions of effector domains with cofactors and 

chromatin remodeling complexes (Giraud et al., 2002; Neely et al., 1999; Xu et al., 2018). 

When integrated with reporter studies, these PPIs can provide a mechanism for observed 

transcriptional effects.

Few computational approaches have been developed to predict TF effector domains. 

This is mainly because there are no comprehensive databases annotating experimentally 

determined effector domains, and because effector domains are poorly conserved across 

species and paralogs. Effector domains are thus relatively difficult to predict from amino 

acid sequence compared to DBDs (Mistry et al., 2021). 9aaTAD is a predictor based on 

different experimentally determined 9-mer ADs; however, this tool is limited to short ADs 

(Piskacek et al., 2007). Since sequence alignment proved to be of limited use to predict 
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ADs, novel machine learning predictors have been developed. For example, ADpred is a 

deep learning model that uses the amino acid composition and the secondary structure of 

known ADs to predict ADs between 9–30 residues (Erijman et al., 2020). PADDLE, a deep 

convolutional neural network model, uses 53 amino acid tiles and can predict the location 

of ADs within a TF sequence, its key residues, and its transactivation strength (Sanborn 

et al., 2021). However, most experimentally determined ADs are longer, as we found from 

our curation (median = 91 aa). Although this could be associated with unprecise boundary 

definition for some ADs, many carefully mapped ADs are indeed longer, somewhat limiting 

the applicability of current computational predictions. Furthermore, to our knowledge, with 

the exception of KRAB and POZ/BTB domains, there are currently no predictors developed 

for repression domains. Therefore, there is a need for improved computational approaches 

to predict effector domains which will be in part driven by new large-scale experimental 

datasets.

A census of human TF effector domains

To generate a large-scale resource of experimentally validated effector domains, we searched 

for effector domain evidence across the literature for the 1,639 annotated human TFs. We 

manually curated and extracted experimental evidence for 924 effector domains from 594 

TFs (Figure 2A and Table S2). Of these, only 94 effector domains belonging to 79 TFs 

were reported in the Pfam domain database (mostly corresponding to KRAB and BTB/POZ 

domains), illustrating the lack of structural classification for most effector domains (Mistry 

et al., 2021). We implemented a webtool named TFRegDB (https://tfregdb.bu.edu/tfregdb/) 

annotating available information about human TF effector domains, including amino acid 

sequence, coordinates in different isoforms, experimental methods used to determine the 

effector domains, whether they are necessary or sufficient for transcriptional activity, a 

confidence score, and links to supporting evidence. We also implemented a BLAST search 

functionality where a query sequence can be submitted to detect effector domains in TF 

isoforms or to predict effector domains based on amino acid sequence similarity.

We annotated effector domains in all major families of TFs including ZF-C2H2 (170 TFs), 

homeodomains (68 TFs), and bHLHs (62 TFs) (Figure 2A). Of the 594 TFs in our database, 

40% have two or more effector domains annotated (Table S2). Based on the effector domain 

activity, TFs can be classified into three groups: those that contain only ADs (269 “TFs-

AD”), those that have only RDs (210 “TFs-RD”), and those with both effector domain 

types (115 “TFs-Bif”). As expected, most ZF-C2H2 are TFs-RD as many of these TFs 

contain the well characterized KRAB and BTB/POZ domains involved in transcriptional 

repression (Collins et al., 2001). Conversely, most TFs in the bHLH, nuclear receptor and 

homeodomain families are classified as TFs-AD (Figures 2A and S1A). However, many 

of these TFs, such as nuclear receptors, may switch from repression to activation upon 

interaction with ligands, while the activities of others are affected by post-translational 

modifications. Indeed, the classification into TFs-AD, TFs-RD, and TFs-Bif is solely based 

on reported effector domain activity in the conditions tested. Therefore, many of these TFs 

could be bifunctional in other conditions, or if other amino acid regions of the TF are 

considered.
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Reported effector domain sizes range from 4 to 1,248 amino acids, with a median of 91 

amino acids (Figure 2A). Although some of these differences are likely due to varying 

mechanisms of action, in many cases size differences likely arise from variation in the 

stringency of the deletion experiments used to identify the effector domains. Overall, 

we found that 30% of the effector domains were located at the N-terminus, 28% at the 

C-terminus, and 42% in internal regions within the TF amino acid sequence (Figure 2B). 

However, the positioning of effector domains differs among TF families (Figures 2B and 

S1B). To illustrate, repressor domains in ZF-C2H2 predominantly reside at the N-termini, 

while activation domains in bZIP and HMG/Sox families mainly reside at the N- and 

C-termini, respectively. This suggests that alternative splicing, transcription starts, and 

polyadenylation sites may differentially affect ADs and RDs from different TF families.

Amino acid composition of effector domains

It has been broadly determined that DBDs are enriched in basic amino acids that increase TF 

affinity for the negatively charged DNA (Lambert et al., 2019) but less is known about the 

amino acid composition of effector domains from different TF families. Since Paul Sigler 

proposed in 1988 the “Acid Blob and Negative Model” positing that acidic ADs interact 

with RNA polymerase electrostatically (Sigler, 1988), significant progress has been made in 

characterizing the amino acid composition of the ADs of some TFs, as well as determining 

the rules for transcriptional activity (Erijman et al., 2020; Sanborn et al., 2021). Seminal 

studies on yeast TFs reported that ADs are acidic, disordered, and hydrophobic (Drysdale 

et al., 1995; Hope and Struhl, 1986; Ravarani et al., 2018; Staller et al., 2018). However, 

predictions suggest that ADs of human TFs are not as highly enriched in acidic amino 

acids as yeast ADs (Erijman et al., 2020). For example, HOXA13 and ONECUT1 have 

basic ADs enriched in lysine/arginine, and histidine, respectively (Table S2), consistent 

with the identification of basic ADs in high-throughput screens (Arnold et al., 2018). 

Further, although acidity may be important for some human ADs, acidity is not sufficient to 

predict AD function, as appropriate levels of hydrophobicity and disorder are also required 

(Staller et al., 2018; Tycko et al., 2020). A current model, known as the Exposure Model, 

indicates that acidic residues that surround hydrophobic motifs are necessary to repel each 

other, promoting interaction between exposed hydrophobic residues with positively charged 

cofactors (Ferreira et al., 2005; Hermann et al., 2001; Staller et al., 2018; Warfield et al., 

2014). These contacts between hydrophobic residues may mediate high-affinity PPIs via 

the hydrophobic effect (Levy and Onuchic, 2006). This model was initially proposed based 

on ADs from yeast TFs, and recently supported by mutational studies in five human TFs 

(Staller et al., 2018; Staller MV, 2021). Whether these models extend to other human ADs 

and RDs remains to be determined.

To establish whether the reported sequence characteristics are present in most of the 

annotated effector domains, we evaluated the acidity, hydrophobicity, and disorder of ADs 

and RDs of TFs from different families. We confirmed that ADs and RDs are more acidic 

than DBDs and found that globally, ADs are statistically more acidic than RDs (p-value < 

2.2 × 10−16, Wilcoxon test) (Figures 3A and 3B). Interestingly, not all TF families show the 

same level of acidity in their effector domains, which could be partially driven by sequence 

homology between paralogs. For example, homeodomain ADs are less acidic than ADs 
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from other families, while RDs in ZF-C2H2 are the most acidic among the RDs. Further, 

there are marked differences even within families (e.g., the HES1–7 bHLH subfamily has 

more basic RDs than other bHLHs) (Figure 3B). We also found that both ADs and RDs 

are more hydrophobic than DBDs (Figures 3A and 3B). Although no specific hydrophobic 

enrichment was observed for any TF family, in bHLH, the RDs of the HES1–7 subfamily 

are more hydrophobic than RDs from other families. Most TF effector domains are highly 

acidic and hydrophobic; however, there are some TFs whose effector domains are basic and 

highly hydrophobic (HES TF subfamily) or acidic but lowly hydrophobic (e.g., HOXB7 and 

HMGA1).

Several studies of individual TFs have shown that effector domains are enriched in 

disordered regions (Liu et al., 2006; Oldfield and Dunker, 2014). Disordered regions 

have been associated with the occurrence of PPIs, as their flexibility allows disordered 

regions to bind multiple structurally diverse protein partners (Oldfield and Dunker, 2014). 

This disorder allows effector domains to assume different conformations when bound to 

cofactors, facilitating the dynamic exposure of hydrophobic motifs (Dyson and Wright, 

2016; Staby et al., 2017; Warfield et al., 2014). For example, the disordered ADs of TP53, 

HIF1A, REL, STAT, and other TFs interact with well-structured domains of co-activators, 

such as CREBBP and EP300 (Dyson and Wright, 2016). Using AlphaFold (Jumper et al., 

2021), we found that disorder is a property shared by both ADs and RDs (Figures 3A and 

3B). ADs are significantly more disordered than RDs (p value = 1.9 × 10−11, Wilcoxon 

test), and both are more disordered than DBD across all major TF families (p value < 2.2 

× 10−16, Wilcoxon test) (Figures 3A and 3B). This disorder in effector domains is a shared 

feature across all major TF families. Nevertheless, we observed a large variability within 

TF families, with some effector domains being 100% disordered (e.g., the ADs of SP1 and 

SP3), while others are highly ordered (e.g., the RDs of MXI1 and MNT which are alpha 

helixes).

Short linear motifs (SliMs), which are involved in PPIs and are generally enriched 

in hydrophobic amino acids, could be more important than overall high levels of 

hydrophobicity (Tompa et al., 2014). Many examples of SliMs have been reported in 

non-human effector domains, but few cases have been studied in human effector domains 

(Dinkel et al., 2014). Generally, it has been shown that disordered structures facilitate the 

interaction mediated by these SliMs (Staller et al., 2018), but more in-depth studies are 

needed to determine their role across TF families.

In addition to general charge, hydrophobicity, and disorder features, many effector domains, 

ADs in particular, have been shown to display amino acid compositional bias (Figure S2A). 

For example, many ADs across TF families are enriched in proline, serine, glutamine, 

glycine, and alanine, as has been previously described (Gerber et al., 1994; Husberg et al., 

2001; Meijer et al., 1992; Paulsen et al., 1992; Pei and Shih, 1991; Raney et al., 1991). 

Although there is also a compositional bias for some RDs, in particular those enriched in 

proline and serine, these are less frequent than for ADs (Figure S2B). These enriched amino 

acids are generally present in the effector domains of TFs from many different families.
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Post-translational modifications (PTMs) are known to regulate TF functions by affecting 

PPIs, cellular localization, and ultimately, their regulatory activity. Further, the dysregulation 

of TF PTMs has been associated with several pathological conditions (Filtz et al., 2014; 

Qian et al., 2020; Tootle and Rebay, 2005). In particular, phosphorylation is known to play a 

significant role in the activation of many TFs and their interaction with cofactors and other 

protein complexes (Filtz et al., 2014). Phosphorylation introduces negative charges, thus 

changing charge and solubility properties of effector domains. As negative charges spaced 

between hydrophobic residues help keep domains exposed to solvent, phosphorylation may 

act as a switch changing the ability of ADs and RDs to interact with other proteins 

and cofactors. This is the case of IRF5 and IRF3 whose phosphorylation stimulates 

dimerization and interaction with the co-activators CREBBP/EP300 (Chen et al., 2008), 

while phosphorylation of ELK1 promotes mediator recruitment to promoter sequences 

(Cantin et al., 2003). Similarly, phosphorylation in the ADs of TP53 were reported to 

increase the binding to different domains of EP300 and reduce binding to the negative 

regulator Mdm2 (Teufel et al., 2009). Since most of these studies were performed on specific 

TFs or functional domains, we used PhosphoSitePlus (Hornbeck et al., 2019), a curated 

phosphorylation site database, to analyze the frequency of phosphorylation events in effector 

domains and DBDs. Across most major TF families, we found that effector domains are 

more highly phosphorylated than DBDs (Figures 3A and 3B), even when normalizing by 

the frequency of serines, threonines, and tyrosines (Figures S2C and S2D). Our analysis 

suggests that 21% of effector domains may be regulated by phosphorylation. This is likely 

an underestimate as some effector domains may be phosphorylated in conditions not yet 

tested. Except for a few cases, the overall role of other PTMs in effector domain regulation 

remains to be determined.

Role of effector domains in liquid-liquid phase separation

Recent evidence suggests that TF effector domains contribute to gene regulation by 

facilitating liquid-liquid phase separation (LLPS), during which chromatin-bound TFs, 

coregulators, and other transcription machinery form dynamic condensates within the 

nucleus (Boija et al., 2018; Hnisz et al., 2017; Sabari et al., 2018; Shrinivas et al., 

2019). Forming these distinct transcription “factories” is thought to enhance transcriptional 

efficiency by increasing the effective concentration of required proteins within the crowded 

milieu of the nucleus. LLPS can be driven by two main types of interactions: 1) specific 

interactions between folded molecular domains or between folded and unfolded domains, 

or 2) non-specific interactions between intrinsically disordered low-complexity domains 

(LCDs) (Chiesa et al., 2020). As many TF effector domains contain LCDs, it is hypothesized 

that the regulatory functions of these effector domains depend on their ability to participate 

in LLPS by forming LCD-LCD interactions with coregulators. Boija et al. (Boija et al., 

2018) have shown that the TFs OCT4, GCN4, and estrogen receptor form phase-separated 

condensates with coregulatory protein Mediator, and that the processes of LLPS and 

transcriptional activation by these TFs require the same key AD residues.

It is important to note that while Boija et al. showed that LLPS induction by OCT4, GCN4, 

and estrogen receptor requires activation domain residues, others have shown that LCDs 

are not required for all LLPS events involving TFs (Chiesa et al., 2020). Li et al. (Li 
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et al., 2020) showed that the DBD of mouse TF Sox2, and not the LCDs, are required 

for incorporation of Sox2 and coactivator Brd4 into transcriptional clusters, suggesting 

spatial clustering of cis-regulatory elements. Additionally, it has yet to be shown whether 

transcriptional activation or repression involving effector domains requires the formation of 

liquid droplets. Chong et al. (Chong et al., 2018) observed that, while TF overexpression 

resulted in LLPS, expression at physiological concentrations resulted in the formation of 

LCD-LCD interaction-dependent transcriptionally active protein “hubs” without observable 

phase separation. This suggests that TF effector domains can exert their transcriptional 

regulatory functions by forming transcription centers without the requirement for LLPS. 

However, given that effector domains and LCDs are not synonymous, more work is required 

to fully understand how activation and repression domains of TFs exert their functions and 

the involvement of LLPS.

To evaluate whether ADs and RDs are associated with a propensity for phase separation, 

we first compared the LLPS score between TFs classes using two different phase separation 

predictors (van Mierlo et al., 2021; Vernon et al., 2018). We found that TFs-AD and 

TFs-Bif have higher LLPS scores and probabilities than TFs-RD (Figures S3A and S3B), 

suggesting that ADs may play an important role in the LLPS. Moreover, we observed 

that 15.8% of ADs contain amino acid contexts predicted to promote LLPS (Vernon et 

al., 2018), versus 5.5% for RDs and 1.5% for DBDs (Figure S3C). Indeed, ADs with 

LLPS-promoting amino acid contexts were found in TFs well-known for promoting the 

formation of phase-separated condensates (e.g. SOX2, POU5F1 and NANOG). Although 

domains without effector function can also be involved in LLPS, our results suggest that 

many ADs likely promote LLPS.

Effector domains are preferentially affected in TF proteoforms

TF proteoforms produced by alternative promoters, splicing, and polyadenylation can differ 

in both DNA binding and effector activity, potentially leading to variation in gene regulatory 

networks across tissues or pathological conditions (Figure 4A) (Epstein et al., 1994; Foulkes 

et al., 1991; Kozmik et al., 1993; Lopez, 1995; Venkatanarayan et al., 2015). For example, 

in silico studies found that alternative splicing in murine TFs preferentially affects DBDs 

(Taneri et al., 2004). In regard to effector domains, experimental studies on individual TFs 

found that different proteoforms of mouse Pou2f2 (Stoykova et al., 1992), human PAX8 

(Kozmik et al., 1993), and human RUNX1 (Tanaka et al., 1997) have reduced transcriptional 

activity due to AD loss. Beyond individual examples, how effector domains are affected in 

different TF proteoforms is not currently known on a TF-wide scale.

To gain more insight into how effector domains and DBDs are affected in different TF 

proteoforms, we used a curated TF proteoform database derived from GENCODE v.30 

(Frankish et al., 2019). We considered a TF proteoform to be affected if its functional 

domain (either DBD or effector domain) was fully deleted, had truncations, or had 

insertions/deletions (indels). We found that effector domains were affected in a higher 

proportion of proteoforms than DBDs, regardless of the number of proteoforms per TF 

(Figure 4B) and regardless of domain length (Figure S4). Among the TFs with more 

than two proteoforms, there were only 42 (10.8 %) TFs with affected DBDs in most 
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of their proteoforms, while for effector domains this was the case for 103 TFs (26.6 

%) (p = 1.9 × 10−8 by proportion comparison test) (Figure 4C). This suggests that 

transcriptional activity is more frequently affected across proteoforms than DNA binding. 

Effector domains were more affected by indels, truncations, and full domain deletions than 

DBDs (p-value = 7.7 10−16, Kolmogorov–Smirnov test) across most major TF families, 

except for Forkhead and ZF-C2H2 (Figure 4D). In the case of ZF-C2H2, this could be 

related with the loss of individual zinc fingers in multiple proteoforms. Interestingly, the 

effector domains of the Forkhead family were the least affected by indels or deletions, 

while effector domains of bZIP and HMG/Sox TFs were the most affected (Figure 4D). 

Altogether, we detected widespread variability in effector domains that may contribute to 

differences in transcriptional activities between proteoforms as shown in multiple examples 

in the literature. Alternatively, these results may derive from a lower impact of deletions and 

truncations in effector domains on overall transcriptional activity.

Evolutionary and population-wide divergence of effector domains

While DBDs are highly conserved across multiple species and TF families, anecdotal 

examples have suggested that effector domains are lowly conserved (Staller et al., 2018). 

To evaluate effector domain conservation in our resource, we aligned human effector 

domains across TF orthologs in 27 vertebrate species and found a lower amino acid 

sequence conservation compared to DBDs across all families (Figure 5A). As expected, both 

DBDs and effector domains are less conserved as the divergence time increases; however, 

effector domain conservation diminished more drastically (Figure S5). Although this low 

conservation can be partially explained by effector domain boundaries being less well 

determined than DBDs (e.g., we observed that short effector domains are more conserved 

than long effector domains), it is also likely that effector domains are more plastic than 

DBDs. Indeed, it has been reported that effector domains can evolve rapidly conferring 

greater evolutionary, structural, and functional plasticity on the interactome (Sanborn et al., 

2021; Tompa et al., 2014; Wang et al., 2012).

Previous studies reported that the DBDs of most human TFs are depleted of common genetic 

variation (Barrera et al., 2016), likely because small changes in DBDs can lead to marked 

changes in affinity or specificity which could have detrimental effects. Mutagenesis studies 

in a few TFs have suggested that ADs more readily tolerate amino acid substitutions than 

DBDs (Ravarani et al., 2018; Sainz et al., 1997; Staller et al., 2018). To explore the presence 

of common variants in effector domains, we used the gnomAD database (Karczewski et al., 

2020) to compare the proportion of missense variants within effector domains and DBDs 

for each TF. In general, we observed a higher proportion of missense variants in effector 

domains (both ADs and RDs) than in DBDs (12.3 variants/100 nts vs 8.4 variants/100nts, 

p value < 2.2 × 10−16 by Wilcoxon test) (Figure 5B). In particular, we found 272 TFs 

with a significantly higher proportion of variants in effector domains than in DBDs, while 

30 TFs had a significantly higher proportion of variants in DBDs than in effector domains 

(Figure 5C). This higher proportion of variants in effector domains was not dependent on 

minor allele frequencies and was not observed for synonymous variants (not shown). We 

observed similar results when analyzing genetic variants from the 1000 Genomes Project 

(1000 Genomes Project Consortium et al., 2015). Taken together, these results suggest that 
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there is a stronger negative selection for mutations in DBDs than effector domains. Among 

the TFs whose effector domains are more tolerable to mutations, DUX4 and ZNF595 

showed the greatest proportion of missense variants in their AD and RD (58.6% and 

37.9% of missense variants, respectively). Although most effector domains are found to 

tolerate missense variants, there are several highly conserved effector domains. For example, 

RARB and RBPJ showed the lowest proportion of missense variants in their AD and RD, 

respectively (1.9 variants/100 nts and 3.4 variants /100 nts), although their DBDs are highly 

mutated.

Mutations in effector domains and association with disease

Mutations in TF effector domains have long been associated with many genetic diseases 

and cancers (Bradner et al., 2017). While mutations in DBDs can alter the targets of a TF 

by modifying its DNA-binding affinity and specificity (Barrera et al., 2016; Sahni et al., 

2015), mutations in effector domains can alter the ability of a TF to activate or repress gene 

expression by affecting its interactions with cofactors, mediator, or chromatin modifying 

enzymes (Frietze and Farnham, 2011; Lambert et al., 2018). However, the extent to which 

mutations affect effector domains has not been comprehensively determined.

To determine the prevalence of germline mutations associated with disease within effector 

domains, we considered pathogenic and likely pathogenic mutations from the ClinVar 

database (Landrum et al., 2020). We found disease-associated variants both in effector 

domains and DBDs, although DBDs were preferentially mutated in disease (Figure 5D). 

Indeed, we found 44 TFs significantly enriched in DBD mutations (q-value < 0.1, Fisher’s 

exact test) and only two TFs (SMAD3 and SMAD4) enriched in effector domain mutations 

(Figure 5E). This suggests that either fewer mutations in effector domains are pathogenic, 

or that multiple mutations may be concurrently needed to produce a phenotype, consistent 

with the high tolerance for variants observed in effector domains in the human population 

(Figures 5B and 5C).

Mutations in DBDs and effector domains of different TFs (e.g., MYC, TP53, ESR1) 

have been identified or predicted as cancer drivers (ICGC/TCGA Pan-Cancer Analysis 

of Whole Genomes Consortium, 2020; Martinez-Jimenez et al., 2020). However, the 

prevalence of these effector domain mutations in relation to DBD mutations has not 

been comprehensively determined. By exploring the COSMIC database (Tate et al., 2019), 

we found that the proportion of cancer-associated somatic mutations in effector domains 

is lower than in DBDs (p < 2.2 × 10−16, by Wilcoxon test) (Figure 5F). Indeed, we 

found 25 and 147 TFs with statistically enriched somatic mutations in effector domains 

and DBDs, respectively (Figure 5G). However, many effector domains have a density of 

somatic mutations comparable to or higher than that of many DBDs (Figure 5F). For 

example, the effector domains of MYC, SMAD4, SMAD3, AR, and SIM1 are enriched in 

cancer-associated mutations. Interestingly, we identified 12 TFs for which mutations in their 

respective effector domains and DBDs are associated with different types of cancer (q-value 

< 0.1, by Fisher’s exact test) (Figure 5H). For example, somatic mutations in the AD 

of MYC are preferentially associated with hematopoietic and lymphoid cancers, whereas 

mutations in the DBD of MYC are associated with many different cancer types such as 
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hematopoietic, lymphoid, large intestine, stomach cancers. Similarly, while mutations in the 

DBD of FOXP3 are enriched in large intestine cancer, mutations in its effector domain are 

associated with liver cancers. This suggests that, at least for some TFs, mutations in different 

functional domains can lead to different diseases (Figure 5I).

Altogether, these results show that effector domains are more tolerable to common genetic 

variation, and that they are less frequently associated with disease mutations than DBDs. 

Nevertheless, there are still numerous examples of disease-associated mutations in effector 

domains.

Classification of effector domains

Effector domains have traditionally been identified based on regulatory activity (activation 

versus repression), biophysical features (e.g., charge, hydrophobicity, and disorder), the 

enrichment of certain amino acids (e.g., proline, serine, and glutamine), and sequence 

conservation. To provide a functional classification of effector domains, we leveraged these 

features to calculate pairwise similarities between effector domains (see Document S1) 

which we then used to identify clusters of effector domains with similar features. After an 

initial clustering into 63 clusters, we retained 20 containing at least 10 effector domains, 

which comprise 77% of the effector domains we annotated (Figure 6 and Table S3).

We identified 10 clusters of ADs and 10 clusters of RDs (Figure 6). These clusters differ in 

the biophysical features and the enrichment of certain amino acids within their sequences. 

For example, clusters 15 and 18 are comprised of basic RDs, enriched in arginine residues, 

whereas cluster 4 is comprised of mildly acidic and disordered ADs enriched in serine 

and proline residues (Figure 6). Some clusters are enriched in TFs from certain families, 

such as clusters 5 (nuclear receptor), 6 (bZIP), 8 (nuclear receptor), 13 (ZF-C2H2), 17 

(ZF-C2H2), 18 (ZF-C2H2), 19 (homeodomain), and 20 (ZF-C2H2). However, many clusters 

contain effector domains from different TF families without a clear TF family enrichment, 

suggesting that the effector domain classification does not directly match TF classifications 

based on DBDs. This is consistent with the high variability in effector domain regulatory 

activity, localization within the TF amino acid sequence, biophysical features observed even 

within TF families (Figures 2 and 3), and the modular organization of TF protein domains.

Next, we evaluated whether effector domains from different clusters preferentially interacted 

with specific cofactors, and thus may share mechanisms of action. Although interactions 

between effector domains and cofactors have not been comprehensively determined, we 

leveraged protein-protein interactions from BioGRID, HuRI, and Lit-BM (Luck et al., 2020; 

Oughtred et al., 2021; Rolland et al., 2014) between cofactors and the TFs containing 

the effector domains. As expected, some coactivator “hubs” such as CREBBP, EP300, 

and RB1, as well as general TFs such as TAF1 and TAF2, preferentially interact with 

AD-containing clusters, while co-repressor “hubs” such as RNF2 and SIN3A preferentially 

interact with RD-containing clusters (Figures 6 and S6). Other cofactors are more specific 

to certain effector domain clusters. For example, mediator complex subunits and nuclear 

receptor coactivators preferentially interact with clusters 5 and 8 which are enriched in 

nuclear receptors (Figure 6). Similarly, co-repressor TRIM28 interacts with TFs from 
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clusters 13 and 20 which are highly enriched in KRAB-domain-containing ZF-C2H2, as 

has been previously reported (Friedman et al., 1996), whereas heterochromatin protein 

CBX5 preferentially interacts with TFs from cluster 20 (Figure 6). Several cofactors are 

shared between activation and repression domain clusters (e.g., HR, SF1, and HDAC1) 

(Figures 6 and S6). This may be because several effector domains can interact with 

both coactivators and corepressors which modulate transcriptional activity under different 

conditions. However, some of these cases may be related to the fact that PPIs are considered 

at the whole protein levels and 115 TFs contain both activation and repression domains.

Perspective and future directions

Most studies of effector domains have been conducted on individual TFs showing effector 

domains are generally acidic, disordered, and hydrophobic. However, many effector domains 

are not defined by these general rules making it difficult to predict, identify, and classify 

effector domains and elucidate their functions. Recently, high-throughput studies have been 

used to identify effector domains by tiling through protein sequences genome-wide and to 

determine the amino acid features responsible for transcriptional activity. However, effector 

domains that belong to different clusters and that interact with different cofactors may be 

governed by different sequence features, without a one-rule-fits-all. Further, since effector 

domain activity may differ between cell types or may be influenced by ligands and post-

translational modifications, many effector domains cannot be determined or characterized in 

single screens. Although our resource is the most comprehensive to date, this only represents 

~35% of all human TFs. Further studies, using high-throughput approaches in different 

cell types and conditions, are needed to identify and characterize effector domains for the 

remaining ~1,000 human TFs. It is yet unclear how many of these TFs will contain effector 

domains, as several TFs are known to lack effector domains and affect transcriptional 

activity through dimerization or interactions with other TFs.

TFs often have more than one effector domain. In most cases, how they functionally interact 

with each other, cofactors, or the mediator complex remains to be determined. Indeed, 

most PPIs between TFs and cofactors have been determined for full length TFs, rather 

than effector domains, limiting our understanding of the molecular mechanisms by which 

individual or sets of effector domains in a TF function. Systematic interaction mapping 

assays such as yeast two-hybrid, proximity ligation, and affinity-purification followed by 

mass spectrometry are needed to identify cofactor-effector domain interactions in order to 

increase our understanding of the mechanisms of action of effector domains. This, coupled 

with high-density mutational screens and structure-based modeling, will also provide 

insights into the molecular consequences of disease mutations in effector domains.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effector domain identification, characterization, and function.
(A) Effector domains can affect gene expression by interacting with cofactors and the 

preinitiation complex, by directly modifying histone tails, and by leading to changes in DNA 

methylation states. The activity of some effector domains can be affected by interactions 

with ligands or by post-translational modifications.

(B) Experimental approaches to identify and characterize effector domains. TF fragments 

or pool peptide libraries comprised of tilling, random, or mutated peptides are fused to an 

exogenous DBD (e.g., Gal4, Gcn4, LexA, or rTetR DBDs). Transcriptional activity is often 

measure using a reporter gene. In the case of high-throughput peptide screens cells with 

different levels of reporter activity are sorted and the enrichment for sequence coding each 

peptide is determined by next generation sequencing (NGS).
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Figure 2. Distribution of effector domains.
(A) Number of TFs per family with annotated effector domains classified as TFs-AD (if they 

only have ADs annotated), TFs-RD (if the only have RDs annotated), and TFs-Bif (if they 

have both ADs and RDs or bifunctional domains annotated). Only TF families with 3 or 

more annotated TFs are included. The pie chart indicates the number of TFs in each class. 

The histogram indicates the amino acid length distribution for ADs (blue) and RDs (red).

(B) Relative position of ADs, RDs and DBDs within the TF amino acid sequence (from N- 

to C-termini). TF families are indicated by the left bars. Within each family TFs are sorted 

based on whether they are classified as TFs-Bif, TFs-RD, or TFs-AD (indicated by the right 

bars). Within each class, TFs are sorted by the relative position of the effector domain in the 

TF sequence.

See also Figure S1.
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Figure 3. Sequence features of effector domains
(A-B) For each activation domain (A) and repression domain (B) the charge density 

(charge / amino acid length), hydrophobicity, disorder (determined using AlphaFold), 

and phosphorylation density (number of phosphorylation events / amino acid length) are 

indicated.

See also Figures S2 and S3.
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Figure 4. Effector domains affected in TF proteoforms
(A) Schematic of different proteoforms with effector domain (ED) affected, DBD affected, 

or with both domains affected o unaffected. Purple rectangles indicate ED coding exons; 

yellow rectangles indicate DBD coding exon; purple and yellow ovals indicate the ED and 

DBD, respectively.

(B) Fraction of proteoforms with effector domain (ED), DBD, or both domains affected. TFs 

are binned based on the number of alternative proteoforms.

(C) Comparison between the number of proteoforms where the effector domain (left) or 

the DBD (right) are affected versus the total number of proteoforms of a TF. The size of 
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the circles indicates the number of TFs. Red circles indicate TFs with more that 50% of 

proteoforms with domain affected domain.

(D) Proportion of effector domains (ED) and DBDs where the domains are intact, have 

indels, or are deleted across proteofoms for each TF family.

See also Figure S4.
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Figure 5. Effector domain conservation and association with disease
(A) Conservation of DBDs and effector domains between human and 27 vertebrate species. 

The percentage amino acid identity of the corresponding domains between the human 

sequence and the sequence in the indicated species is shown in shades of gray. The 

evolutionary relation among species is indicated as a phylogenetic tree.

(B, D, F) Density distributions of the number of mutations in the indicated domains per 

coding sequence length for variants reported in gnomAD (B), and mutations reported in 

ClinVar (D) and COSMIC (F).

(C, E, G) Correlation between the density of mutations in DBDs and effector domains in 

gnomAD (C), ClinVar (E), and COSMIC (G). Purple and yellow dots indicate TFs with 

significant enrichment of mutations in effector domains and DBDs, respectively. Significant 

TFs were identified by a Fisher’s exact test followed by BH correction and q-value < 0.1 as a 

cutoff. The numbers above and below the diagonal indicate the number of purple and yellow 

dots, respectively.

(H) Fraction of mutations in the DBD and effector domain for each indicated TF that have 

been detected in the indicated cancer types. Each column sums one.
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(I) Schematic showing that mutations in effector domains and DBDs could lead to different 

diseases.

See also Figure S5.
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Figure 6. Classification of effector domains
Effector domains were classified into 20 clusters based on biophysical features, amino acid 

enrichment, and sequence similarity. The number of effector domains per cluster is indicated 

in shades of orange. The charge density, hydrophobicity, and disorder were determined as in 

Figure 2. The length in amino acids is indicated in shades of red. The fractions of effector 

domains per cluster enriched in each amino acid, TF family, or interacting with a cofactor 

are indicated in shades of gray. Cofactors interacting with at least 20% of TFs in at least one 

cluster are shown.
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See also Figure S6.
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