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Abstract
The spread of highly pathogenic avian influenza H5N1 has posed a major threat to global public health. Understanding the 
spatiotemporal outbreak characteristics and environmental factors of H5N1 outbreaks is of great significance for the estab-
lishment of effective prevention and control systems. The time and location of H5N1 outbreaks in poultry and wild birds 
officially confirmed by the World Organization for Animal Health from 2005 to 2019 were collected. Spatial autocorrelation 
analysis and multidistance spatial agglomeration analysis methods were used to analyze the global outbreak sites of H5N1. 
Combined with remote sensing data, the correlation between H5N1 outbreaks and environmental factors was analyzed using 
binary logistic regression methods. We analyzed the correlation between the H5N1 outbreak and environmental factors and 
finally made a risk prediction for the global H5N1 outbreaks. The results show that the peak of the H5N1 outbreaks occurs 
in winter and spring. H5N1 outbreaks exhibit aggregation, and a weak aggregation phenomenon is noted on the scale close 
to 5000 km. Water distance, road distance, railway distance, wind speed, leaf area index (LAI), and specific humidity were 
protective factors for the outbreak of H5N1, and the odds ratio (OR) were 0.985, 0.989, 0.995, 0.717, 0.832, and 0.935, 
respectively. Temperature was a risk factor with an OR of 1.073. The significance of these ORs was greater than 95%. The 
global risk prediction map was obtained. Given that the novel coronavirus (COVID-19) is spreading globally, the methods 
and results of this study can provide a reference for studying the spread of COVID-19.

Keywords  H5N1 · Remote sensing · Spatiotemporal analysis · Binary logistic regression · COVID-19 · Responsible Editor: 
Lotfi Aleya

Introduction

Highly pathogenic avian influenza H5N1 (hereinafter 
referred to as H5N1) has caused a global pandemic among 
poultry and wild birds since it was first discovered in 1959 
(Anonymous, 2007). At present, greater than 60 countries 

have been affected by the H5N1 virus. It has been reported 
that the mortality rate of avian influenza depends on the 
strain of the virus. Specifically, the mortality rate of H5N1 
virus is higher (Lam Thanh et al., 2020; Liu et al., 2017; 
Sealy et al., 2019), and the mortality rate of poultry infected 
with H5N1 is as high as 100%. Once humans are infected by 
the virus, it also produces high pathogenicity to humans (Hill 
et al., 2017), and the mortality rate of global humans can 
reach 63%. The incidence of human infection with H5N1 has 
increased five-fold during the peak of H5N1 outbreaks for 
poultry infected than usual (Durand et al., 2015). The out-
break of the H5N1 virus has attracted the attention of many 
countries around the world. The World Health Organiza-
tion has issued the following warning: H5N1 poses a major 
threat to global public health, and global health departments 
must guard against the epidemic of the virus among humans 
through mutation (Salvador et al., 2020).

At present, some scholars use geographic information 
system methods and remote sensing data to research the 
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transmission risk of dengue fever (Tian et al., 2017), pul-
monary tuberculosis (Cai et al., 2021), fever with throm-
bocytopenia syndrome (Miao et al., 2020), and avian influ-
enza H5N6 (Ekong et al., 2012; Li et al., 2020; Mellor 
et al., 2018). Although some scholars have performed spa-
tiotemporal distribution analysis of avian influenza H5N1 
or its correlation with environmental factors (Ahmed et al., 
2010; Li et al., 2015a; Walsh et al., 2020), the analysis 
time series of these studies is short, the research area is 
small, and the environmental factors considered in these 
studies are limited. Moreover, these studies employ the 
interannual interval as the research scale. For example, 
the following topics have been assessed: the spatial and 
temporal aggregation of H5N1 outbreaks in Bangladesh in 
2007–2008 (Ahmed et al., 2010), the correlation between 
H5N1 outbreaks and environmental factors (temperature, 
precipitation, and temperature) in India (Walsh et  al., 
2020), the correlation between H5N1 outbreaks and envi-
ronmental factors (temperature, precipitation, and temper-
ature) in China (Fang et al., 2008; Li et al., 2015a), and 
the relationship between H5N1 outbreaks and temperature 
changes in Eurasia (Liu et al., 2007). Through these stud-
ies, it has been recognized that H5N1 outbreaks exhibit 
spatial distribution characteristics, and strong evidence of 
a relationship between H5N1 outbreaks and environmental 
factors is noted.

In order to make the results closer to the real situation, 
we tried to increase the number of samples for the study. 
In terms of data, we obtained data of 15 years of H5N1 
outbreaks (2005–2019) and selected 12 environmental fac-
tors. When studying the correlation of environmental fac-
tors to H5N1 outbreaks, we used month rather than year 
as the time resolution of the study to increase the number 
of samples. Finally, we analyzed the spatiotemporal dis-
tribution of global H5N1 outbreaks, related environmental 
factors, and predicted the global outbreak risk map. The 
results provide technical support for global H5N1 preven-
tion and early warning, and have important public health 
significance for the prevention and control of H5N1 out-
breaks. At present, COVID-19 is still a global epidemic. 
This study can provide methods and experience for the 
analysis of its spatiotemporal distribution characteristics 
and environmental factors through remote sensing technol-
ogy to accelerate the fight against COVID-19 and achieve 
the goal of sustainable development.

The objectives of the study are as follows: (1) determine 
the characteristics of global H5N1 time outbreaks; (2) 
assess the global spatial aggregation of H5N1; (3) identify 
the environmental factors related to H5N1 outbreaks, clas-
sify protective factors and risk factors, and quantitatively 
analyze the degree of correlation; and (4) predict the risk 
of global H5N1 outbreaks.

Data

The global H5N1 outbreak statistics used in this paper were 
obtained from the website of the World Organization for 
Animal Health (OIE). The data included the time, latitude, 
and longitude of the outbreak and the number of cases. The 
distribution of the data after spatial vectorization is shown in 
Fig. 1. The environmental factor data include LAI, elevation, 
air pressure, specific humidity, temperature, surface radiation, 
rainfall, snow, wind speed, roads, railways, and water areas 
(rivers, lakes and reservoirs, etc.). Because the correlation 
analysis of environmental factors for the H5N1 outbreaks in 
this paper was based on a monthly time scale (1-month time 
resolution), these data need to be processed into monthly aver-
ages for use in the subsequent analysis. (A large amount of 
data is used in this paper. Due to limited space, the data infor-
mation can be found in supplementary material S1, including 
the name, source, format, and date of the data.)

Method

Periodicity of phenomena of the outbreak

Because H5N1 is highly transmissible, when a case occurs 
in one location, it can quickly spread through poultry and 
cause a large outbreak in a short time. Thus, one case can be 
considered an outbreak (usually when H5N1 is detected there 
are already a large number of cases). To reveal the trend of 
the H5N1 virus outbreak, the global H5N1 outbreak data from 
2005 to 2019 are divided into different outbreak time periods 
based on season. The trend of the global H5N1 outbreak in 
each season is plotted, and the total number of H5N1 virus 
outbreaks in each season is calculated. The statistical formula 
of the number of H5N1 outbreaks in each season is as follows:

where Ni is the number of H5N1 outbreaks in the i-th sea-
son, and Dj is the number of outbreaks on the j-th day in the 
i-th season.

Spatial distribution

In this paper, the spatial autocorrelation function (Moran’s I) is 
used to analyze the distribution characteristics of outbreak sites 
(whether agglomerated or not) (Zhao et al., 2020). Moran’s I 
is a standardized measure of spatial autocorrelation among 
variables of neighboring elements (Pinto et al., 2021), varying 
in the range of − 1 to 1. The closer Moran’s I index is to 0, the 
less self-correlated (random) H5N1 outbreak sites. The closer 
to − 1, the more scattered H5N1 outbreak sites. The closer to 1, 

(1)
Ni =

m
∑

j=1

Dj
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the more agglomerated H5N1 outbreak sites. The Z test is used 
to test the significance of Moran’s I test in this paper.

Multidistance spatial agglomeration analysis is used to 
analyze the agglomeration phenomenon of H5N1 outbreak 
sites at different spatial scales, and an expected K value and 
an actual K value can be calculated according to different 
spatial scales. If the actual K value is less than the expected K 
value, it indicates that the distribution of H5N1 outbreak sites 
on this scale is discrete; otherwise, the distribution on this 
scale is agglomerated. In addition, the smaller the difference 
between the two K values is, the more random the distribu-
tion. The multidistance spatial agglomeration analysis in this 
paper uses the common transformation of Ripley’s k function, 
and the transformation L(d) is determined as follows:

where A is the region, N is the number of points, d is the 
distance, k(i, j) is the weight, the expected K is d, and the 
actual K is L(d).

(2)
L(d) =

�

�

�

�

�

�

A
N
∑

i=1

N
∑

j=1,j≠i

k(i, j)

�N(N − 1)

Correlation between the outbreak of H5N1 
and environmental factors

To explore whether a relationship exists between environ-
mental factors and the outbreak of H5N1, the binary logis-
tic regression method is used in this paper. Two dependent 
variables are included in the binary logistic regression. One 
variable is the “outbreak” site of H5N1, and the other vari-
able is the “nonoutbreak” site of H5N1. The “nonoutbreak” 
site was selected according to the principle (Lee et al., 2020; 
Li et al., 2016) of site selection.

The method of selecting “nonoutbreak” sites is described 
below:

(1)	 The distance between the “nonoutbreak” site and the 
“outbreak” site is outside the range of 10 km.

(2)	 The number of “nonoutbreak” sites is 5 times that of 
“outbreak” sites.

(3)	 The distance between the “nonoutbreak” site is greater 
than that of 10 km.

(4)	 The month corresponding to the “nonoutbreak” site is 
randomly generated.

Fig. 1   Spatial distribution of global H5N1 outbreak sites during 2005–2019
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Binary logistic regression can express the 0 and 1 char-
acteristics of outbreaks (Gierak and Mietanka, 2021), i.e., 
H5N1 virus outbreaks and nonoutbreaks.

Before using binary logistic regression, it is necessary 
to test the collinearity of various factors to remove the 
factors that can be regarded as the same variable. In this 
paper, the dependent variable Y is determined by whether 
the H5N1 virus causes an outbreak. The events corre-
sponding to 0 and 1 are “nonoutbreak of H5N1” and “out-
break of H5N1,” respectively.

The binary logistic regression model obtained from the 
above correlation analysis can be used for risk prediction. 
To test the reliability of the predicted results of the binary 
logistic regression model, the Omnibus test of model 
coefficients is first used in this paper to test whether the 
model was meaningful. Then, the Hosmer–Lemeshow test 
is used to test the goodness of fit of the model, that is, 
the approximate degree of predicted value and real value.

In addition, we need to create prediction sites before 
risk prediction. To make the predicted range cover the 
whole world, this paper divides the study area into rows 
and columns, and divides it into grids with an interval 
of 5°. The grid location is represented by the grid center 
point and assigned to the environmental factor value. 
Then, then the value is predicted by using the binary 
logistic regression model. The predicted data used in this 
paper are the monthly average of the environmental factor 
data of the peak period of the H5N1 outbreak (spring and 
winter) in the last three years (2017, 2018, and 2019), and 
the data are used to predict the outbreak risk in the future 
spring and winter.

Results

Periodicity of outbreak phenomena

Because only three outbreak sites are located in the Southern 
Hemisphere and the number of cases in the source data is 

0, it can be considered that all the outbreak sites are distrib-
uted in the Northern Hemisphere. In this paper, the annual 
outbreak trend of global H5N1 is obtained according to 
the division of the seasons in the Northern Hemisphere 
(Fig. 2). As noted in the chart, during the 15-year period 
from 2005 to 2019, the number of global H5N1 outbreaks 
showed three “upward-downward” trends over time: the first 
period is 2005–2009, the second period is 2010–2014, and 
the last period is 2015–2019. These data indicate that the 
global H5N1 has the characteristics of repeated outbreaks 
about every 5 years. To further explain the characteristics 
of the number of H5N1 outbreaks in each season, a box 
chart (Fig. 3) of the number of outbreaks in each season was 
calculated. From this chart, we can see that spring has the 
highest number of outbreaks followed by winter, summer, 
and finally autumn, accounting for 46.72%, 37.55%, 8.98%, 
and 6.75% of the total, respectively. The median number 
of H5N1 outbreaks in spring and winter was also greater 
than that in other seasons, indicating that spring and winter 

Fig. 2   Global H5N1 outbreak 
trends by season for each year 
during the study period of 
2005–2019

Fig. 3   Box chart of the number of outbreaks of global H5N1 in each 
season during the study period of 2005–2019
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represent the peaks of H5N1 outbreaks. In addition, the out-
liers and the range of 1.5 IQR in spring and winter are larger, 
and the upper limit and lower limit of the numbers of H5N1 
outbreaks are very different, indicating that the number of 
H5N1 outbreaks in spring and winter is not too stable.

Spatial distribution

In the analysis of the time period of H5N1 outbreaks, the 
trend of the number of H5N1 outbreaks shows that there 
are three outbreak time periods in the 15-year period from 
2005 to 2019, and we further analyze the spatial distribution 
of global H5N1 outbreaks on the basis of these three time 
periods (Fig. 4a, b, c). We can see that the global H5N1 out-
breaks are distributed on four continents, including Africa, 
Asia, Europe, and America, and H5N1 breakouts mainly 
occurred in Africa, Asia, and Europe.

Significant differences in the number of outbreaks on 
each continent were noted over the three periods (Fig. 5). 
In the first period (Fig. 5a), the number of H5N1 outbreaks 
in Asia, Europe, and Africa was very high. In 2006, H5N1 
appeared in Africa, and the number of outbreaks increased 
sharply to a 15-year peak of 765. Almost all H5N1 outbreaks 
occurred in Asia in the second time period (Fig. 5b). The 
number of outbreaks in Asia in 5 years was 26 (89.66%), 
178 (100%), 98 (100%), 108 (100%), and 46 (90.20%). In 
the third time period (Fig. 5c), H5N1 broke out mainly in 
Africa, and the number of H5N1 outbreaks in Africa was 
very high in 2015 and 2016, with a total of 494 outbreaks in 
both years. Overall, the outbreak ranking statistics (Fig. 5d) 
show that Africa has the highest number of outbreaks over 
a 15-year period followed by Asia, Europe, and finally the 

Americas. The ratios of outbreaks on these four continents 
to total outbreaks were 50.39%, 37.15%, 9.70%, and 0.06%, 
respectively.

The autocorrelation analysis of the number of H5N1 out-
breaks in three periods was performed, and the Moran’s I 
scatter plot of each time period was obtained (Fig. 6). As 
shown in Fig. 6, the Moran’s I indices of the three time peri-
ods are all greater than 0, indicating that the global H5N1 
outbreaks exhibit a positive spatial correlation, and the sites 
of the outbreaks are characteristic of spatial aggregation. 
The Moran’s I index of the three time periods is differ-
ent, indicating that the degree of aggregation is not stable 
and will change with time. In addition, to ensure the reli-
ability of the autocorrelation results, the significance test 
of Moran’s I index was performed. The standard statistics 
Z of 2005–2009, 2010–2014, and 2015–2019 are 1.9883, 
4.9683, and 2.0221, respectively, and p values are less than 
0.05, indicating that the test result of Moran’s I index is 
significant.

To further understand the aggregation phenomenon of 
H5N1, the multidistance spatial agglomeration is used to 
analyze the scale of H5N1 aggregation in three periods. The 
actual K and expected K are calculated by Formula 2. With 
the increasing spatial scale, the aggregation of H5N1 first 
increased and then decreased (Fig. 7). The scale range of 
actual K value greater than expected K value exists in all 
three periods, and the corresponding scale range is 0–500 km 
during 2005–2009, 0–7500 km during 2010–2014, and 
0–6500 km during 2005–2019. These results indicate that 
the distribution characteristics change with the change in the 
time and space scale. Generally, H5N1 breakouts still exhibit 
a weak aggregation phenomenon at scales close to 5000 km.

Fig. 4   Spatial distribution of 
global H5N1 outbreak sites dur-
ing 2005–2009 (a), 2010–2014 
(b), and 2015–2019 (c)
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Correlation between the outbreaks of H5N1 
and environmental factors

In this paper, 12 environmental factors are selected: eleva-
tion (DEM), LAI, air pressure (AP), specific humidity (SH), 
surface radiation (SR), rainfall (RA), snow (SN), air tem-
perature (AT), wind speed (WS), road distance (ROD), rail-
way distance (RAD), and water distance (WAD). Here, the 
road distance, the railway distance, and the water distance 
are the nearest distances of the “outbreak” site or “nonout-
break” site relative to the road, railway, and water area (riv-
ers, lakes, and reservoirs) respectively. Then, these factor 
values of “outbreak” site and “nonoutbreak” site are sub-
stituted into the binary logistic regression model to analyze 
the relationship between the outbreak of H5N1 and environ-
mental factors. According to the collinearity test results (the 
resulting figure can be found in supplementary material S1), 
we find that the tolerance between surface radiation and air 
temperature is less than 0.1, and the variance inflation factor 
(VIF) is greater than 10, so the surface radiation is excluded. 
The remaining 11 factors were analyzed by regression, and 
then the significantly effective factors were substituted into 
binary logistic regression for multifactor regression. Based 
on the multifactor regression results (Table 1), it can be 
concluded that elevation, rainfall, and snowfall are unre-
lated factors. Although the air pressure is significant, the 
odds ratio (OR) value is 1, and the coefficient is 0. Thus, air 

pressure is regarded as an independent factor. While other 
factors are significantly related to the outbreak of H5N1, the 
correlation degree of each factor to the outbreak of H5N1 
exhibits the following order: WS > LAI > AT > SH > WAD 
> ROD > RAD.

Global H5N1 outbreak risk prediction

Before prediction, the Omnibus test of model coefficients 
and Hosmer–Lemeshow test were performed on the model. 
The p of the Omnibus test of the model coefficient is less 
than 0.05 (p = 0.02). The p of the Hosmer–Lemeshow test 
is greater than 0.05 (p = 0.35). Thus, the goodness of fit of 
the model is high, and the predicted value is very close to 
the real value. The results of the two test methods indicate 
that the model in this paper has high reliability. In addition, 
in this paper, the outbreak risk (probability) is divided into 
eight categories by the natural breakpoint method, because 
the natural breakpoint method can set the boundary where 
the numerical difference is relatively large, and the similar 
values can be grouped properly. Thus, there is a maximum 
difference between the data of each group, which can effec-
tively represent the classification of the probability of each 
prediction site.

As seen from the prediction map (Fig. 8) and the results 
presented in Fig. 4, with the exception of China, South-
east Asia, South Asia, Nigeria, Ghana, Burkina Faso, Côte 

Fig. 5   Global H5N1 out-
breaks during 2005–2009 (a), 
2010–2014 (b), and 2015–2019 
(c) and the total number and 
percentage of outbreaks by 
continent (d)
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d’Ivoire, Egypt, Sudan, Romania, Greece, Germany, and 
France, where H5N1 has previously occurred, there is a 
high risk of H5N1 outbreaks in the southeastern part of the 
USA and Paraguay in South America. A high risk of H5N1 

outbreaks is also noted in Uganda, Congo, Tanzania, South 
Africa, and the western and southeastern regions of Oceania.

Fig. 6   Moran’s I scatter chart 
of the number of global H5N1 
outbreaks in 2005–2009 (a), 
2010–2014 (b), and 2015–2019 
(c)

Fig. 7   Multidistance agglom-
eration analysis of global H5N1 
during 2005–2019
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Discussion

H5N1 virus outbreaks are periodic and repeat every 5 years. 
The outbreak peak occurs in spring and winter, probably 
due to the relatively cool climate in these seasons, which 
increases the survival time of avian influenza virus (Li et al., 
2015b; Salaheldin et al., 2018). The outbreak of avian influ-
enza is aggregated on the scale of 0–5000 km, indicating that 
the H5N1 virus has been able to spread in a larger spatial 
radius. Human socioeconomic activities in agriculture are 
widely regarded as the main factor in the short- and medium-
range transmission of avian influenza (Yupiana et al., 2010). 
The virus still has a weak aggregation phenomenon on the 
scale of close to 5000 km, indicating that the avian influenza 

virus also has the mechanism of long-distance transmission, 
and this intercontinental transmission is generally believed 
to be achieved through the migration of migratory birds. The 
long-distance poultry trade and illegal poultry smuggling 
may also lead to the intercontinental spread of avian influ-
enza (Liang et al., 2020; Wu and Perrings, 2018).

The wind speed has a negative effect on the outbreak 
of H5N1.When the wind speed is high, wind is benefi-
cial to ventilation in farms, markets, and other live poul-
try farms, thus reducing the outbreak of the H5N1 virus. 
LAI also has a negative effect on the outbreak of H5N1, 
which is similar to that noted in the study of the relation-
ship between NDVI and the H5N1 outbreak by Sun et al. 
(2018). When the humidity is high, the aerosol particles 
are large and heavy, and the H5N1 virus will fall to the 
surface faster compared with that noted in dry air condi-
tions when it spreads in the air. Thus, LAI prevents the 
virus from spreading, so the specific humidity has a nega-
tive effect. For example, regions with higher temperatures 
in spring and winter in Africa have more H5N1 outbreaks 
than areas with lower temperatures in Central Asia and 
Europe in spring and winter. This finding is consistent 
with the results that relatively high temperatures are more 
likely to lead to H5N1 outbreaks. Dong et  al. (2015) 
obtained similar results when studying the relationship 
between H7N9 and air temperature. Water area distance, 
road distance, and railway distance are all related to the 
outbreak of the H5N1 virus. Xu et al. (2019) reached a 
similar conclusion when analyzing the impact of H1N1 
influenza transmission. In this paper, the influence of water 
area distance is the greatest followed by road distance and 

Table 1   Multiple factor regression

Factors Coefficient OR value OR value (95% CI) Significance

WAD  − 0.015 0.985 0.983 ~ 0.987  < 0.001
ROD  − 0.011 0.989 0.987 ~ 0.991  < 0.001
RAD  − 0.005 0.995 0.994 ~ 0.996  < 0.001
WS  − 0.333 0.717 0.651 ~ 0.789  < 0.001
LAI  − 0.184 0.832 0.573 ~ 0.918  < 0.001
AT 0.07 1.073 1.059 ~ 1.087  < 0.001
SH  − 0.067 0.935 0.901 ~ 0.971  < 0.05
AP 0 1 1.000 ~ 1.000  < 0.001
DEM – – – 0.845
RA – – – 0.288
SN – – – 0.09

Fig. 8   Prediction of global 
H5N1 outbreak risk
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railway distance because poultry breeding bases are gen-
erally built near areas with water, which is conducive to 
the growth of waterfowl, such as ducks and geese. In addi-
tion, migratory birds often stop in area with waters, so the 
influence of water distance is the greatest. In addition, 
poultry breeding bases are also established in places with 
traffic, which is conducive to transaction and transporta-
tion. The probability of using roads is greater than that of 
railways, so the influence of highways is greater than that 
of railways.

This paper uses a large number of factors in addition to 
using road, railway, water system, air temperature, rainfall, 
and elevation data, which are commonly used. Environ-
mental factors, such as LAI, air pressure, specific humidity, 
surface radiation, snow, and wind speed data, are used to 
analyze the correlation with global H5N1 outbreaks. Envi-
ronmental data are processed on a monthly scale, and many 
scholars (Fang et al., 2008; Lau et al., 2018) use binary 
logistic regression on an annual scale. However, H5N1 out-
breaks are seasonal. If the data are processed on an annual 
scale, the corresponding values of the variables are not 
timely, which may lead to incorrect correlation analysis of 
some factors. The previous analysis of H5N1 data does not 
include the latest data, so it cannot reflect the distribution of 
the epidemic in recent years. There are also some limitations 
in this study, such as the failure to report the epidemic situa-
tion affecting the accuracy of the analysis results. Although 
the study analyzed the correlation between the H5N1 out-
break and 12 environmental factors, the epidemic virology 
is more complex (Awada et al., 2018), and outbreaks are 
affected by many factors, including the composition of the 
animal population, production system, virus diversity, and 
the ability of each region to quickly identify and respond to 
the epidemic. More relevant factors should be considered in 
future research.

COVID-19 has spread globally, and many studies have 
indicated that environmental factors, such as temperature, 
relative humidity, and PM2.5, play important roles in the 
spread of COVID-19 (Franch-Pardo et al., 2020; Goswami 
et al., 2020; Shen et al., 2021). However, to date, studies 
have attempted to explain the potential impact of envi-
ronmental factors on the spread of COVID-19 exclusively 
using statistical analyses, and the spatial distribution char-
acteristics have not been quantitatively combined with the 
environmental factors. As the analysis of H5N1 shows, 
patterns of COVID-19 transmission can be analyzed from 
the perspectives of spatiotemporal distribution and envi-
ronmental factors given that the heterogeneity of environ-
mental conditions and spatial distribution characteristics 
may cause differences in the spread of COVID-19. Thus, 
the source and mechanism of the virus can be determined 
at different levels.

Conclusion

Through spatial autocorrelation analysis, multidistance 
spatial distance analysis, and binary logistic regression, 
this paper analyzes the environmental factors and spati-
otemporal distribution characteristics of the H5N1 out-
break from 2005 to 2019 and performs risk prediction. 
The following conclusions can be drawn: (1) the outbreak 
cycle of global H5N1 is approximately 5 years, and the 
seasonal peaks occur in spring and winter, which accounts 
for 46.72% and 37.55% of the total number of outbreaks in 
all seasons, respectively. The number of H5N1 outbreaks 
in spring and winter is not very stable. (2) Global H5N1 
outbreaks mainly occur in Africa, Asia, and Europe with 
Africa having the highest number of outbreaks followed 
by Asia, Europe, and finally America. The agglomeration 
phenomenon occurred in three outbreak periods, namely, 
2005–2009, 2010–2014, and 2015–2019. From the per-
spective of multiscale distance agglomeration, the out-
break of H5N1 is agglomerated in the range of 5000 km, 
indicating that the H5N1 virus has been able to spread in 
a larger spatial radius. (3) Seven environmental factors are 
related to the H5N1 outbreak, among which 6 were protec-
tive factors, including water area distance (OR = 0.985), 
road distance (OR = 0.989), railway distance (OR = 0.995), 
wind speed (OR = 0.717), LAI (OR = 0.832), and specific 
humidity (OR = 0.935). Air temperature was identified as 
the risk factor (OR = 1.073). The correlation degree of 
each factor to the outbreak of H5N1 exhibits the follow-
ing order: wind speed > LAI > air temperature > specific 
humidity > water area distance > road distance > railway 
distance. (4) The global H5N1 outbreak risk forecast is 
obtained for winter and spring. The forecast shows that 
an outbreak risk still occurs in the areas where H5N1 
outbreaks previously occurred. At present, a high risk 
of H5N1 outbreaks is noted for the following areas: the 
southeastern part of the USA; Paraguay in South America; 
Uganda, Congo, Tanzania, and South Africa in Africa; and 
the western and southeastern regions of Oceania.

In this paper, the spatial–temporal distribution charac-
teristics of H5N1 were analyzed by spatiotemporal analysis 
methods and regression models. The related environmen-
tal factors of the H5N1 outbreak were explored, and the 
risk of outbreaks was predicted. In addition, the research 
method and results of this paper can be used as a reference 
for research on other infectious diseases, such as COVID-19.
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