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Abstract

Africa’s ecosystems have an important role in global carbon dynamics, yet consensus is lacking 

regarding the amount of carbon stored in woody vegetation and the potential impacts to carbon 

storage in response to changes in climate, land use, and other Anthropocene risks. Here, we 

explore the socio-environmental conditions that shaped the contemporary distribution of woody 

vegetation across sub-Saharan Africa and evaluate ecosystem response to multiple scenarios of 

climate change, anthropogenic pressures, and fire disturbance. Our projections suggest climate 

change will have a small but negative effect on above ground woody biomass at the continental 

scale, and the compounding effects of population growth, increasing human pressures, and 

socio-climatic driven changes in fire behavior further exacerbate climate-driven trends. Relatively 

modest continental-scale trends obscure much larger regional perturbations, with climatic and 

anthropogenic factors leading to increased carbon storage potential in East Africa, offset by large 

deficits in West, Central, and Southern Africa.

Planetary-scale consumption of resources, driven by rapid population and economic growth, 

has substantially increased emissions of CO2 and other greenhouse gases1,2. Building 

on previous treaties, the Paris Agreement3 developed international policy in an effort to 

limit global warming to less than 2°C above pre-industrial levels via decarbonization of 

energy systems and increased mitigation efforts, including improved land management 
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and ecosystem restoration to increase the carbon sink and storage capacity of terrestrial 

ecosystems. Achieving ambitious climate mitigation goals requires credible, accurate, 

and reliable mapping and monitoring of terrestrial carbon stock. As the second largest 

landmass, Africa’s forests, woodlands, and savannas have a substantial impact on the global 

carbon budget by actively cycling carbon between the atmosphere, vegetation, and soil. 

However, the continent remains one of the largest sources of uncertainty in the global 

carbon cycle, functioning as both a sink and a source of CO2 in response to natural 

and anthropogenic perturbations4–9. In recent decades, for example, severe droughts have 

impacted many humid and sub-humid regions10,11, leading to tree mortality and loss of 

biomass12. Conversely, several studies have reported the recovery of African drylands 

following severe droughts of the 1970s and 1980s, attributed to post-drought vegetation 

recovery. Improvements in land management and agroforestry have also contributed to 

improved sustainability, while meeting increased demands for food, fiber, and livestock 

production9,13–15.

While Earth’s climate system is unequivocally changing16,17, predicting the rate and 

magnitude of associated changes in terrestrial systems is a major unresolved challenge 

for evaluating coupled human-environmental impacts18,19. Many African communities, 

for example, rely on forests, woodlands and savannas for timber production and energy 

(fuelwood and charcoal), food (fruits, nuts, and animal rangeland), traditional medicines, 

and other crucial resources. Depending on the context, these land uses can enhance or reduce 

woody biomass9,20. Emissions from land-use (0.32 ± 0.05 Pg C yr−1) and fire (1.03 ± 

0.22 Pg C yr−1), while highly variable through both space and time, are significant carbon 

sources7,8. Land use, land-use change, and fire behavior are therefore central components of 

global change and carbon dynamics, as the risk of land degradation from climate change and 

anthropogenic pressures has never been greater21–23.

Here, we present a novel approach to deriving continental-scale estimates of above ground 

woody biomass by characterizing the climatic, topo-edaphic, and socioeconomic conditions 

that have shaped the distribution of tree and shrub biomass across the African landscape 

and evaluate ecosystem response to multiple scenarios of disturbance. We explore the spatial 

patterns of contemporary woody vegetation using a new Earth observation (EO) dataset24 

that integrates optical phenological metrics, microwave and LiDAR, providing an improved 

characterization of woody cover and biomass, particularly in the open and low-stature 

savannas of sub-Saharan Africa (Methods). We use a data-driven, machine-learning-based 

approach to examine how climate, human pressures, fire, and topo-edaphic conditions 

impact biomass variability across the continent (Extended Data Fig. 1). Ecosystem response 

to climate change is evaluated using the fitted relationships to empirically project and 

quantify the potential distribution of biomass for the end of the 21st century. Contemporary 

and future climate conditions are represented with long-term mean-annual aridity (calculated 

as 1 – [precipitation/potential evapotranspiration]), derived from a 27-model ensemble 

(Supplementary Table 1) participating in the fifth phase of the Coupled Model Inter-

comparison Project (CMIP5). Two climate-forcings (representative concentration pathways, 

RCP 4.5 and RCP 8.5) are used to investigate ecosystem response under a broad range of 

potential climate-change scenarios for the end of this century. We also evaluate ecosystem 
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response to assumptions regarding future population growth and socio-climatic driven 

changes in fire behavior.

Biomass prediction and evaluation

Comparing our biomass predictions with the satellite-derived estimates yields excellent 

agreement (Supplementary Table 2) and confirms broad geographic expectations, with 

the density of woody biomass greatest near the equator and generally declining with 

latitude, but with considerable spatial variability associated with regional-scale topo-edaphic 

heterogeneity and climate (Fig. 1). Validation against an independent test set (N = 18,320) 

indicates that our model explains ca. 89% of the variation in tree and shrub biomass with 

low bias and low variance (Supplementary Table 3). Further comparison reveals that our 

biomass predictions are consistently at the low end of the range of previously reported 

estimates (Supplementary Table 4). However, it is important to note that models from 

previous studies25–28 were trained exclusively with data sampled from forested regions, 

whereas the satellite-derived estimates24 used to train our model better characterize the open 

and low-stature canopies of the savannas and drylands of Africa, which are underrepresented 

in most woody-cover datasets despite covering more than half of the African continent29.

Evaluation of the conditional distributions from our covariate set indicates that climate has 

the largest effect on the contemporary distribution of woody biomass, which decreases as 

aridity12, fire31, human pressures32, and sand content33 increase (Fig. 2). Aridity alone 

explains 75% of the variance across sub-Saharan Africa, where mean biomass density is 

greatest in humid (103.9 ± 87.6 Mg ha−1, mean ± 1 standard deviation) and dry sub-humid 

(27.1 ± 21.2 Mg ha−1) regions, including the moist tropics (185.9 ± 69 Mg ha−1), eastern 

Madagascar (94.9 ± 63 Mg ha−1), and East African Highlands (44.2 ± 39 Mg ha−1). 

Conversely, biomass density is lowest in Africa’s hyper-arid (9e−3 ± 0.1 Mg ha−1), arid 

(1.3 ± 2.3 Mg ha−1), and semi-arid regions (8.8 ± 9.9 Mg ha−1). In the water-limited, 

drought-seasonal savannas of the Sahel, mean biomass density ranges from 1.0 ± 2 Mg ha−1 

in the west to 2.4 ± 3 Mg ha−1 in the east.

Fire is most extensive in semi-arid and dry sub-humid climate zones (Methods 2.4). Indeed, 

nearly half (45%) of the land area impacted by fire each year occurs in the Sudanian 

savannas—where mean biomass density ranges from 21.5 ± 24 Mg ha−1 in the west to 

44.6 ± 42.8 Mg ha−1 in the east. Human pressures also have an overall negative effect 

on biomass density in our model (Fig. 2). However, the relationship between humans 

and woody biomass is nuanced. In remote areas where anthropogenic disturbance is low 

(e.g., index scores of ca. 10 or less), biomass declines nearly linearly in response to 

increasing anthropogenic pressures. The strength of the effect weakens and even begins 

to increase as human pressures increase further, perhaps reflecting human promotion of 

forest cover in and around settlements20. For example, conservation and restoration efforts 

such as the ‘shelterbelts’ in Nigeria, Mali and Burkina Faso, ‘green belts’ spanning the 

Sahel, and agroforestry have had a profound impact on woody-vegetation recovery in recent 

decades9,34,35. However, the human footprint relationship is characterized by a large degree 

of uncertainty, especially in areas with relatively moderate index scores (e.g., between 20 
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and 35) and further analysis is required to fully tease apart the nuanced relationship between 

woody biomass and anthropogenic disturbance.

Aridification yields a biomass deficit

Our end-of-the-century projections suggest that woody biomass respectively declines by 0.5 

– 2.5% in response to climate changes under RCP 4.5 and RCP 8.5, representing a biomass 

deficit of ca. 0.4 – 2.1 Pg relative to our predictions for the contemporary (i.e., baseline) 

period. While the overall spatial patterns of change are similar under both climate scenarios, 

the direction and magnitude of the response are amplified under RCP 8.5 (Fig. 3). Broadly 

speaking, woody vegetation tends to decline across most of West, Central, and Southern 

Africa in response to hotter and drier climate conditions. The already dry landscape of 

southern Africa is expected to become more arid, particularly in South Africa, where aridity 

under RCP 8.5 is expected increase by 6 – 10% relative to the baseline period (See Methods 

2.2).

Per unit area, the largest responses occur in the Cape and Namib desert regions, with the 

density of woody vegetation declining by ca. 15 – 33% depending on the scenario. However, 

these regions contribute a small fraction to the bottom line of Africa’s biomass budget, 

and therefore represent a relatively small fraction of the future deficit. In regard to biomass 

stock (and thus carbon storage), the largest projected deficits in response to climate changes 

occur in the central-mesic region and the West Sudanian Savannas, where woody biomass 

declines by ca. 0.3 – 2.1 Pg (Fig. 3). Under RCP 4.5, however, the magnitude of loss is much 

lower (−0.01 Pg), and the deficit is largely offset by growth in the Eastern Sahel (+0.01 

Pg). In West Africa, biomass deficits under RCP 4.5 emerge primarily in the western-most 

extent of the mesic Sudanian and Guinean savanna regions (e.g., southern Senegal, Guinea, 

Guinea-Bissau, and southern Mali). However, a much larger portion of West Africa is 

expected to incur deficits under RCP 8.5, with projected losses expanding further east and 

south across much of coastal West Africa (Fig. 2b).

Most of the projected biomass growth occurs throughout East Africa, where mean biomass 

density (Mg ha−1) increases by ca. 21 – 78% in response to warmer and wetter climate 

conditions. The largest potential increase for carbon storage occurs in the Horn of Africa 

(0.5 – 1.2 Pg), followed by the Rift Valley region (0.4 – 0.5 Pg), and the Highlands of 

East Africa (0.2 – 0.3 Pg). Although the density of woody vegetation has a relatively strong 

response to increasingly humid conditions across much of the semi-arid landscape of the 

Central and Eastern Sahel (e.g., northeastern Mali, Niger and Chad; Extended Data Fig. 

2), productivity will likely remain constrained by mean-annual rainfall. The carbon-storage 

potential of the Sahel is therefore expected to remain relatively low, with biomass increasing 

by ca. 0.01 – 0.04 Pg.

Fire dynamics have mixed effects

While Africa accounts for the majority of Earth’s fire-derived carbon emissions (52%)7, 

recent research indicates that burned-area extent has declined across sub-Saharan 

Africa36,37. Evaluation of our burned-area projections, driven by changes in climate and 
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human pressures, suggest that this trend may continue through the end of the century, 

particularly in the semi-arid and dry sub-humid regions of Africa, where projections of 

burned-area extent decline by 2 – 15% in response to the considered forcing scenarios. 

However, our results for the larger Sub-Saharan Africa region suggest that Africa’s already 

large contribution to global fire-derived carbon emissions may actually increase in the 

coming decades in response to aridification and increased fuel and flammability in humid 

regions, where the potential loss in woody biomass is relatively large.

At the continental scale, the impacts of fire on above ground woody biomass have virtually 

no effect under RCP 4.5, as regional gains and losses offset each other (Supplementary Table 

5). Under RCP 8.5, however, changing fire regimes appear to reduce Africa’s total woody 

biomass by an additional 1.7 Pg. The major fire-induced losses in carbon are attributed to 

reduced precipitation and higher evaporative demand in the moist tropics, where burned 

area is projected to increase and biomass density is one to two orders of magnitude larger 

than biomass density in other biophysical regions. Relatively large deficits in response to 

burned-area projections under RCP 8.5 are also expected to occur in eastern Madagascar 

(−0.5 Pg), as well as in East (−0.2 Pg) and West Sudanaian savannas (−0.2 Pg). Conversely, 

burned area is expected to decrease across large portions of East Africa, which has a small 

but positive effect on total biomass in the East African Highlands, the Rift Valley, and the 

Horn of Africa, presumably due to reduced fuels flammability in response to an increasingly 

humid climate. A reduction in burned area in the East Sudanian Savannas offsets the 

negative effects of climate changes under RCP 4.5, resulting in a small increase relative to 

the baseline period.

Anthropogenic pressures exacerbate climate-driven deficit

Our findings suggest that human pressures not only exacerbate the climate-driven deficits 

that are projected for much of West, Central, and Southern Africa, but also abate much of the 

growth response expected to occur across large portions of East Africa. Depending on the 

forcing scenario, above ground woody biomass is expected to decline by 4 – 8% in response 

to the compounding effects of changes in climate, fire disturbance, and human pressures

—representing a deficit of ca. 3.4 – 6.7 Pg relative to our predictions for the baseline 

period. The largest deficits under these assumptions occur in the moist tropical and central 

mesic regions, where biomass declines by ca. 1.2 – 2.8 Pg. In the East African Highlands, 

where biomass increases in response climate changes under both forcing scenarios, human 

pressures offset the growth response under RCP 4.5, resulting in a small deficit (Figure 3). 

This trend also occurs under RCP 8.5; however, the effects of climate changes outweigh 

those from human pressures because the growth response is much larger under the high 

emissions scenario.

Regional differences regarding the direction and magnitude of change in response to 

human pressures largely depend on projections regarding local population and economic 

development assumptions under SSP238—the “middle of the road” Shared Socioeconomic 

Pathways scenario (See Methods 2.3 and Extended Data Fig. 3). The largest relative change 

occurs in Niger (Fig. 5), where human pressures increase by 50%, followed by Liberia 

(31%), Chad (28%), and Egypt (28%). Conversely, index scores increase by just 1% in 
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Lesotho, and are expected to decrease in South Africa (−0.6%) and Zimbabwe (−5%), 

presumably due to regional differences in birth rates and/or emigration. While woody 

biomass has a small, positive response to the aforementioned demographic trends in South 

Africa and Zimbabwe, the effects of aridification are much stronger, resulting in an overall 

deficit under these assumptions.

Discussion

The compounding effects of climate change, regional increases in human pressures due to 

population and socioeconomic growth, and increased fire disturbance in heavily vegetated 

regions are expected reduce woody biomass by 4 – 8% across sub-Saharan Africa, 

representing a deficit of ca. 3.4 – 6.7 Pg relative to our contemporary estimates. Distinct 

spatial patterns of change are similar between the considered climate-forcing scenarios, but 

the trends are amplified under RCP 8.5. Our projections suggest that above-ground woody 

carbon storage declines across most of West, Central, and Southern Africa in response 

to increasingly arid conditions associated with climate changes. A small portion of the 

projected deficit is expected to be offset by growth in East Africa and other regions in 

response to warmer and wetter climate conditions.

Our evaluation of Anthropocene risks is enabled by integrating Representative 

Concentration Pathways with Shared-Socioeconomic Pathways—which were developed to 

provide a framework for a new generation of climate change research39. Anthropogenic 

pressures generally exacerbate the climate-driven deficit; however, considerable scope exists 

to determine how natural systems respond to socioeconomic transformation—such as land-

use change and/or community-based restoration efforts—and if non-linearity or tipping 

points exist where anthropogenic pressures lead to accelerated impacts. Our assessment 

of anthropogenic pressures via the human-footprint index circumvents the limitations of 

relying solely on remote sensing, which has difficulty in detecting low intensity pressures40 

and often confounds natural and anthropogenic land-cover patterns in arid and patchy 

environments41. This approach is, however, subject to three primary constraints. First, these 

data do not fully account for all human activities, such as invasive species and pollution32 or 

conservation and restoration efforts. Second, we model future human pressures from socio-

economic narratives of population dynamics only, leaving infrastructure, energy networks, 

and other data static. Third, we use the Shared Socioeconomic Pathways ‘middle of the 

road’ assumptions (SSP2) regarding population dynamics38,39. Therefore, we consider our 

projection of anthropogenic pressures to be conservative, as transportation networks, built 

environments, and agriculture will presumably expand with socioeconomic growth.

While our models do not incorporate mechanistic relationships or biogeochemical feedbacks 

that could alter the climate-driven trends, our results are generally consistent with those 

reported by Martens and colleagues42, who used an adaptive Dynamic Global Vegetation 

Model (aDGVM) to quantify ecosystem response to climate forcings under RCP 4.5 

and RCP 8.5. The authors reported that woody vegetation changed between −8 to 11% 

under RCP 4.5, and by −22 to −6% under RCP 8.5 when CO2 enrichment was omitted. 

When the CO2 effect was included, the authors reported that aboveground vegetation 

changed between 18% to 43% (RCP4.5) and 37% to 61% (RCP8.5), and that this 
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change was primarily associated with woody encroachment into grasslands and increased 

woody cover in savannas. However, some research suggests that general circulation and 

Earth system models may be overly sensitive to CO2 enrichment43 and that the CO2 

effect is weakened when moisture constraints are strong44. There is also evidence to 

suggest that CO2 enrichment may cause woody plants to complete their lifecycles faster45, 

therefore increasing biomass turnover and offsetting carbon sequestered in response to CO2 

enrichment46. Our approach is deliberately data-driven and empirical, acknowledging that 

although our models capture the socio-environmental components that explain much of 

the variability in the contemporary distribution of woody biomass, empirical projections 

may not fully capture the mechanistic relationships leading to the observed patterns of 

change. Indeed, the scenarios presented here are intended to provide insight into the 

multidimensional aspects of global change.

Climate change—coupled with population growth, economic development and land-use 

change—will inevitably lead to long-term and widespread changes in vegetation structure 

and carbon storage in Africa and other continents. Our understanding of these trends—

and the appropriate policy and land-management decisions needed to promote economic 

wellbeing and carbon sequestration—should be guided by research that not only examines 

the implications of climate-changes, but how economic development, demographic trends, 

and land management is likely to change over the next century. This information is essential 

to refine our understanding of how Anthropocene risks might impact coupled biophysical 

and social systems in the coming years. This is especially important for promoting and 

ensuring sustainable land use for the African communities that rely on local forests, 

woodlands, and savannas for energy, food, livestock grazing, traditional medicines, and other 

essential resources.

Data availability

The datasets used for this analysis can be accessed as described below.

1. Woody cover and biomass data24 are available GeoTiff files from the Oak Ridge 

National Laboratory (ORNL) Distributed Active Archive Center (DAAC; https://

doi.org/10.3334/ORNLDAAC/1777).

2. Aridity data were provided by Feng and Fu12.

3. The Human Footprint map32 is available as a GeoTiff file from Dryad (https://

doi.org/10.5061/dryad.052q5).

4. Future projections of human population density based on Shared Socioeconomic 

Pathways38 are available as GeoTiff files from the Socioeconomic Data and 

Application Center (SEDAC; https://doi.org/10.7927/m30p-j498).

5. Contemporary estimates of burned area are available as GeoTiff and were 

acquired from Kahiu and Hanan31.

6. HYSOGs47 data are available as GeoTiff from the ORNL DAAC (https://doi.org/

10.3334/ORNLDAAC/1566).
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7. Shuttle Radar Topography Mission (SRTM) elevation data were acquired 

from the United States Geological Survey (USGS) Earth Explorer (https://

earthexplorer.usgs.gov/).

8. Biophysical regions were derived from The Nature Conservancy Terrestrial 

Ecoregions and are provided as GIS shapefiles (http://maps.tnc.org/

gis_data.html).

9. Biomass prediction maps48 and R code49 are available from Figshare.

Methods

1. Overview of methods

We developed predictive relationships between satellite-derived estimates of woody 

biomass24 and socio-environmental covariates in R 3.4.450 with the random forest 

package51. The random forest algorithm52 was chosen as it allows for non-linear, non-

monotonic relationships between the target property and multiple covariates. Predictive 

relationships were modeled from a sample of the satellite-derived woody biomass estimates, 

which was achieved by extracting grid-cell attributes from our covariate set and satellite-

derived woody biomass estimates at 100,000 randomly generated point locations. Missing 

values were removed, leaving 99,471 rows in our modeling matrix. All random forest (RF) 

models were developed on a training set (80%) and model performance was assessed with 

a held-out validation set (20%). Training (n =79,576) and validation (n =19,894) sets were 

determined by splitting the data frame at random, an optimal mtry value of 4 was identified 

with the tuneRF function, and 1,000 individual trees comprised the forest. The two sample 

Kolmogorov-Smirnov test was conducted to verify that the distribution of woody biomass 

was similar between training and validation sets53.

2. Socio-environmental data

The spatial distribution of woody biomass was modeled with key socio-environmental 

drivers, including aridity12, anthropogenic disturbance32, burned area estimates31, 

elevation54, and hydrologic soil groups33,47 (Extended Data Fig. 1). All data were projected 

to a common coordinate system (sinusoidal equal-area) and, if necessary, re-sampled to 

match the spatial resolution of our woody biomass product (1 km−2). Bilinear interpolation 

and nearest neighbor were used to resample continuous and categorical data, respectively.

2.1 Woody biomass—Satellite-derived estimates of woody biomass were provided by 

Hanan et al.24 at 1 km2 resolution for sub-Saharan Africa (Extended Data Fig. 4). These 

estimates are a product of data integration, which was achieved by applying allometric 

equations to relate biomass with canopy cover and canopy height. Canopy cover estimates 

were produced at 1 km2 resolution by combining phenological metrics from MODIS with 

Quick-Scatterometer ku-band microwave retrievals. This product was chosen to represent 

canopy cover as it provides an improved assessment of low stature systems by accounting 

for vegetation less than 5 m in height, which occupy a considerable fraction of the 

African landscape but remain under-represented in widely-used tree-cover datasets due to 

mapping challenges presented by their complex landscapes, and the underestimation of 
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woody plants by methods that exclude short stature trees and shrubs29. Canopy height was 

estimated by Simard and colleagues55 from light detection and ranging (LiDAR) at 1 km2 

resolution. Biomass estimates were derived by relating canopy cover to canopy height with 

an allometric equation derived from the globallometree.org database56.

2.2 Aridity—Global coverage of the aridity-index was provided as a 27-model ensemble 

mean by Feng and Fu12 (Supplementary Table 1). The aridity index (AI = precipitation / 

potential evapotranspiration) was calculated using the Penman-Monteith method, which 

accounts for the effects of surface-air temperature, humidity, solar radiation, and wind speed. 

These data were temporally averaged over the CMIP5 historical forcing’s (1980 to 2005) 

to model satellite-derived estimates of existing woody biomass. Aridity was then calculated 

as 1 – AI so that increasingly larger values correspond to increasingly drier conditions. 

Ecosystem response to climate change (CMIP5 aridity projections) was modeled under 

representative concentration pathways (RCP) 4.5 and RCP 8.5. These RCPs were chosen to 

represent a broad range of potential climate change scenarios.

2.3 Human footprint—Following Venter and colleagues32, we adopted the human-

footprint methodology57 to project human pressures in response to population growth 

assumptions38 for end of the 21st century. Contemporary human pressures were related 

to satellite-derived estimates of woody biomass via the 2009 ‘Human Footprint’ map32, 

which was developed through cumulative pressure mapping by integrating datasets of built 

environments, population density, electric infrastructure, croplands, pasture lands, roads, 

railways, and navigable waterways. Venter and colleagues32 developed the Human Footprint 

index by first standardizing each dataset on a scale of 0 to 10 to obtain individual pressure 

scores for each dataset. Anthropogenic ‘pressure scores’ are then summarized into a single 

dataset to produce the Human Footprint index (Figure 3a). Low scores (e.g., 0 to 5) 

correspond to areas that that receive little or no pressure from human activities. Conversely, 

highly impacted areas (e.g., large cities) are assigned larger scores, with a maximum score of 

50.

To assess biomass dynamics in response to end-of-century human pressures, we produced 

a future Human Footprint map (Figure 3b) by calculating the population pressure score for 

2100. Projected population density was derived from the Global Population Projection Grids 

Based on Shared Socioeconomic Pathways (SSPs)38. We choose SSP2, which represents a 

conservative (‘middle of the road’) scenario regarding spatiotemporal patterns of population, 

urbanization, and development demographics. Following the human footprint methodology, 

a pressure score of 10 was assigned to all grid cells with 1,000 or more people km−2. 

Population pressure scores for the remaining grid cells were logarithmically scaled (Eq. 1).

Pressurescore = 3.33 × log populationdensity+1 (1)

To obtain an index score for the future human footprint, we summarized the pressures 

scores provided by Venter and colleagues32, substituting the 2009 population pressure score 

with the SSP2 population pressure score. While future projections of other anthropogenic 

activities (e.g., agricultural expansion, transportation, built environments, etc.) have not yet 

been developed, they are correlated with the increase in human population density. Thus, our 
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future human footprint map is considered a conservative estimate of human pressures for 

2100.

2.4 Burned area—Long-term (2003 to 2015) mean-annual burned area was provided 

from Kahui and Hanan31. These data were produced from Earth observations of monthly 

burned area estimates obtained from the Global Fire Emissions Database (GFED) with a 

spatial resolution of 0.25° (Extended Data Fig. 1). While most African fires are attributed 

to land use and management, climate strongly influences fire intensity, severity, and wildfire 

spread. We therefore model contemporary burned area as a function of climate (i.e. aridity), 

dry season precipitation, anthropogenic pressures as indexed by the human footprint, and 

elevation (Extended Data Fig. 1). Specifically, we used long-term mean-annual aridity 

and dry-season precipitation, elevation, and the Human Footprint map. The same set of 

randomly generated point locations described in the methods overview were used to extract 

the grid-cell attribute information from the aforementioned covariates. Model evaluation 

with the independent validation set (N = 20%) indicates that our random forest model was 

able to explain 72% of burned-area variation, corresponding to a RMSE of 8.8%. Evaluation 

of accumulated local effects, obtained from the Interpretable Machine Learning package58, 

indicates that aridity is the most important predictor of burned area, followed by dry-season 

precipitation, elevation, and human pressures. Burned area projections for the end of the 

21st century (2071 to 2100) were projected in response to changes in human pressures, 

mean-annual precipitation and dry-season precipitation.

2.5 Topo-edaphic properties—Hydrologic soil groups (0 – 100 cm) were obtained 

from the HYSOGs250m dataset47, which integrates data pertaining to soil texture classes, 

depth to bedrock, and depth to water table. Three arc-second, gap-filled Shuttle Radar 

Topography Mission (SRTM) elevation data was acquired from earthexplorer.usgs.gov. We 

assume that the aforementioned topo-edaphic properties (Extended Data Fig. 1) will not 

change substantially by 2100, and were therefore treated as constants in our model.

3. Model evaluation

Model evaluation and data analysis was performed with the tidyverse package59, and 

figures were produced using raster60, rasterVis61, ggplot262, colorspace63, RColorBrewer64, 

gridExtra65, iml58, and sf66 packages. Data-model fit was evaluated with the coefficient 

of determination (R2, equation 2), root mean squared error (RMSE, equation 3), residual 

prediction deviation (RPD, equation 4), and the ratio of performance to interquartile distance 

(RPIQ, equation 5).

R2 = 1 −
∑i = 1

n (yi − yi)2

∑i = 1
n (yi − y)2 . (2)

RMSE =   1
n ∑i = 1

n (yi − yi)2 . (3)
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RPD =   SD
RMSE n/ n − 1 . (4)

RPIQ =   IQ
RMSE . (5)

where, yi are the model predicted values, yi are the observed values, n is the number of 

predicted or observed values in the held-out dataset (testing) with i = 1, 2,…, n, SD is the 

standard deviation of the testing set, RMSE is the root mean square error, and IQ is the 

interquartile range.

Extended Data

Extended Data Fig. 1. Socio-environmental data.
a) Long-term mean-annual aridity based on the historical data12 (1981 – 2010) and b) 
climate zones, with H.A., hyper-arid; A., arid; S.A., semi-arid; S.H., Sub-humid; H., 

humid. c) Satellite-derived estimates of mean annual (2003 – 2015) burned-area (%)31. d) 
Digital elevation model52. e) The contemporary human footprint index32. f) Hydrologic soil 

groups33, with A corresponds to low runoff-potential soils (e.g., sands); B, moderately low 

runoff-potential; C, moderately high runoff-potential; D, high runoff-potential (e.g., clays).
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Extended Data Fig. 2. Biophysical regions and countries of sub-Saharan Africa.
a) Biophysical regions were derived by aggregating The Nature Conservancy Terrestrial 

Ecosystems30 into broader classes. b) Country borders were mapped using the R sf64 

package.
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Extended Data Fig. 3. Human population density.
a), Population density (people per km−2) for 2010 and b) projected population density for 

2100 under the “middle of the road” Shared Socioeconomic Pathways (SSP2)38.
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Extended Data Fig. 4. Above-ground woody biomass (Mg ha−1)
a), Satellite-derived estimates of above-ground woody biomass24. b), Predicted above-

ground biomass representing the baseline (i.e., contemporary) estimates. c), End of century 

empirical projection of woody biomass in response to RCP 4.5 and assumptions regarding 

population growth and fire regime changes. d), End of century empirical projection of 

woody biomass in response to RCP 8.5 and assumptions regarding population growth and 

fire regime changes. Data are available for download48 as GeoTiffs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Satellite-derived estimates of contemporary (2005) above-ground woody biomass (Mg 
ha-1).
By integrating Earth-observation data from optical, microwave, and LiDAR sensors, Hanan 

and colleagues24 improved biomass estimates for trees and shrubs in the open and low-

stature dryland and drought-seasonal savannas of sub-Saharan Africa. Marginal plots on 

vertical and horizontal axes correspond to woody biomass density averaged by latitude and 

longitude, respectively. The map overlay corresponds to ecological regions, which were 

derived by aggregating Terrestrial Ecosystems30 into broader classes (Extended Data Fig. 

2). CA is the Cape of Africa; CM is Central Mesic; EAH is East African Highlands; EM is 

Eastern Madagascar; ES is Eastern Sahel; ESS is East Sudanian Savannas; HA is the Horn 

of Africa; MT is Moist Tropical; ND is Namib Desert; RV is Rift Valley; SD is Southern 

Dry; WM is Western Madagascar; WS is Western Sahel; WSS is West Sudanian Savanna.
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Figure 2. Sensitivity of above ground woody biomass to socio-environmental conditions.
Accumulated local effects from the fitted random forest model (n =79,576) illustrate 

the relationship between sub-Saharan woody biomass and socio-environmental covariates, 

which are ranked in order of largest (top) to smallest effect (bottom). The x-axis represents 

the units of the independent covariate, the y-axis represents the size of the mean effect 

each covariate has on woody biomass predictions, and grey shading indicates the 95% 

confidence interval. Aridity [calculated as 1 – (precipitation/potential evapotranspiration)] 

values ranging from 1.0 – 0.9, 0.9 – 0.8, 0.8 – 0.5, 0.5 – 0.35, and less than 0.35, 

respectively correspond to hyper-arid, arid, semi-arid, dry sub-humid, and humid regions. 

Hydrologic soil groups A, B, C, and D respectively correspond to soils with low run off 
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potential (e.g., sandy soils), moderately low, moderately high, and high runoff potential (e.g., 

clay soils).
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Figure 3. Projected change (%) in above ground woody biomass relative to contemporary 
estimates.
Each map represents the projected change (%) in the mean density of woody-biomass (1 

km−2) relative to the baseline period in response to projections in aridity (calculated as 1 

– (precipitation/potential evapotranspiration)] under a) RCP 4.5) and b) RCP 8.5. The map 

overlay corresponds to biophysical regions illustrated in Fig. 1.
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Figure 4. Projected above ground woody biomass changes in response to climate change, fire and 
human land use.
Projected above-ground woody biomass change (Pg) are in response to climate changes 

under RCP 4.5 and RCP 8.5. Also illustrated are the compounding effects of climate change 

and burned area, and the compounding effects of climate change, burned area, and human 

pressures.
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Figure 5. Sensitivity of burned area (%) to socio-environmental conditions.
Accumulated local effects from the fitted random forest model illustrate the relationship 

between burned-area and socio-environmental covariates in sub-Saharan Africa, which are 

ranked in order of highest feature importance (top) to lowest feature importance (bottom). 

The x-axis represents the units of the independent covariate, the y-axis represents the size 

of the mean effect each covariate has on woody biomass predictions, and grey shading 

indicates the 95% confidence interval. Note that larger human footprint values correspond to 

regions with higher human pressures due to anthropogenic activity.
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Figure 6. Anthropogenic pressure scores for sub-Saharan Africa.
a) The contemporary Human Footprint map32 was developed through cumulative pressure 

mapping, integrating data regarding the built environment, population density, electric 

infrastructure, croplands, pasturelands, roads, railways, and navigable waterways32. Small 

index scores (e.g., 0 – 3) correspond to areas with little or no human impact, while 

large scores correspond to highly impacted landscapes and urban areas. b) End of the 
21st Century human footprint index using population density projections for 2100 under 

the Shared Socioeconomic Pathways (SSP2) ‘middle of the road’ assumptions regarding 

population dynamics38.
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