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Abstract

Recurrent neural networks of spiking neurons can exhibit long lasting and even persistent activity. 

Such networks are often not robust and exhibit spike and firing rate statistics that are inconsistent 

with experimental observations. In order to overcome this problem most previous models had 

to assume that recurrent connections are dominated by slower NMDA type excitatory receptors. 

Usually, the single neurons within these networks are very simple leaky integrate and fire neurons 

or other low dimensional model neurons. However real neurons are much more complex, and 

exhibit a plethora of active conductances which are recruited both at the sub and supra threshold 

regimes. Here we show that by including a small number of additional active conductances we can 

produce recurrent networks that are both more robust and exhibit firing-rate statistics that are more 

consistent with experimental results. We show that this holds both for bi-stable recurrent networks, 

which are thought to underlie working memory and for slowly decaying networks which might 

underlie the estimation of interval timing. We also show that by including these conductances, 

such networks can be trained to using a simple learning rule to predict temporal intervals that are 

an order of magnitude larger than those that can be trained in networks of leaky integrate and fire 

neurons.
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Introduction

Neurons in the Brain exhibit long-lasting activity that outlasts the typical intrinsic time 

constants of single neurons by orders of magnitude (Fuster & Alexander, 1971; Goldman-

Rakic, 1995). In some experimental settings, recorded neurons also exhibit long-lasting 

activity that terminates at intervals with a behavioral significance such as the expected 

timing of reward (Huertas et al., 2015; Shuler & Bear, 2006). Such experimentally observed 

behaviors can be accounted for by networks of interacting neurons, and reverberations 

within these networks can account for the long-lasting time constant of neuronal activity. 

Such patterns of behaviorally relevant neural dynamics can be learned from examples in 

experimental settings. Various models have been proposed over the years to demonstrate 

how such recurrent networks can account for long lasting activity (Compte et al., 2000)

(Renart et al., 2004), and for learning temporal intervals (Gavornik & Shouval, 2011; 

Gavornik et al., 2009). Working memory models have often relied on synapses with slow 

time constants such as NMDA receptors (Wang, 1999). Such slow synapses were assumed 

because networks with faster, AMPA like synapses typically exhibit very high firing rates 

in the self-sustaining persistent activity state (Gavornik & Shouval, 2011; Wang, 1999), and 

these activity levels are much higher than those observed experimentally. If the network 

activity is not self-sustained, but receives external input it can be bi-stable and sustain 

realistic firing rate statistics in the active state even with fast time constants (Renart et al., 

2006). There is some evidence that there is a high concentration of NMDA receptors in 

prefrontal cortex, where many experimental results of persistent activity have originated 

(Wang et al., 2013). However, even if there is a high concentration of NMDA receptors, it 

still needs to be shown that these receptors, and not the faster AMPA receptors are the ones 

that are modified in order to generate these plastic recurrent networks. Similarly, in networks 

that learn to predict interval timing, slow synaptic conductances have been used as well 

(Gavornik & Shouval, 2011; Gavornik et al., 2009), in order to avoid unrealistically high 

firing rates. Additionally, networks with fast, AMPA-type, receptors with realistic variability 

are hard in practice to train in order to generate temporal intervals that last for more than a 

few hundred milliseconds. These prior observations and the impact of AMPA-type receptors 

on network dynamics are explained in more detail below and in figure 1.

Although recurrent networks are the most prominent theory for long-lasting neural activity, 

an alternative theory with experimental support is that positive activity feedback loops of 

intrinsic conductances within single cells are able to generate persistent activity (Egorov et 

al., 2002; Fransén et al., 2006), and such mechanisms can also be generalized to neurons 

that can learn to predict interval timing. The primary experimental support for such active 

intrinsic conductances, and their contribution to persistent activity arises from Entorhinal 

slices, although similar channels are shown to exist in other regions including thalamus 

(O’Malley et al., 2020). Currently, most evidence that intrinsic conductances play a role in 

persistent activity arises from in vitro studies.
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In this paper, we set up to show that a recurrent network of neurons with active intrinsic 

channels(Fransén et al., 2006; Tegnér et al., 2002), and with fast synapses, is able to generate 

persistent activity with low firing rates, and to robustly learn temporal intervals that last 

more than 10 seconds. In a sense this is a hybrid of the two previous approaches, the 

positive feedback loop observed in single cells is embedded within each neuron of a network 

model. Single cells within this network are unable to generate sufficient persistent activity 

alone, but the intrinsic mechanism contributes to long-lasting activity in combination with 

the recurrent connections. In such a network, the plasticity that generates these ensembles 

with long-lasting activity is synaptic plasticity rather than plasticity of the intrinsic channels 

themselves. In this model, the intrinsic activity feedback loop, acts as a conditional slow 

time constant; this mechanism is typically turned off at rest, but gets activated by sufficient 

feedforward input or recurrent network activity. With this hybrid model, networks with fast 

synapses are able to generate persistent activity while exhibiting biologically plausible firing 

rates. Also, the intrinsic mechanism allows recurrent networks to be trained robustly to 

predict interval timing over larger temporal intervals, while exhibiting biologically observed 

firing rates. The active intrinsic conductnaces generate a conditional slow time constant, 

which is turned on only when the neuronal activity is sufficiently high. This conditional 

slow time constant allows the network to have a fast on rate for these states together 

with persistent or very slowly decaying activity. In contrast, in network models with slow 

synapses, the convergence to the persistent state is also slowed down when synaptic time 

constants are long.

2. Network dynamics

2.1 Dynamics of simple recurrent networks with leaky integrate and fire neurons

Here we display the dynamics of simple networks composed of excitatory leaky integrate 

and fire (LIF) neurons with no additional intrinsic channels. We use this model to illustrate 

some of the problems such models encounter in accounting for the experimentally observed 

results when the synaptic conductances are fast. Such observations have promoted previous 

models to be based on slow synaptic conductances (Wang, 1999).

Network dynamics, in this model, are determined by the strength of the recurrent 

connections within the network. Figure 1a, shows the dynamics of a network with fast 

membrane and synaptic dynamics (τm = 20ms,τs = 25ms). Changes in the magnitude of 

recurrent weights affects the peak of the network activity, the plateau firing level and the 

duration of the delayed activity (Fig. 1a). For small synaptic weights, the network’s activity 

decays quickly (green lines), almost indistinguishably from the dynamics of a single cell. 

As synaptic weights increase (gray lines), the networks dynamics slows down significantly 

exhibiting a low transient that eventually decays. Such dynamics can be used to represent 

learned interval times (Gavornik & Shouval, 2011; Gavornik et al., 2009). Peak network 

activity rates in such a case are very high (Fig. 1a,b), more than 150 Hz. Such high firing 

rates are inconsistent with experimental findings. As the recurrent weight increase further, 

firing rate form a plateau (Fig. 1a, Black and red lines). At these weights, the network is 

bi-stable with two possible stable states; a zero or low firing-rate state called the DOWN 

state, and a state with rapid firing called the UP state. For these parameters, all persistent 
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activity states have firing rates that exceed 180 Hz. Increased synaptic weights result in 

higher firing rates (Fig 1a, red lines). The black curve in figure 1a depicts network dynamics 

for a weight (Wc) which is just above criticality, this UP state has the minimal firing rate 

possible for these parameters. Note that we have simulated networks with such high firing 

rates, not because these results are similar to experimental observations, but precisely in 

order to show that under these assumptions networks do not replicate experimental results.

The firing rates of the UP state depend on the synaptic time constant τs. In figure 1b we 

show how the firing rate of the UP state depends on τs in the range of 20–100ms (Fig. 1b). 

For all synaptic time constant values, the network exhibited the same type of qualitative 

behavior as the network with fast (τs = 25ms) synaptic dynamics in figure 1A. However, 

as τs increased, the critical bi-stable firing rate monotonically decreased from 188Hz at 

τs = 20ms to 100Hz at τs = 100ms (Fig. 1b). Even the firing rates for a slow synaptic 

time constant of 100ms are high compared to the activity levels typically observed in brain 

circuits (Goldman-Rakic, 1995). We have previously obtained similar results analytically 

with a mean-field theory (Gavornik & Shouval, 2011).

We have been able to tune the weights of the model in order to generate transient activity 

that lasts for a few seconds (Fig 1a,c). However, with a finite resolution of synaptic 

efficacies and with neuronal noise, attaining such large durations is not practical. We have 

explored this slow transient regime, by gradually increasing the synaptic efficacies, and for 

each efficacy level noting the time it takes the network to decay. We have defined the decay 

time (T) as the time it takes the network to return to a firing rate of 5Hz. In figure 1D 

we show how the network’s decay time depends on the synaptic efficacy, for two synaptic 

time constants τs = 25ms (solid line), and τs = 100ms (dashed line). The X axis is the 

weight divided by the critical weight for obtaining bi-stability. For both time constants these 

curves start very flat, and as they approach the critical weight value, they become very 

steep, however the curve for the 100ms time constant is less steep. These steep curves imply 

that very small changes in synaptic weights result in large changes in the network decay 

times, and small fluctuations can even cause the network to become bi-stable. Using these 

deterministic spiking networks, with no added noise, we were not able to produce delayed 

activity that last longer than 3000ms for τs = 25ms, and to 5000ms for τs = 100ms, and this 

is despite having nearly infinite resolution in setting synaptic efficacies. With minimal limits 

on the resolution of synaptic efficacies and with minimal noise it is extremely hard to code 

for durations longer than 900ms and 1600ms decay times, for these different time constants 

respectively. These results are consistent with our earlier studies that maximum temporal 

representations were limited to 1–2 seconds (Gavornik and Shouval, 2011).

In previous models a mix of AMPA receptors with fast time constants and NMDA receptors 

with slow time constants have been used (Compte et al., 2000; Tegnér et al., 2002; 

Wang, 1999). Our observation that slow synaptic time constants are necessary to obtain 

experimentally realistic firing rates is equivalent to the previous observations that a high 

NMDA to AMPA ratio is necessary for obtaining realistic firing rates in the UP state. Simply 

adding recurrently connected inhibitory neurons does not generate a self-sustaining bi-stable 

network with realistic firing rates, and external currents must be added to produce bi-stable 

networks where the UP state has low firing rates (Renart et al., 2006).

Aksoy and Shouval Page 4

J Comput Neurosci. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 Single cell model with positive-feedback active currents

Besides the models that account for persistent activity by reverberation in networks with 

recurrent connections, there is also experimental evidence and theoretical studies (Egorov 

et al., 2002; Fransén et al., 2006), (O’Malley et al., 2020; Shouval & Gavornik, 2011) that 

show persistent activity and slowly decaying activity can be accounted for by a feedback 

loop of different intrinsic conductances. Specifically, the experimental data suggests models 

in which calcium activated non-selective cation channels together with voltage dependent 

calcium channels create an intracellular positive feedback loop that keeps the cell firing for 

an extended time period.

The basic conductance based LIF model describes the membrane potential within a 

single compartment with a leakage and an input current. In this section we add to the 

single cell model active intrinsic conductances that control the subthreshold depolarization, 

but spikes in this model are still initiated by threshold crossing and not by voltage 

dependent conductances as in the Hodgkin-Huxley formulation. Each neuron consists of 

excitatory input channel, high voltage activated (HVA) calcium channel, non-selective cation 

conductance (ICAN), and leakage conductance (Fig. 2a). We call this type of neuron an active 

integrate and fire neuron (AIF) (See Methods, Section 3 for details). The neuron receives 

synaptic input from the external population and generates action potentials, as the membrane 

voltage exceeds the threshold value. With each spike, the HVA open up briefly and allows 

calcium flow into the cell. These currents increase intracellular calcium levels to activate 

calcium dependent non-selective cation channels (ICAN) (Fig 2a).

The dynamics of a single neuron following a transient input of 100ms are shown in figure 

2b. The initial external activation of the cells causes action potentials which generate 

activation of calcium currents through HVA channels (Fig 2b, center), increased calcium 

opens the ICAN channels (Fig 2b bottom) which causes sufficient cellular depolarization to 

generate additional action potentials. This positive feedback loop generates sustained firing. 

This intracellular feedback loop maintains the firing of the neuron, but at these parameters, 

the compensation of this loop is slightly less than the leak current, so that cells activity 

slowly dies down. The effect of ICAN channels on the cellular dynamics depends on its 

maximum conductance, denoted as gmax (Fig. 2c). As gmax is increased, the duration of 

sustained activity is increased. For larger values of gmax the single cell becomes bi-stable 

(Fig. 2c, red). Here we propose to study the impact of including these active conductances 

in single cells within a network. We will add them with maximal conductances that are 

subthreshold for single neuron bi-stability. We hypothesize that including these will add 

a conditional very-slow time constant to the neurons which may both produce network 

bi-stability at much lower firing rates as well as increase the range of transient activities to 

encode temporal intervals.

2.3. Network dynamics with AIF model

In this section we demonstrate the effects of using AIF neurons within a recurrent network. 

The network conserves the same input parameters and network structures of the network of 

LIF neurons. See the methods section for details.
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Simulations of recurrent networks of AIF neurons with different recurrent weights are seen 

in figure 3a. The plateaus are maintained for extended time periods, much longer than those 

of the LIF networks, even though the synaptic time constant is set to 20ms. Note that with 

this network we are able to obtain much larger decay times than we can for the LIF model, 

and that the firing rates are much lower and comparable to those recorded experimentally. 

In the LIF network, even in the absence of additional noise, we were unable to obtain decay 

times larger than ~ 2400ms (Fig. 1a), with the AIF network we can obtain a decay time of 

over 20,000 ms. For sufficiently large recurrent efficacies, the network becomes bi-stable, 

that is the plateaus are maintained indefinitely, but still with moderate firing rates.

For every set of single-neuron parameters, the critical value of recurrent weights at which 

bi-stability is obtained is different. The firing rates of the bi-stable network just above 

criticality depend on gmax, the maximal conductance of the ICAN channels. When gmax is 

set to zero, the impact of the ICAN currents are eliminated and the network behaves like the 

LIF model. As gmax is increased, the minimal UP state firing rate of the bi-stable network 

decreases monotonically (Fig 3c), reaching values that are lower than 40 Hz, for larger 

values of gmax. These values are consistent with stable firing rates observed experimentally 

(Fuster & Alexander, 1971; Goldman-Rakic, 1995; Shuler & Bear, 2006) and are lower than 

rates obtained with LIF neurons even when long synaptic time constants are used (Fig. 1a). 

Note, that for all values of gmax used here, the single cell is not bi-stable.

To understand the AIF-network’s ability to represent larger decay times, we analyzed the 

relationship between the recurrent normalized weights and the network decay time, for AIF 

networks with different values of gmax (Fig. 3d). The weights are normalized to the critical 

value of weights at which the network becomes bi-stable. When gmax = 0, which is identical 

to the LIF model (Fig 1d), a steep T vs. W curve is obtained (Fig. 3d, black line). The steep 

curve implies that relatively small changes in W lead to very large changes in T. As gmax is 

increased the curves become progressively less steep, and small changes in W result in more 

moderate changes, and therefore the network is able to represent larger decay intervals.

This framework described here is qualitatively robust to many variations in the scheme. 

As shown in the examples in figure 4a networks with many different sizes and degrees of 

sparsity can exhibit the similar dynamics given and appropriate synaptic efficacy parameter. 

Additionally, weight matrixes do not have to have identical non-zero elements. In figure 4b 

we compare networks in which all non-zero elements have the same value (solid lines) to 

networks in which weights were chosen from a uniform distribution with the same mean 

but a large variance (dashed lines). If we define the non-zero weights in the uniform sparse 

network as wuni, then in the randomized network the weights are chosen from a uniform 

distribution with the range [0 2wuni]. Network dynamics slightly differ from run to run due 

to noisy input spike trains, and random instantiation of the sparse connectivity matrixes. 

Network dynamics with identical non-zero weights and random weights were similar.

3. Learning temporal dynamics

We have shown that recurrent networks with AIF neurons significantly outperform LIF 

networks in terms of the range of temporal intervals they can represent. Here we show, using 
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a previously described learning rule (Gavornik et al., 2009; Shouval & Gavornik, 2011) 

that AIF neurons can learn to represent these temporal intervals from stimuli paired with 

a delayed reward. The learning rule is based on the idea of reward dependent expression 

(RDE) of synaptic plasticity. The RDE rule works by generating Hebbian temporal traces, 

that are converted into changes in synaptic efficacies only when a reward is provided. These 

traces solve the temporal credit assignment over a range of seconds. The rule also stops 

changing efficacies once the target learning is achieved (Gavornik et al., 2009; Huertas et 

al., 2015; Shouval & Gavornik, 2011). When learning is complete, the network is expected 

to predict the timing of expected reward. We have defined learning as successful when the 

predictedtime is within a 15% range of the target time (|Perr | < 15%). The prediction error, 

Perr is defined as: Perr = < 100 * (Ep/Trew) >; where Ep is the difference between the network 

decay time T, and the reward time Trew, and the < > denote running average over a set 

number of trials.

We have compared the ability to train LIF and AIF networks with RDE over a large range of 

target times (Fig. 5). Each subplot of figure 5 shows the network decay time T, as a function 

of the training trial number. On the top (Fig. 5a−c) this is shown for the LIF model, and 

on the bottom (Fig. 5d−f) for the AIF model. Initial weights at each subplot were not zero, 

and therefore the initial T, is not zero either. During training, the duration of the network 

activity increases for each trial until the reward time is reached and stabilizes close the 

target. The fluctuations around the target reward line are used to calculate Perr (red bar). If 

the fluctuations are high in when divided by target delay period (|Perr| > 15%, the training is 

deemed unsuccessful.

Training for target times of 600 and 900ms using the LIF model is successful (Fig. 5a,b). 

As the delay is increased from 600 to 900ms, the fluctuations increase from 40ms to 

150ms, giving 6.7% and 15% prediction error (Perr), respectively. The network is unable 

to sufficiently stabilize its synaptic efficacy values and dynamics when attempting to learn 

longer delays. For a target decay time of 1100ms, we obtain Perr = 40%, significantly above 

the target fluctuation of 15% that we have defined as our threshold for successful training. In 

contrast we were able to successfully train the AIF for up to 16,000ms delayed reward (Fig. 

5d,e). For 8,000ms and 16,000ms target decay times, the prediction errors were 2.5% and 

9.4% Perr, respectively (Fig. 5d,e). For a 20,000ms target, the network had a prediction error, 

Perr of 19%, slightly above our target cutoff error.

Apart from the ability to represent much longer temporal intervals, recurrent AIF networks 

also exhibit firing rate dynamics, and specifically firing rates that are more consistent with 

experimental results.

In figure 6, we compare the temporal firing rate patterns for the LIF model (top) and the AIF 

model (bottom) which are trained to different target reward times, shown with green arrows. 

Trained LIF networks result in unreasonably high firing rates. For longer duration targets, 

these exceed 100Hz (Fig. 6a); rates that are not characteristic of experimentally observed 

results. In contrast, the levels of the transient plateaus for the AIF model are between 20–

30Hz (Fig 6b) for every reward delay for which training was successful. Such rates are 

consistent with experimental results (Namboodiri et al., 2015; Shuler & Bear, 2006).
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4. Methods

4.1 The Network structures

The goal of this study is to examine the impact of intrinsic conductances, here high voltage 

activated calcium channels, on network dynamics and synaptic plasticity. We first analyze 

the behavior of the network built up with basic LIF neurons, investigate the capacity of the 

model for learning and looking at the network’s response for a delayed reward task. Later, 

we implement the gcan conductance (Eq. 11) to represent the AIF neuron model and perform 

the same analysis keeping the previous parameters identical. Same network structure is 

preserved for both models to have a solid comparison.

Our goal here is to specifically elucidate the role of intrinsic conductances, we have 

therefore chosen the simplest network form in order to reduced unnecessary complexity. The 

network is composed of randomly and sparsely connected, (N = 1000), excitatory neurons, 

with a sparsity of 10%. The network gets activated through a transient feedforward Poisson 

input “ Iext” (Eq. 2) initiated from an outside population of 1000 neurons. The connections 

among those two populations are sparse with an all-to-all 10% connectivity. The membrane 

potential of each post synaptic neuron, i, is described by conductance based leaky-integrate 

and fire model. In the absence of the external input, the activity of the network is maintained 

through the recurrent connections. The duration of the delay period is correlated with the 

summation of the synaptic transmission and intrinsic conductance if activated.

We also tested robustness to this connectivity scheme. In figure 4a we changed the network 

size between N = 400 to N = 2000, and varied the sparsity between 12.5% to 50%. In figure 

4b we chose non zero weight matrix elements from a uniform distribution, with the same 

mean of the networks with the fixed non-zero matrix elements. If the non-zero weight matrix 

elements of the non-random matrix had a value wuni, then in the randomized matrixes we 

chose values in the range [0 2wuni], which have the same mean.

The details of the basic LIF based model and AIF model networks are explained in the 

following sections.

4.2 LIF neurons and recurrent network

The membrane voltage of a single neuron is constructed by (a) the leakage term, (b) the 

excitatory feedback current and (c) feedforward input; Ileak, Irec and, Iext, respectively. 

(Eq. 1) As the membrane potential reaches the threshold level, the neuron fires an action 

potential.

Cm
d
dtVi t = Ii

leak t + Iij
rec t + Iij

ext t (1)

(a) The leakage term Ileak, represents the role of the summed ion channels and pumps 

dragging the voltage down to resting membrane potential, EI. (Eq. 2)

Ii
leak = − gleak Vi t − Ei

I (2)
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(b) Iext” is the input received from the external population (Eq. 3). The input conductance 

“ gext” is dynamic, modulated by instant synaptic activity levels, Si
ext, and the synaptic 

strengths “Ji
ext t ”of each input node. (Eq. 4) At each time step, synaptic transmission “Si

ext”, 

is updated at the post synaptic neuron, for the active nodes. Each presynaptic spike adds to 

the synaptic activity by “ρs” of the available post synaptic receptors, 1 − Si
ext t . (Eq. 5)

Ii
ext = − gi

ext Vi t − Ei
ext (3)

gi
ext = Si

ext t Ji
ext t (4)

d
dtSi

ext t = − 1
τs

Si
ext t + ρs 1 − Si

ext t ∑j
nδ t−tj (5)

(c) Each neuron receives an excitatory feedback current, Irec (Eq. 6), from approximately 

10% of the recurrently connected network. As the presynapticneuron fires an action 

potential at time tj, the conductance of the post synaptic neuron, gi
rec (Eq. 8), is enhanced as 

a consequence of activated synaptic transmission, “Srec” (Eq. 7).

Ii
rec = − gi

rec Vi t − Ei
rec (6)

d
dtSi

rec t = − 1
τs

Si
rec t + ρs 1 − Si

rec t ∑j
nδ t−tj (7)

gi
rec = Si

rec t Ji
rec t (8)

We use different time constant of recurrent connections from 20–100 ms. In the slow end of 

this range synaptic conductance has a value similar to that of NMDA receptors, however we 

have not incorporated here the voltage dependence of NMDA receptors. Note also that these 

synaptic efficacies saturate at higher presynapticfiring rates due to the 1 − Si
rec t  in the 

dynamical equations of synaptic efficacy. Addition of the limiting term is methodologically 

sound because there is a maximal level of receptors and bound receptors cannot be bound 

again. Saturation is often ignored for receptors with fast time constants because at moderate 

firing rates fast receptors are far from saturation. Since we vary our receptor time constants 

over a large range, and since we simulate networks that attain high firing-rates which are 

not experimentally realistic we found it simpler to include saturation in all of our synaptic 

conductances.
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4.3 AIF neuron model

For the AIF neuron model, in addition to the leakage term, feedforward and feedback input, 

each neuron is implemented with both calcium dependent non-selective cation current, Ican, 

and high voltage activated (HVA) calcium channels. (Eq. 9) (Fig. 2a)

Cm
d
dtVi t = Ii

leak t + Iij
rec t + Ii

can t + Iij
ext t (9)

The HVA calcium conductance is active for depolarized membrane voltages of −20mV and 

higher(Lacinova, 2005). This condition is met only during the fast action potential window 

since the threshold for generating an ction potential is set to −55mV. With each action 

potential, ρ amount of calcium fuses into the cell, and the intracellular calcium concentration 

is calculated by the Equation 10.

d
dt Ca t = − Ca

τCa + ρCa∑j
nδ t−tj (10)

The intracellular calcium concentration level, [Ca], modulates the dynamics of the non-

selective cation conductance, “gcan ”. As seen in figure 2b, gcan gets activated during the 

transient input window, reaches to its maximum value and stays open until the calcium 

concentration gets low. The gcan conductance is represented by a hill function (Eq. 11), 

where gmax is the maximum conductance limit the Ican channels can hold (Eq. 12).

gi
can Ca = gmax

Ca m

Ca m + θCa
m (11)

Ii
can t = − gi

can Vi t − Ei
can (12)

The addition of the Ican currents creates an intracellular feedback mechanism where the 

activity of the cell activates the Ican conductance and the Ican currents enhances the cellular 

activity in return.

4.4 The learning rule

The plasticity rule used here is the reward dependent expression rule (RDE) which has been 

shown to solve the temporal credit assignment problem (Gavornik et al., 2009; Huertas et al., 

2015; Shouval & Gavornik, 2011).

In order to implement this rule, a moving temporal average of the firing rate for neuron “i” is 

calculated by: τr
d
dtRi t = − Ri t + ∑kδ t−ti,k , where τr is the width of the exponential time 

window, and ti,k are the times of the kth spike in the ith neuron.

Using this variable, a Hebbian is calculated for each recurrent synapse between neuron “i” 

and “j” such that:

Aksoy and Shouval Page 10

J Comput Neurosci. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hij t = Ri t Rj t (13)

In order to implement RDE we calculate synaptic eligibility traces: Lij
p t  by the equation:

τp
d
dtLij

p t = − Lij
p t + Hij t (14)

These eligibility traces are only converted to long lasting synaptic efficacies, “Lij” (Eq. 15), 

when a reward (r0) is delivered. The value of r0 is the target activity level at time of reward, 

and in order to stop learning when this value is attained the effective reward used is:

(r0(t) − Ri(t)), where Ri(t) is the firing rate of the i’th neuron.

d
dtLij t = ηLij

p t + r0 t − Ri t (15)

4.5 Parameters

S = 10%

N = 1000

Cm = 1μF

Ei
I = 0mV

Ei
ext = 55mV

Ji
ext = 0.021mS

τs = 20ms

ρs = 1/7

Ei
rec = 55mV

Ji
rec = 0mV

τCa = 100ms
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ρCa = 0.0787

Gcan = 0.0135 S

θCa
m = 1

m = 4

Ei
can = 80mV

τr = 50ms

τp = 5000ms

r0 = 4.5Hz

η = 10−6 to 10−9

In the simulations in figure 4, in which we tested robustness, we changed these parameters, 

and these specific changes are indicated in the text and the figures.

5. Discussion

Single neurons are highly complex and they possess many intrinsic active conductances that 

contribute significantly to the function of neural circuits. In contrast, many theoretical circuit 

models ignore single neuron complexity and use instead highly simplified models of the 

single neurons. This simplified approach is justified because it helps understand the role of 

the circuit itself, but it might not faithfully represent the properties of a circuit composed of 

more complex neurons. Generally, intrinsic properties of single neurons can and do affect 

circuit dynamics (Jin et al., 2007; Marder et al., 1996). In this paper we demonstrate how 

a specific set of intrinsic conductances can affect the dynamics of bi-stable and slowly 

decaying networks.

Recurrent networks can exhibit bi-stability, in which the network activity can be either in a 

low or high activity state which lasts indefinitely (Compte et al., 2000). Networks with the 

same type of structure, but at parameters that are subcritical for bi-stability can exhibit slow 

transient dynamics(Gavornik et al., 2009). For both of these cases slow synaptic dynamics, 

on the order of 100ms are typically assumed for the networks to quantitively approach 

physiological measurements of firing rates and possible decay times, and in some systems 

such long time-constants might be justified (Wang et al., 2013). In this paper, we examined 

if the addition of specific active conductances to the single neuron model can improve the 

circuit behavior, in the absence of slow synaptic conductances. We chose a combination 

of ICAN and voltage gated calcium channels that form a subthreshold positive feedback 

loop, which acts as a conditional slow intrinsic time constant. We show that by including 

these channels, we improve significantly the agreement between the network performance 

and experimental results. With active intrinsic conductances, the bi-stable network achieves 

Aksoy and Shouval Page 12

J Comput Neurosci. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bi-stability at much lower firing rates than obtained by a network with fast conductances, 

and even lower than the networks with NMDA-like slow synaptic time constants. These 

results are in much better agreement with firing rates observed experimentally (Fuster and 

Alexander, 1971; Goldman-Rakic, 1995). We have also shown that the slowly decaying 

networks have plateaus at much lower firing rates, consistent with experimental results 

(Namboodiri et al., 2015; Shuler & Bear, 2006). In this subthreshold mode, the network 

can realistically exhibit decays of up to 16 seconds, much larger than can be accomplished 

with networks of IAF neurons with fast or even slow synaptic time constants alone. This 

network can also be trained, with a biophysically plausible learning rule, to decay at short 

or long intervals over a much larger range than networks with relatively slow synaptic time 

constants (Gavornik & Shouval, 2011; Gavornik et al., 2009). We have also shown that these 

networks with AIF neurons are robust to network size, degree of sparseness, and randomness 

in the recurrent connectivity matrix. Moreover, they exhibit biologically plausible spike 

rasters.

The single cell mechanisms assumed here are inspired by previous experimental papers 

that observed persistent activity in single cells in various brain regions (Egorov et al., 

2002; Fransén et al., 2006; O’Malley et al., 2020; Rahman & Berger, 2011) and by 

the dependance of this persistent activity on non-specific cationic channels and calcium 

currents, as identified in those papers. This work is also based on previous single cell 

models of such observations (Egorov et al., 2002; Fransén et al., 2006; Shouval & Gavornik, 

2011). However, other experiments in slices (Winograd et al., 2008) and cultures (Volman 

et al., 2007) have indicated alternative mechanisms that can lead to slow time constants 

and to persistent or reverberating synaptic plasticity. It is quite feasible that such alternative 

mechanisms that generate effective slow time constants in single neurons or single synapses 

would produce qualitatively similar results to those described here. Indeed, it is quite likely 

that any mechanism that generates a conditional slow time constant in single neurons or 

synapses will have a similar effect on circuit dynamics. Such a mechanism is conditional 

in the sense that the slow time constant are turned on only when cellular activity exceeds a 

threshold, such that onset dynamics are still rapid, but the decay dynamics are slowed down.

revious work (Tegnér et al., 2002) has simulated recurrent networks with using more 

realistic and complex single cell models, and in that case as well a large NMDA/AMPA 

ratio is typically required. However, this paper also explored a similar mechanism to the 

one proposed here, in which ICAN channels were added to the single neurons which also 

had voltage gated calcium channels. The Tengér et al. (2002) paper has shown that the 

addition of ICAN channels lowers the minimal NMDA/AMPA ratio that is required for 

attaining bi-stability. However, this previous publication did not explicitly investigate how 

such intrinsic active condutances affect the firing rates in the active state, it did examine how 

it affects the spike statistics of the slowly decaying network, how it extends the range of 

decay times of a slowly decaying networks by an order of magnitude or how it enables a 

learning rule based on reward dependent synaptic plasticity (Gavornik et al., 2009) to learn 

decay times of up to 16 seconds.

In order to obtain bi-stability with realistic firing rates in the UP state, simply adding 

a recurrently connected inhibitory population is not a solution. Adding a population of 
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recurrent inhibitory neurons without changing other parameters will indeed reduce firing 

rates, but it will also destabilize the UP state. In order to restabilize the UP state excitatory 

conductances can be increased resulting in an increase in firing rates. Networks that 

receive external input, even with fast intrinsic time constants can exhibit bi-stability with 

lower firing rates in the UP state (Renart et al., 2006; Shouval & Gavornik, 2011). Such 

networks are not self-sustained, since attaining bi-stability depends on this external input 

(Renart et al., 2004, 2006). When such networks include balanced excitatory and inhibitory 

conductances they can also attain bi-stability in which spike count variability is high in both 

the UP and DOWN states, consistent with experimental observations (Renart et al., 2006). 

This fluctuation driven bi-stability requires fine tuning of the ratio between excitatory and 

inhibitory weights. In addition, networks that can sustain an UP state with experimentally 

realistic firing rates, due to an external current still have very steep T vs W curves, similar 

to those in figure 1c. Therefore, it is not simple to use such a model in combination with 

synaptic plasticity of excitatory weights, which alone will easily move the network out 

of the balanced, fluctuation driven state, resulting in high firing rates, and low variability. 

Moreover, such networks could not be trained to generate long-duration transients that are 

longer than those that can be learned by a self-sustaining network of LIF neurons with fast 

conductances.

Another use of recurrent networks is to produce integrator-like networks. Such networks 

have a continuum of fixed points and the activity level at each fixed point is proportional 

to the integral of an external signal. At the fixed points of such networks, the leak term 

is exactly equal to the feedback term that results from the recurrent network. The fixed 

points of such integrator networks are highly sensitive to their parameters, and very small 

variability in such parameters can result either in a decay or an explosion in network 

activity. Several approaches to overcome such ultra-sensitivity of been proposed (Goldman 

et al., 2003; Koulakov et al., 2002). Robustness in these models arises from the networks 

being composed of robust hysteretic sub-networks (Koulakov et al., 2002), or the existence 

of hysteretic subunits in dendrites (Goldman et al., 2003). Interestingly the hysteretic 

sub-networks have also been assumed to required NMDAR like receptors, either for their 

slow dynamics, or because of the voltage dependence of the NMDAR receptors (Koulakov 

et al., 2002). Similarly, the hysteretic dendritic compartments are also assumed to have 

slow time constants which are assumed to arise from slow calcium channels or NMDA 

receptors (Goldman et al., 2003). Models of sensory integration or of decision making 

also employ recurrent networks. Such models might be multi-stable and the different states 

represent decisions or sensory processing. In such models, activity in the network depends 

on a persistent external input, and they do not maintain the firing of the network solely 

due to feedback in the recurrent network, and therefore do not need to maintain as high 

a firing rate while persistently active. However, in practice such models also typically 

assume that excitatory recurrent connections are dominated by slow, NMDAR-like, synaptic 

transmission (Wang, 2002; Wimmer et al., 2015).

Although we have added some biologically realistic complexity to our neural model, real 

neurons in the brain are much more complex, they include active sodium and potassium 

conductances that are necessary for spiking and a slew of other active conductances, which 

are differentially expressed in different types of neurons. Neurons also have a complex 
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spatial structure with different types of compartments that also express different channel 

types. The neuron used here is still very simple, it is a single compartment model with only 

two additional channels expressed. Action potentials, in the model, are still simply generated 

by threshold crossing. Obviously, such a simple model is also not a faithful representation 

of real cortical neurons. We adopt the approach in order to understand what role such 

channels can play, and demonstrate that with such channels, firing statistics in networks 

have more realistic properties and the networks are more robust. By using this conservative 

approach for adding complexity, we can interpret the model and understand the possible 

role of such channels, at the possible cost of reduced biological realism. The networks used 

here are simplified in other respects as well, for example they do not include any inhibitory 

neurons. Although these recurrent networks either with LIF or AIF neurons, are composed 

of only excitatory neurons the simple addition of an unstructured, randomly connected, 

population of inhibitory neurons does not qualitatively change the network behavior. An 

addition of recurrently connected inhibitory neurons, without any other parameter changes, 

will clearly reduce the firing rates of the network, destabilize bi-stability and eliminate the 

slow decay. However, an increase of the recurrent excitatory efficacies can reestablish both 

these behaviors, without significant qualitative differences in firing rates in the UP state, 

or the shapes of the decay times vs. recurrent weight curves. In contrast, an addition of 

structured inhibitory connections can have a more profound effect on network dynamics. 

Structured connections can for example be used to generate competitive networks that can 

be used for decision making (Wang, 2002; Wimmer et al., 2015), or to generate different 

classes of neuronal dynamics within the network (Huertas et al., 2015). The analysis of such 

network dynamics is beyond the scope of the current paper.
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Fig. 1. 
Network behavior for recurrently connected leaky integrate and firing neurons (a) The mean 

firing rate of the network for increasing synaptic weights. The peak value of the firing rate 

increases for stronger couplings (green lines), and the network decays at a slower rate. At 

some critical value of recurrent weights, the network becomes bi-stable (black line) as the 

weights increase further (red lines) the firing rate of the ‘UP’ state increases. The mean 

firing rate is averaged over all neurons in the network and convolves with an exponential 

smoothing kernel as explained in the methods section. (b) Firing rate of the UP state just 

above the critical weight, for different synaptic time constants from 20ms to 100ms. (c) 
Decay time (T) increases exponentially for gradually increased synaptic weights (W). The 

shape of the curve depends on the synaptic time constant. Curves for 100ms synaptic time 

constant (dashed line) reduces the steepness of the curve slightly compared to 25ms time 

constant (solid line). The value of W is normalized by Wc; the critical value of the weight 

parameter at which the network becomes bi-stable
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Fig. 2. 
Dynamics of single AIF neuron. (a) Each neuron is built up with an excitatory 

input channel, a high voltage activated (HVA) calcium channel, a non-selective cation 

conductance, and a leakage conductance. The input elevates the membrane voltage and 

initiates firing of the neuron. With each spike calcium current flows into the cell. 

Increased levels of intracellular calcium activate the ICAN conductance. The inward cation 

current maintains the high levels of membrane voltage. This feedback loop maintains the 

persistent neural firing. (b) The dynamics of single neuron with ICAN currents following 

100ms of external stimuli. The subplots show the membrane voltage, intracellular calcium 

concentration and ICAN conductance. (c) The network is simulated for different gmax values, 

the traces are coded with matched colors for corresponding [Ca] and firing rate
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Fig. 3. 
Network behavior with AIF neurons. Dynamics of recurrent networks with AIF neurons 

with different recurrent weights (W). For small weights (green) network activity decays 

rapidly, as weights increase (gray) the network dynamics exhibits a longer plateau, and at 

sufficiently large W the network becomes bistable. Firing rates at the plateu are moderate 

(30–40Hz). (b) Raster plot of network that decays at ~3100 ms (indicated by * in 3a). Spikes 

are shown for a set of 50 neurons and from 2800–3200 ms. Spike times are irregular and 

uncorrelated across neurons. Mean firing rate of the network when the new hybrid model 

is implemented. The network activity peaks around 50 Hz and drops to a plateau level at 

about 30Hz that maintains for extended time periods. (c) The relation between the firing rate 

just above criticality of the UP state in a bi-stable network and the conductance of the ICAN 

channel (gmax). As gmax, increases the firing rate just above criticality decreases. (d) The 

T vs W curves for AIF networks with different gmax values. In the LIF network (gmax = 0, 

black) a very steep curve is obtained. As gmax is increased, the curves become progressively 

less steep. The recurrent weights in the x axis are normalized in that they are divided by Wc; 

the minimal W at which the network becomes bistable
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Figure 4: 
Robustness. Network dynamics are nearly identical for different sizes. Several examples 

shown over a range of different network sizes (N=400–2000), and levels of sparseness 

(0.125–0.62). Different combinations are color coded as shown in legend. (b) Network is 

robust to randomness in weight matrix. Three runs are shown for a weight matrix in which 

all non-zero synaptic efficacies have the same value (solid lines) and three runs in which 

the non-zero weights were chosen from a uniform random distribution (dashed lines). The 

results are quite similar
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Figure 5: 
Learning reward times using RDE in recurrent networks with and without active 

conductances. Network decay time (T) changes are plotted with respect to training trials for 

different target times and for both LIF (top plots) and AIF (bottom plots) models. Learning 

reward times with LIF model (top). For 600ms, and 900ms (a and b) learning is stable, 

but for 1100ms (c), the learning leads to large fluctuations. Inset shows weight fluctuations 

which lead to large decay time fluctuations. Learning reward time AIF model (bottom). For 

8,000ms, and 16,000ms (d and e) but for 20000ms (f), learning leads to large fluctuations. In 

all plots, thick dashed gray lines show target decay times, filled circles decay time on single 

trial, blue line is a moving average, thin dashed lines confidence interval of the decay times, 

and vertical red bar is the confidence interval used for determining if learning is stable
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Figure 6. 
Temporal dynamics in trained recurrent networks with LIF and AIF Neurons. Average 

network firing-rate activity for trained networks using LIF neurons (a) and AIF neurons (b). 
Yellow arrows represent target training times, and dashed red line represents target firing 

rate at target time. Note the different scales of the x and y axes. The dashed gray line 

illustrates the different x axis scale
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