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The pyroptosis‑related gene signature 
predicts prognosis and indicates immune 
activity in hepatocellular carcinoma
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Abstract 

Background:  Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors with poor 
survival. Pyroptosis is a kind of programmed cell death that can regulate the proliferation, invasion, and metastasis 
of tumor cells. However, the expression levels of pyroptosis-related genes (PRGs) in HCC and their relationship with 
prognosis are still unclear.

Methods:  Our study identified 35 PRGs through bioinformatics analysis that were differentially expressed between 
tumor samples and nontumor samples. According to these differentially expressed genes, HCC patients could be 
divided into two groups, cluster 1 and cluster 2. The least absolute shrinkage and selection operator (LASSO) Cox 
regression method was performed to construct a 10-gene signature that classified HCC patients in the cancer 
genome atlas (TCGA) database into low-risk and high-risk groups.

Results:  The results showed that the survival rate of HCC patients in the low-risk group was significantly higher than 
that in the high-risk group (p < 0.001). The validation cohort, the Gene Expression Omnibus (GEO) cohort, was divided 
into two risk groups based on the median risk score calculated by the TCGA cohort. The overall survival (OS) of the 
low-risk group was significantly better than that of the high-risk group (p = 0.007). Univariate and multivariate Cox 
regression analyses revealed that the risk score was an independent factor in predicting OS in HCC patients. Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that immune-related high-risk groups 
were rich in genes and had reduced immune status.

Conclusions:  PRGs play a significant role in tumor immunity and have the potential capability to predict the progno-
sis of HCC patients.
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Background
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer, and it is also the fourth most com-
mon malignant tumor, with high mortality and a high 

degree of malignancy in humans (Villanueva 2019). 80% 
of patients are in the advanced stage at the first visit and 
lose the opportunity for radical surgery (Forner et  al. 
2018; Vibert et  al. 2020). Although some HCC patients 
undergo radical hepatectomy, a high rate of postoperative 
recurrence and metastasis are still major challenges for 
the survival of patients (Anwanwan et al. 2020). In recent 
years, targeted therapy and immune checkpoint inhibitor 
(ICI) therapy have made significant progress in various 
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malignancies and achieved satisfactory efficacy in HCC 
(Greten et al. 2019; Llovet et al. 2018). However, there are 
still a considerable proportion of individuals with poor 
survival (Chen et  al. 2019; Cheng et  al. 2020). Hence, it 
is necessary to explore new targets to improve the thera-
peutic efficacy of HCC.

Pyroptosis, also recognized as inflammatory necro-
sis, is a new type of programmed cell death (Kovacs 
and Miao 2017), which has been proven to be closely 
related to the inflammatory response, sepsis, and tumor 
chemotherapy (Frank and Vince 2019). Significant find-
ings suggest that the occurrence of pyroptosis is closely 
associated with tumor immunity and can predict and 
improve the efficacy of immunotherapy (Tang et al. 2020; 
Orning et  al. 2019). In recent years, the systemic treat-
ment of ICIs based on programmed cell death protein 1 
(PD-1)/programmed cell death receptor ligand 1 (PD-L1) 
combined with targeted drugs and various local thera-
pies has made noteworthy progress in advanced HCC 
patients (Anwanwan et  al. 2020; Greten et  al. 2019). 
Therefore, it is of great importance for the treatment of 
HCC, especially immunotherapy, to identify pyroptosis-
related genes (PRGs) and analyze their roles and relation-
ship with immunity.

The gasdermin family is the main executor of 
pyroptosis and includes gasdermin-A (GSDMA), 
gasdermin-B (GSDMB), gasdermin-C (GSDMC), gas-
dermin-D (GSDMD), and gasdermin-E (GSDME, also 
known as DFNA5) (Broz et al. 2020). Pyroptosis is often 
divided into classical and nonclassical pathways. The 
classical pyroptosis pathway is activated by caspase-1 
to cleave GSDMD. Unlike the classical pyroptosis path-
way, the nonclassical pyroptosis pathway is activated by 
caspase-4, caspase-5, and caspase-11 to cleave GSDMD 
(Kovacs and Miao 2017; Opdenbosch and Lamkanfi 
2019). Furthermore, Wang’s study demonstrated that 
chemotherapy drugs induce pyroptosis through cas-
pase-3 cleavage of GSDME (Wang et  al. 2017). When 
these cleaved gasdermin proteins bind to cardiolipin, 
phosphatidylinositol, and membrane lipids, the complex 
is located in the cell membrane and forms 10 to 20 nm 
pores (Ding et  al. 2016; Feng et  al. 2018). Cell contents 
will slowly be released through membrane pores and 
trigger an amplified inflammatory response. The cells 
gradually flatten and produce 1–5 μm apoptotic vesicles 
(scorched vesicles), and the cells gradually expand until 
the plasma membrane ruptures, with the characteristics 
of nuclear condensation and chromatin DNA fragmenta-
tion (Frank and Vince 2019; Zhang et  al. 2018). Studies 
have reported that the efficient proinflammatory effect 
of pyroptosis is related to the regulation of the tumor 
immune microenvironment (Tang et  al. 2020; Orning 
et  al. 2019). Defective GSDMD expression is associated 

with a significant decrease in the number and activity of 
CD8+ T lymphocytes (Xi et  al. 2019). In addition, one 
study also proved that pyroptosis plays a crucial role in 
the antitumor function of NK cells (Zhang et  al. 2020). 
Pyroptosis plays a critical role in developing tumors and 
the antitumor process.

Caspase family proteins and Gasdermin family proteins 
are closely related to pyroptosis (Opdenbosch and Lam-
kanfi 2019; Shi et al. 2017). Therefore, analyzing the levels 
of PRGs and their relationship with the survival of HCC 
patients is of great value. Moreover, the new prognos-
tic model constructed by PRGs can provide more guid-
ance for targeted therapy. Therefore, our study intends 
to explore the predictive value of these genes by analyz-
ing the expression level of PRGs between HCC tissues 
and nontumor tissues and to investigate the correlation 
between pyroptosis and the tumor immune microenvi-
ronment to provide potential therapeutic guidance for 
HCC targeting and immunotherapy.

Materials and methods
Data sources
The RNA sequencing (RNA-seq) data of 374 HCC 
patients and their clinicopathological parameters were 
downloaded from the cancer genome atlas (TCGA) pub-
lic database. (https://​portal.​gdc.​cancer.​gov). In addition, 
we obtained RNA-seq data and clinicopathological fea-
tures from the Gene Expression Omnibus (GEO) data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/, ID: GSE10186) 
for validation.

Identification of differentially expressed PRGs
According to previous research reports, we extracted 
35 pyroptosis-related genes (PRGs) (Karki and Kanne-
ganti 2019; Man and Kanneganti 2015; Xia et  al. 2019; 
Ye et al. 2021). The expression of PRGs from the TCGA 
was analyzed to identify the differentially expressed 
genes (DEGs) between nontumor and tumor samples. 
The expression data were normalized to fragment per 
kilobase million (FPKM) values before comparison. The 
DEGs with a p value < 0.05 were considered significant 
and were marked as follows: * when p < 0.05, ** when p 
< 0.01, and *** when p < 0.001. The DEGs were identified 
by the “limma” package of R software. The Search Tool 
for the Retrieval of Interacting Genes (STRING, version 
11.0, https://​string-​db.​org/) was used to investigate the 
protein–protein interaction (PPI) network to determine 
the interaction of pyroptosis-related genes in this study. 
The DEGs are shown in Additional file 1: Table S1.

Development and validation of the PRGs prognostic model
To avoid omissions, 0.2 was set as the cutoff p value, and 
survival-related genes were recognized for subsequent 
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analysis. Cox regression analysis was used to evaluate the 
prognostic value of the PRGs in the TCGA dataset. To 
select the most relevant genes for pyroptosis in the prog-
nosis of HCC patients, we used the least absolute shrink-
age and selection operator (LASSO)-Cox regression 
model to screen the candidate genes and establish a pre-
dictive model. LASSO-Cox regression was implemented 
through the glmnet package of R software. The risk score 
was calculated according to the centralized and standard-
ized HCC mRNA expression data in the TCGA dataset.
Risk score =

∑
k

i
Xi × Yi (X : coefficients, Y : gene expression level).  

HCC patients were divided into high-risk and low-risk 
groups based on the median risk score, and the overall 
survival (OS) between the two groups was analyzed. To 
make the model more convincing, this study also utilized 
the HCC cohort in the GEO database (GSE10186) for 
validation. The expression of each PRG was also normal-
ized, and the risk score was then calculated by the above 
formula. HCC patients in the GSE10186 cohort were 
also grouped into high-risk and low-risk groups accord-
ing to the median risk score, and the OS between the 
two groups was compared. Principal component analy-
sis (PCA) based on the PRG signature was performed by 
the “prcomp” function in the “stats” R package. The ROC 
curves were plotted by the “time-ROC”, “survminer” and 
“survival” packages of R.

Prognostic evaluation of the risk score
The clinicopathological features from the TCGA cohort 
and the GEO cohort were downloaded and subsequently 
analyzed. Univariate and multivariate Cox regression 
models were used to examine independent risk factors 
for HCC patients. According to the median risk score, the 
HCC patients in the TCGA database were divided into 
high-risk and low-risk groups, and the functional enrich-
ment analysis of the DEGs between the two groups was 
evaluated. The DEGs were screened based on the criteria 
of log2-fold change ≥ 2 and FDR < 0.05. The “clusterPro-
filer” package of R was used to investigate Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses. The scores of infiltrating immune 
cells and the activity of immune-related pathways were 
analyzed by single-sample gene set enrichment analysis 
(ssGSEA), which was performed by the “gsva” package.

Statistics
The Mann–Whitney U test was used to analyze the 
expression levels of genes between the nontumor tis-
sues and tumor tissues and compare immune cell 
infiltration and immune pathway activation between 
groups. The chi-square test was applied to compare the 
categorical variables. The LASSO regression was used 
to calculate coefficients of the prognostic signature. The 

Kaplan–Meier method and a log-rank test were used to 
compare survival rates between subgroups. The corre-
lation analysis was performed by the Pearson test. Uni-
variate and multivariate Cox regression models were 
conducted to examine the independent risk factors for 
the model. All statistical analyses were performed with 
R software (version 4.1.1) and IBM SPSS (version 26.0, 
IBM Corporation, Armonk, New York, USA). Two-
tailed p < 0.05 was considered statistically significant in 
all tests.

Results
Identification of DEGs between tumor and nontumor 
samples
The expression levels of 35 PRGs were analyzed 
between nontumor and tumor samples in the TCGA 
database. As a result, 31 DEGs were identified (all 
P < 0.05). Twenty-eight of them (BAK1, BAX, CASP3, 
CASP4, CASP6, CASP8, CASP9, CHMP2A, CHMP2B, 
CHMP3, CHMP4A, CHMP4B, CHMP4C, CHMP6, 
CHMP7, GSDMB, GSDMC, GSDMD, GSDME, 
HMGB1, IL1A, TP53, GPX4, NLRP1, NLRP6, NLRP7, 
NOD1, and NOD2) were upregulated, while 3 of these 
genes (IL6, IL1B, and NLRP3) were downregulated. The 
expression levels of PRGs are shown in Fig. 1A. In addi-
tion, a protein–protein interaction (PPI), which was 
set at 0.4 (medium confidence) as an interaction score, 
was analyzed to explore the correlations of the PRGs 
(Fig.  1B). CASP1, CASP3, CASP4, CASP5, CASP8, 
IL1B, NLRP3, and CHMP7 were considered hub genes. 
The correlation network, including all PRGs, is shown 
in Fig. 1C.

Classification of HCC patients based on the PRGs
To investigate the relationship between the expression of 
the 35 PRGs and HCC, we performed a consensus clus-
tering analysis of HCC patients in the TCGA database. 
We found that by increasing the clustering variable (k) 
from 2 to 10, when k = 2, the intragroup correlations were 
the highest, which showed that 374 HCC patients could 
be divided into two clusters according to the 35 PRGs 
(Fig. 2A). The OS of cluster 1 was better than that of clus-
ter 2 (p < 0.001, Fig. 2B). In addition, the gene expression 
profile and clinicopathological parameters, including age 
(< 65 or ≥ 65 years), sex, tumor grade (G1–G4), tumor 
stage (I–IV), T classification (T1–T4), and Eastern Can-
cer On-cology Group (ECOG) (0–4), are illustrated in a 
heatmap. Sex (p < 0.05), tumor grade (p < 0.001), tumor 
stage (p < 0.01), T classification (p < 0.01), and ECOG 
(p < 0.01) were significantly different between the two 
clusters (Fig. 2C).
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Fig. 1  Expression of the 35 PRGs and the interactions among them. A Heatmap (blue: low expression level; orange: high expression level) of the 
PRGs between the nontumor (N, blue) and tumor samples (T, red). P values were shown as: **p < 0.01; ***p < 0.001. B PPI network showing the 
interactions of the PRGs (interaction score = 0.4). C The correlation network of the PRGs (red line: positive correlation; blue line: negative correlation. 
The depth of the colors reflects the strength of the relevance)
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Fig. 2  Tumor classification based on the PRGs. A 374 HCC patients were grouped into two clusters according to the consensus clustering matrix 
(k = 2). B Kaplan–Meier OS curves for the two clusters. C Heatmap and the clinicopathological features of the two clusters classified by these PRGs
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Establishment of a prognostic gene model based 
on the TCGA cohort
A total of 374 HCC patients with complete survival data 
from the TCGA database were selected for analysis. 
Survival-related genes were screened by univariate Cox 
regression analysis. A total of 22 genes that met the p < 0.5 
criteria, including BAK1, BAX, CASP1, CASP3, CASP4, 
CASP6, CASP7, CASP8, CHMP2A, CYCS, GSDMC, 
GSDME, IL1B, IL6, IL18, NLRP1, NLRP3, NLRP6, 
HMGB1, GZMA, GZMB, and TP53, were reserved for 
subsequent analysis. Of these, 16 genes (BAK1, BAX, 
CASP1, CASP3, CASP4, CASP6, CASP7, CASP8, CYCS, 
GSDMC, GSDME, IL1B, IL18, NLRP1, NLRP3, and 
HMGB1) were associated with an increased risk of HRs 
> 1, while the other 6 genes (CHMP2A, IL6, NLRP6, 
GZMA, GZMB, and TP53) were associated with HRs < 1 
(Fig.  3A). We generated a 10-gene signature utilizing 
least absolute shrinkage and selection operator (LASSO) 
Cox regression (Fig.  3B, C). The formula for calculating 
the risk score is as follows: Risk score = (0.329 * BAK-
1 e x p . )  +  ( 0 . 1 9 6  *  B A X e x p . )  +  ( 0 . 3 3 2  *  C A S P -
1exp.) + (− 0.171 * CASP4exp.) + (− 0.003 * CASP6exp.) 
+ (0.42 * GSDMEexp.) + (− 0.392 * GZMA-
exp.) + (− 0.133 * GZMBexp.) + 179 * IL18exp.) + 
(− 0.322 * TP53exp.).

HCC patients were divided into a low-risk group and 
a high-risk group according to the median risk score 
(Fig. 3D). The results showed that HCC patients in differ-
ent groups were well separated into two clusters through 
principal component analysis (PCA) (Fig.  3E). In addi-
tion, high-risk HCC patients had poorer survival than 
low-risk patients (p < 0.001) (Fig. 3F, G). The predictive 
model constructed by the risk score was evaluated by 
time-dependent receiver operating characteristic (ROC) 
analysis. The areas under the ROC curve (AUCs) at 1 
year, 3 years, and 5 years were 0.770, 0.713, and 0.693, 
respectively (Fig. 3H).

Validation of the risk signature
A total of 118 HCC patients from the GEO database 
(GSE10186) were selected as the validation set. Gene 
expression levels were normalized by the “Scale” function 
for subsequent analysis. A total of 118 HCC patients in 
the GEO cohort were divided into high-risk and low-risk 
groups according to the median risk score obtained from 
the TCGA cohort (Fig. 4A). The PCA displayed a mod-
erate result between the two groups (Fig. 4B). Similarly, 
HCC patients in the high-risk group had poorer survival 
(p = 0.007) and higher death rates than those in the low-
risk group (Fig. 4C, D). This prognostic model also had a 
moderate predictive capability in the GEO database. The 
ROC curve of the validation group revealed the results of 

1-year, 3-year, and 5-year OS with AUCs of 0.641, 0.663, 
and 0.681, respectively (Fig. 4E).

Evaluation of independent prognostic value of the risk 
model
We performed univariate and multivariable Cox regres-
sion analyses to investigate the independent prognostic 
factors for HCC patients. The results showed that tumor 
grade (HR = 1.627, 95% CI 1.031–2.568), T classifica-
tion (HR = 1.657, 95% CI 1.196–2.297), M classification 
(HR = 6.927, 95% CI 2.099–22.863), vascular invasion 
(HR = 1.913, 95% CI 1.19–3.073), ECOG (HR = 1.711, 
95% CI 1.063–2.756), and risk score (HR = 3.13, 95% CI 
1.891–5.18) were prognostic factors in the TCGA cohort 
by univariate Cox regression analysis (Fig. 5A). By mul-
tivariate analysis, M classification (HR = 4.543, 95% CI 
1.011–20.412), ECOG (HR = 2.054, 95% CI 1.219–3.463), 
and risk score (HR = 2.747, 95% CI 1.548–4.875) were 
independent factors for HCC patients (Fig. 5B). Moreo-
ver, a clinicopathological information heatmap was 
developed based on the TCGA cohort, which showed 
that HCC patients in the high-risk and low-risk groups 
showed a significant correlation with T classification (p < 
0.05), tumor stage (p < 0.05), and tumor grade (p < 0.01) 
(Fig. 5C).

Functional analyses based on the risk model
To explore the differences in gene functions and gene 
enrichment between high-risk and low-risk groups 
according to the risk model, we identified a total of 244 
DEGs, which were screened with the criteria of FDR < 
0.05 and |log2FC | > 0.585. This analysis was completed 
by the “limma” package of R. The investigation revealed 
that the upregulated and downregulated genes in the 
high-risk group were 144 and 100, respectively (Addi-
tional file 2: Table S2). Then, these DEGs were subjected 
to gene ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, which indicated that the DEGs were mainly 
related to inflammatory cell chemotaxis, chemokine-
mediated signaling pathways, and immune responses 
(Fig. 6A–D).

Comparison of immune activity among different risk 
groups
We performed ssGSEA for further functional analysis and 
compared the enrichment scores of 15 immune cells and 
the activity of 13 immune-related pathways in the TCGA 
and GEO databases. In the TCGA cohort (Fig. 7A), com-
pared with the low-risk group, the high-risk group had 
lower levels of immune cell infiltration, especially B cells, 
CD8+ T cells, mast cells, neutrophils, natural killer (NK) 
cells, plasmacytoid dendritic cells (pDCs), helper T (Th) 
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cells (Th1 and Th2 cells), tumor-infiltrating lympho-
cytes (TILs) and regulatory T (Treg) cells. In the TCGA 
cohort, the antigen-presenting cell (APC) coinhibition 
pathway was less active in the low-risk group than in the 
high-risk group, while the other 10 pathways, including 
chemokine receptor (CCR), checkpoint, cytolytic activity, 

human leukocyte antigen (HLA), inflammation-promot-
ing, parainflammation, T cell coinhibition, T cell costim-
ulation, type I interferon (IFN) response, and type II IFN 
response, were less active in the high-risk group than in 
the low-risk group (Fig. 7B). In the GEO cohort, the lev-
els of immune cell infiltration of aDCs, B cells, CD8+ T 

Fig. 3  Construction of the risk signature in the TCGA cohort. A Univariate Cox regression analysis of HCC for each PRG and 10 genes with P < 0.2. 
B Cross-validation for tuning the parameter selection in the LASSO regression. C LASSO regression of the 10 OS-related genes. D Distribution of 
patients based on the risk score. E PCA plot for HCCs based on the risk score. F The survival status for each patient (low-risk population: on the left 
side of the dotted line; high-risk population: on the right side of the dotted line). G Kaplan–Meier curves for the OS of patients in the high- and 
low-risk groups. H ROC curves demonstrated the predictive efficiency of the risk score
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cells, dendritic cells (DCs), pDCs, follicular helper T cells 
(Tfhs), Th2 cells, and TILs were significantly lower in the 
high-risk group than in the low-risk group. In addition, 
immune-related pathways, including CCR, checkpoint, 
cytolytic activity, HLA, inflammation-promoting, and T 
cell costimulation, showed less active levels in the high-
risk group than in the low-risk group (Fig. 7C, D).

Establishment of a prognostic nomogram for HCC patients
We generated a new prognostic nomogram based on 
age, T classification, vascular invasion, ECOG, and risk 
score to predict HCC patient survival (Fig. 8). The results 
showed that the nomogram could systematically predict 
patient OS at 1, 3, and 5 years.

Patients with a higher score had a lower probability of 
survival. For instance, a case of a 65-year-old male patient 
with T3, vascular invasion grade 0, ECOG 1, and risk 
score equal to 2 would score a total of 65 points (5 points 
for age, 20 points for T classification, 0 points for vascu-
lar invasion, 20 points for ECOG, and 10 points for risk 

score). For this case, the predicted probability of 1-year, 
3-year, and 5-year survival was 85.0%, 50%, and 28.0%, 
respectively.

Discussion
Our study examined the expression levels of genes 
reported in the literature to be associated with pyropto-
sis in HCC and nontumor samples and found that most 
of these PRGs were differentially expressed. In addition, 
the two clusters generated by consensus cluster analy-
sis according to the DEGs had significant differences in 
common clinicopathological features, such as sex, T clas-
sification, tumor stage, tumor grade, and ECOG. To fur-
ther evaluate whether these PRGs have prognostic value 
in HCC patients, we developed a risk signature com-
posed of 10 genes by Cox univariate and LASSO Cox 
regression analysis and validated its good performance in 
the GEO database as external data. Moreover, functional 
analysis revealed that the DEGs between different risk 
groups were associated with immune-related pathways. 

Fig. 4  Validation of the risk model in the GEO cohort. A Distribution of patients in the GEO cohort based on the median risk score in the TCGA 
cohort. B PCA plot for HCCs. C The survival status for each patient (low-risk population: on the left side of the dotted line; high-risk population: on 
the right side of the dotted line). D Kaplan–Meier curves for comparison of the OS between low- and high-risk groups. E Time-dependent ROC 
curves for HCCs
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Additionally, analysis of immune cell infiltration and 
activation pathways showed that the level of infiltrating 
immune cells and the activity of immune-related path-
ways in the high-risk group were lower than those in the 
low-risk group.

Pyroptosis is one type of programmed cell death (Xue 
et al. 2019). Studies have found that pyroptosis not only 
plays a vital role in systemic inflammatory response syn-
drome but also participates in the development and treat-
ment of tumors (Chen et al. 2018; Erkes et al. 2020). First, 

tumor cells can release a large number of inflammatory 
factors and immune-related antigens after pyroptosis 
under various types of stimulation, which may become 
a new potential therapeutic target (Xia et  al. 2019). In 
addition, normal cells are stimulated by abundant inflam-
matory factors released by pyroptosis and may trans-
form into malignant cells (Karki and Kanneganti 2019). 
In breast cancer, the occurrence of pyroptosis has been 
proven to be associated with tumor chemotherapy drugs 
(Wang et  al. 2017). However, the relationship between 

Fig. 5  Univariate and multivariate Cox regression analyses for the risk score. A Univariate analysis for the TCGA cohort. B Multivariate analysis for the 
TCGA cohort. C Heatmap (blue: low expression; orange: high expression) for the connections between clinicopathologic characteristics and the risk 
groups (*p < 0.05, **p < 0.01)
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PRGs, the development of HCC, and the survival of 
patients is still unclear. In this study, a signature consist-
ing of 10 PRGs (BAK1, BAX, CASP1, CASP4, CASP6, 
GSDME, GZMA, GZMB, IL18, and TP53) was selected 
based on the PRGs reported in the literature (Karki and 
Kanneganti 2019; Man and Kanneganti 2015; Xia et  al. 
2019; Ye et al. 2021), which has the capability to predict 
the survival of HCC patients.

BAK1 and BAX are closely related to cell death, espe-
cially apoptosis, and they are regarded as important regu-
lators of apoptosis (Flores-Romero et al. 2020; Westphal 
et  al. 2014). Caspase family genes are associated with 
cell death pathways and participate in the regulation of 
cell growth, differentiation, and apoptosis (Opdenbosch 

and Lamkanfi 2019; Shi 2002). Caspase 1, Caspase 4, and 
Caspase 6 belong to the caspase family and were con-
firmed to be related to pyroptosis in our study. Caspase 
1 participates in the pyroptosis signaling pathway and 
induces pyroptosis by cleaving gasdermin proteins (Shi 
et  al. 2017). Moreover, these genes can cleave and acti-
vate interleukin-1 (IL1), which is a cytokine involved in 
inflammation, septic shock, and wound healing (Sch-
neider et al. 2017). Previous studies have suggested that 
GSDME (also known as DFNA5) is related to deafness 
(Busch-Nentwich et  al. 2004; Camp et  al. 1995). Recent 
studies have demonstrated that GSDME is involved in 
chemotherapy-induced pyroptosis (Wang et  al. 2017; 
Hu et  al. 2020; Jiang et  al. 2020). Caspase 3 can cleave 

Fig. 6  Functional analysis based on the PRGs between the two-risk groups in the TCGA and GEO cohort. A Bubble graph for GO enrichment in 
the TCGA cohort (the larger bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious; 
q-value: the adjusted p value). B Barplot graph for KEGG pathways in the TCGA cohort (the longer bar means the more genes enriched, and the 
increasing depth of red means the differences were more obvious). C Bubble graph for GO enrichment in the GEO cohort. D Barplot graph for KEGG 
pathways in the GEO cohort
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GSDME after activation, and cleaved GSDME can form 
a complex and bind to the cell membrane to cause pyrop-
tosis (Wang et al. 2017). It is noteworthy that some stud-
ies have suggested that apoptosis and pyroptosis are not 
entirely opposite processes. Under certain conditions, 
apoptosis can be transformed into pyroptosis (Feng et al. 
2018; Jiang et al. 2020; Aglietti and Dueber 2017). Wang’s 
research indicates that cancer cells treated with chemo-
therapeutic drugs can undergo apoptosis and pyroptosis, 
due to the primary expression of GSDME (Wang et  al. 
2017). Chemotherapy drugs are more likely to trigger 
pyroptosis in cells with high GSDME expression. Gran-
zyme A (GZMA) is related to apoptosis, autophagy, and 

pyroptosis pathways. When GZMA is delivered to tar-
get cells, it can act by catalyzing the lysis of GSDMB, 
thereby triggering pyroptosis and target cell death (Mar-
tinvalet et  al. 2008; Zhou et  al. 2020). Similarly, when 
granzyme B (GZMB) is delivered into the target cells, it 
can act by catalyzing the lysis of GSDME, releasing the 
pore-forming moiety of GSDME and triggering pyrop-
tosis and target cell death (Zhang et  al. 2020). IL18 is a 
proinflammatory cytokine that is mainly involved in the 
immune response of polarized T helper cell 1 (Th1) cells 
and natural killer (NK) cells. Inactive IL18 precursors are 
processed into their active form by caspase-1 and can 
stimulate interferon γ and regulate helper T cell (Th) 1 

Fig. 7  Comparison of the ssGSEA scores for immune cells and immune pathways. A, B Comparison of the enrichment scores of 15 types 
of immune cells and 13 immune-related pathways between the low- (blue box) and high-risk (orange box) groups in the TCGA cohort. C, D 
Comparison of tumor immunity between the low- (blue box) and high-risk (orange box) groups in the GEO cohort (*p < 0.05; **p < 0.01; ***p < 
0.001)



Page 12 of 14Deng et al. Molecular Medicine           (2022) 28:16 

and Th2 responses (Kaplanski 2018). TP53, a coding gene 
that can encode tumor suppressor proteins, can induce 
apoptosis, cell cycle arrest, DNA repair, etc. (Bieging 
et al. 2014; Sharma et al. 2017).

Although current studies have found some similari-
ties and cross-effects between pyroptosis and apoptosis 
(Frank and Vince 2019; Tang et  al. 2020), research on 
pyroptosis still needs to be further explored. A variety of 
cell death patterns may coexist and interact during tumor 
development (Fritsch et  al. 2019). For instance, 7 genes 
in our model (BAK1, BAX, CASP1, CASP4, CASP6, 
GZMA, and GZMB) are critical regulators of apoptotic 
pathways. We investigated the DEGs between differ-
ent risk groups and discovered that DEGs are mainly 
involved in the immune response and inflammatory 
cell chemotaxis, indicating that dead cells can induce a 
robust inflammatory response. According to the results 
of the GO and KEGG analyses, pyroptosis may regulate 
the tumor immune microenvironment.

Studies have shown that pyroptosis is related to immu-
nity (Tang et  al. 2020; Zhang et  al. 2020). After tumor 
cells undergo pyroptosis, the expression of immuno-
genicity increases, which can improve the efficacy of 
immunotherapy (Hou et al. 2020). Based on data from the 
TCGA and GEO databases, our research demonstrates 

that the infiltration levels of some critical immune cells, 
such as B cells, CD8+ T cells, and TILs, were signifi-
cantly lower in the high-risk group than in the low-risk 
group. Moreover, the levels of immune-related pathways, 
including cytolytic activity, HLA, and T cell costimula-
tion, were less active in the high-risk group than in the 
low-risk group. Studies by Ye et al. (2021), Juet al. (2021), 
Shao et al. (2021), Isik et al. (2016, 2021). The risk model 
constructed by the signature composed of PRGs can 
predict the prognosis of cancer patients, and PRGs are 
related to tumor immunity.

Currently, there are few studies on the mechanism of 
pyroptosis in HCC. GSDME, one of the members of the 
gasdermin family, may be the executor of pyroptosis, and 
10 genes related to cell death regulation were identified 
in our research. We examined the prognostic value of the 
PRGs, which provided theoretical support for in-depth 
analysis. However, due to the lack of basic experimental 
validation, how these related genes function in HCC is 
unclear and is worthy of further exploration.

Conclusions
In conclusion, our research shows that most PRGs are 
differentially expressed between HCC and nontumor 
samples, and pyroptosis is closely related to HCC. In 

Fig. 8  Prognostic nomogram was established by combining clinicopathological parameters and risk score
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addition, the risk scores calculated in this study accord-
ing to the 9 PRGs can be considered independent risk 
factors for predicting HCC in the TCGA and GEO 
databases. The DEGs between different risk groups are 
associated with tumor immunity. Therefore, this study 
can be used to identify novel predictive markers for the 
prognosis of HCC patients and provides an important 
basis for future research on the relationship between 
PRGs and HCC immunity.
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