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Abstract

There are more amino acid permutations within a 40-residue sequence than atoms on Earth. This 

vast chemical search space hinders the use of human learning to design functional polymers. Here 

we show how machine learning enables de novo design of abiotic nuclear-targeting miniproteins to 

traffic antisense oligomers to the nucleus of cells. We combined high-throughput experimentation 

with a directed evolution-inspired deep learning approach in which the molecular structures of 

natural and unnatural residues are represented as topological fingerprints. The model is able 

to predict activities beyond the training dataset, and simultaneously deciphers and visualizes 

sequence-activity predictions. The predicted miniproteins, termed “Mach”, reach 10 kDa average 

mass, are more effective than any previously known variant in cells, and can also deliver proteins 

into the cytosol. The Mach miniproteins are nontoxic and efficiently deliver antisense cargo in 

mice. These results demonstrate that deep learning can decipher design principles to generate 

highly active biomolecules that are unlikely to be discovered by empirical approaches.
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Introduction

The vast chemical search space hinders design of functional macromolecules by empirical 

approaches alone.1 It is hypothesized that machine learning can enable interpolation in 

high-dimensional search spaces by bridging the gaps between experimental training data 

points.2,3 Recent works have shown promise using a variety of input representations and 

quantitative activity prediction for design of new antimicrobial peptides and antibody CDR3 

loops.4–6 For cell-penetrating peptides (CPPs), similar strategies involving binary classifiers 

have been used to optimize activity.7–10 We sought to further address this challenge by 

using a large standardized dataset and an advanced input representation combined with deep 

learning to simultaneously design new functional miniproteins and quantitatively predict 

their activity.

Successful design of functional polymers can have considerable implications for medicine. 

For example, anticancer miniproteins have been shown to access intracellular targets.11,12 

Similarly, CPPs are short (5-20 residue) sequences that can enhance intracellular delivery of 

biomolecules, such as oligonucleotides and proteins, that otherwise cannot efficiently cross 

the cell membrane.13–17 While promising, variation in experimental design has resulted in 

inconsistent and sometimes contradictory datasets. For example, penetratin has different 

efficacy as a CPP depending on the assay and the cargo.18 These inconsistent results 

preclude the development of sequence-activity relationships and complicate the use of 

machine learning models to design analogs de novo.19–21

We overcome these challenges by de novo design of abiotic miniproteins that deliver an 

active cargo, antisense phosphorodiamidate morpholino oligomer (PMO), to the nucleus of 

cells. The miniproteins described here are distinct in that they have a defined function (PMO 

delivery) and are significantly longer (30-80 residues) than CPPs (5-20 residues). While 

PMO has recently been approved for the treatment of Duchenne muscular dystrophy, a 

major challenge remains with their poor cellular permeability.13–17,22,23 High doses of PMO 

of up to 50 mg/kg are required for in vivo efficacy.24 It has been shown that nuclear delivery 

can be improved by attaching PMO to CPPs, and the first clinical success of this strategy 

has been demonstrated just this year.25,26 Development of advanced, novel sequences for 

antisense delivery would rapidly accelerate the development of these gene therapies.

Here we report a deep learning-based design strategy with predictive power fueled by robust 

input data containing unnatural residues and structures. Our framework includes generation 

of starting sequences, a predictor to predict the activity of a sequence, and an optimizer to 

improve the activity of the sequence. A library containing 600 unique antisense-miniprotein 

conjugates was constructed using linear combinations of three peptides, or “modules” (Fig. 

1a). A quantitative activity readout was achieved using an in vitro assay in which nuclear 

delivery of PMO results in enhanced green fluorescent protein (EGFP) fluorescence (Fig. 

1b–c). Residues were encoded as fingerprints to provide chemical structure information, 

labeled with corresponding activity data, and used to train a predictor neural network (Fig. 

1d). A “CPP thesaurus” dataset was used to train a generator neural network to produce 

novel sequences that are “CPP-like” to be used as seeds for optimization. These novel 

sequences were then optimized in the predictor-optimizer loop to increase predicted activity 
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while minimizing similarity to the library, and minimizing length and arginine content to 

mitigate toxicity.27 The output is hundreds of de novo designed sequences with a broad 

spectrum of predicted activity (Fig. 1e).

The model is also interpretable: we can visualize the decision-making process and 

identify structure-activity relationships that are consistent with empirical observations. 

From these predictions, we discovered best-in-class abiotic “Mach” (Machine Learning) 

nuclear-targeting miniproteins that improve PMO delivery by 50-fold and are effective in 

animals. Mach miniproteins are nontoxic and noninflammatory, and are able to deliver 

macromolecules other than PMO to the cytosol. Our approach has the potential to be 

extended to the design of peptides with other functions, although further work is required in 

these directions.

Results

Assembly of a Standardized Dataset

Recently, we demonstrated that linear combinations of known CPP sequences into chimeric 

miniproteins can synergistically improve delivery of PMO compared to each CPP alone.28 

We hypothesized that expanding this approach to a larger, more diverse library of linear 

combinations of CPPs would access a wide range of sequences and activities. We designed 

a synthetic method to assemble this library via bioconjugation of peptide “modules” into 

hundreds of novel PMO-miniproteins. Our rationale is that such a library would enable a 

broad sequence diversity and spectrum of activities and would be ideal to train machine 

learning models (Fig. 1).

Our synthesis strategy employs four modules: one for PMO and three for distinct pools 

of peptide sequences containing diverse structure and function, including nuclear-targeting 

peptides and peptides containing unnatural residues and cysteine-linked macrocycles 

(Supplementary Table 11).29 The constructs were synthesized in a series of bioconjugation 

reactions that are chemoselective and irreversible, yielding products of sufficient crude 

purity for direct testing in vitro (Supplementary Fig. 18). The resulting library contained 600 

miniproteins, composed of combinations of 57 total peptides.

The resulting dataset was broad in terms of both peptide sequences and range of activity, 

quantified by a high-throughput nuclear-targeting assay.19 The activity-based assay that 

is used to acquire the training data provides a direct, quantitative readout of the activity 

characteristic we want to enhance—specifically nuclear delivery. In this assay, HeLa 

cells stably transfected with an EGFP gene interrupted by a mutated intron of β-globin 

(IVS2-654) produce a non-fluorescent EGFP protein. Successful delivery of PMO IVS2-654 

to the nucleus results in corrective splicing and EGFP synthesis. The amount of PMO 

delivered to the nucleus is therefore correlated with EGFP fluorescence, quantified by flow 

cytometry. Activity is reported as mean fluorescence intensity (MFI) relative to PMO alone 

(Fig.1c, e, Supplementary Information). The most active construct improved PMO delivery 

by nearly 20-fold, while the median activity was 3-fold.
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Developing the Deep Learning Model

Inspired by directed evolution, we leveraged fingerprint sequence representations to 

develop a machine learning-based generator-predictor-optimizer triad. In this framework, the 

generator produces novel cell-penetrating sequences, the predictor quantitatively estimates 

the activity for a given sequence, and the optimizer evolves towards the most optimal 

miniprotein sequence.

The standardized dataset of activity-labeled sequences from the modular library allowed 

for development and training of a quantitative regressor algorithm. This approach enabled 

us to overcome the limitations of other efforts in the computational CPP literature 

which employed binary classifiers of active versus inactive sequences.2,3,8,30–32 These 

previous predictors were mostly trained using physicochemical descriptors, with datasets 

obtained from non-standardized experiments and containing only natural residues.7,10,33,34 

Inclusion of chemically diverse unnatural moieties using this strategy is challenging 

because such physicochemical descriptors may not be readily available. The ability to 

predict the effect of unnatural residues expands the chemical search space, and may 

lead to enhanced macromolecule delivery.35 One-hot residue encodings can be extended 

to represent unnatural residues in the training data. We were interested, however, in 

encoding the molecular structure of each residue. Therefore, to predict activity of de novo-

designed nuclear-targeting abiotic miniproteins, we evaluated a topological representation 

based on stacking traditional cheminformatics fingerprints for each residue along the 

sequence.36 This representation extends the approach of using one-hot encodings for 

quantitative structure activity relationship predictors in the peptide literature,4,5 provides 

chemical structure information for unnatural residues, and may leverage weight sharing 

across structurally similar residues. Combined with quantitative experimental readouts, this 

polymer representation allows us to access the diverse pool of unnatural residues and 

structures and quantitatively predict delivery activity.

Peptide sequences are represented as matrices comprised of residue fingerprints in the 

columns, padded with zeros until each sequence matrix is the same length. Individual 

residue fingerprints are bit-vectors based on the molecular graph of the whole monomer, 

including backbone and side-chain. We used 2048-bit ECFP6 fingerprints generated by 

RDKit (Fig. 2a, SM Appendix 3) but other structural descriptors may be used.37 For 

analysis and visualization of fingerprints, we removed all indices which are inactive across 

all residues, resulting in a condensed 191-bit fingerprint (SM Appendix 3). Each bit in 

the vector corresponds to a substructure, and is active/inactive depending on the presence/

absence of the particular substructure. Representing residues as chemical structures, rather 

than discrete choices, eases the use of both natural and unnatural residues and leverages 

chemical similarity between residues. The fingerprints are then compiled into a row matrix 

to encode the amide backbone of the peptide sequence (Fig. 2b). This representation method 

is also more effective than typical one-hot encodings at using inherent chemistry to predict 

novel sequences and is able to predict activities of sequences containing a new residue not in 

the training set (Supplementary Table 8, Supplentary Information Section 2.5).

The predictor neural network quantitatively estimated normalized MFI for a given sequence. 

Pairs of sequence representations and corresponding experimental activities were used 
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to train a convolutional neural network (CNN). The training dataset consisted of PMO-

miniproteins from the modular library as well as other conjugates previously tested in 

the same assay.7 A randomly-selected 20% of the dataset was saved for validation of 

the predictive accuracy of the algorithm. The root mean squared error (RMSE) on the 

validation set was 0.4 of the standard deviation of the training data. The prediction 

relative error was found to be 11% as long as the predicted activity fell within the 

range of training values (normalized activity of 0.32-19.5) (Fig. 2c). Tests were conducted 

against other model architectures, using both fingerprint and one-hot encodings in both 

regression and classification tasks (Supplementary Tables 1–5; Supplementary Figs. 2–3; 

Supplementary Information Sections 2.1, 2.2). We also explicitly tested whether reported 

models (hosted as webservers) were able to predict activity of the Mach miniproteins 

accurately (Supplementary Table 6). We observed that most of these models were limited 

by the range of the training data, and that only the CNN-FP model was able to extrapolate 

in the codomain and generate predicted activity values (validated by experimental activity 

values) that were greater than any in the training set. This ability to extrapolate, however, 

came at a cost in average accuracy because of the increased statistical noise of extrapolated 

predictions. Models based on the topological representations added only minimal increase 

in performance over one-hot encodings on the validation dataset, and performed similarly 

or worse on the Mach dataset, due to outliers with extreme predicted activity values 

(Supplementary Table 2). However, a CNN model using one-hot encodings, despite its 

lowest overall average error, was not able to extrapolate in the codomain space, unlike 

when using fingerprint representations. To investigate the role of outliers that impact model 

performance, we used model ensembling and found the ensembled CNN one-hot model is 

superior for the validation dataset, whereas the ensembled CNN-FP model is superior for 

the Mach dataset, likely due to its ability to extrapolate in the codomain (Supplementary 

Table 3). Further efforts should be focused on how to accurately predict activity values that 

reach beyond that of the training set. We investigated the CNN model’s ability to extrapolate 

from the training dataset and found that experimental activity above a threshold of ~8 is 

necessary to accurately predict peptides with activity beyond that of the training dataset 

(Supplementary Fig. 4, Supplementary Table 7). Finally, inclusion of unnatural amino acids 

was required for high-activity predictions, as predicting canonical sequences using the same 

model resulted in a significant drop in predicted activity (Supplementary Fig. 6).

We developed a generator based on a recurrent neural network (RNN) that captured the 

ontology of CPPs and generated “CPP-like” starter sequences. We trained the generator 

using a nested long short-term memory (LSTM) neural network architecture, which is 

better able to capture long-range correlations in sequence data.38 We trained the algorithm 

using a “CPP thesaurus,” a collection of sequences from both our modular library and the 

literature.39 Because the model is learning sequence grammar and has no role in activity 

predictions, no quantitative labels are necessary and we can use a large dataset of available 

sequences. Other strategies for generating seed sequences also resulted in predicted peptides 

with high predicted activity. For example, starting with the top 50 performers from the 

PMO-CPP library resulted in the highest predicted activity values. However, we confirmed 

that the generator approach led to predicted sequences that better met our three criteria 

simultaneously: high predicted activity, low similarity, and low Arg content, compared to 
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other methods of generating seed sequences (Supplementary Fig. 5, Supplementary Table 

9). It is possible for the other methods of seed selection and optimization to also produce 

optimal peptide sequences, but experimental validation is required to adequately compare 

these methods.

The optimizer completed the loop based on directed evolution. Sequences from the generator 

were randomly mutated and evaluated against an objective function, which maximized 

activity as predicted by the CNN model, and minimized length, arginine content, and 

similarity to the library while retaining water solubility estimated with net charge of the 

sequence (Supplementary Table 10). After 1000 iterations over each sequence, the model 

delivered hundreds of unique sequences with a wide range of predicted activity values. 

Along with highly active sequences, we predicted inactive sequences as negative control. By 

directing the evolution of the optimizer in the opposite direction, i.e., minimizing MFI, but 

keeping other constraints the same, we were able to generate an inactive sequence (Mach11) 

that appeared similar in amino acid composition to the active predictions. After synthesis, 

the Mach11 conjugate displayed low experimental activity, demonstrating the robustness of 

the model in predicting the activity of a unique sequence (Fig. 2c).

Interpreting the predictor model

We interpreted the predictor CNN by visualizing the residue substructures that are important 

in its decision-making process. This type of visualization was a longstanding attribution 

challenge that was recently addressed for image classification and more recently with small 

molecule design.40–42 We developed an analogous tool to correlate the input sequence 

representation with predicted activity. This process generated bit-wise positive and negative 

activation values for each chemical substructure in the sequence. Bits with higher activation 

indicated the features that most strongly influence the final activity prediction.

As an example, for the predicted Mach3 sequence the two C-terminal aminohexanoic acid 

(Ahx) residues were the most positively activated (Fig. 3a), followed by arginine (Arg). The 

alkyl backbone in Ahx was the most activated substructure (Fig. 3b). A similar trend was 

observed for active sequences and substructures in the training dataset (Supplementary Fig. 

7–8).

We used this visualization approach to better understand how the trained model designed 

sequences. We chose five random sequences of different lengths, seeded them in the 

predictor-optimizer loop to maximize activity contingent upon other design constraints, 

and visualized the activations for the best predictions. Again, a higher activation can be 

seen for C-terminal residues (Fig. 3c), most likely due to the attachment of PMO to the 

N-terminus. We also observed that the general composition of charged and hydrophobic 

residues remained unchanged across different sequence lengths (Fig. 3d). Particular residue 

fingerprints were activated irrespective of the sequence length, such as the side chains of 

Lys, Ser, and Asp (Fig. 3e–f). Consistent with earlier observations, a strong preference for 

polar and charged side chains as well as for Ahx was evident. We investigated whether the 

attribution feature is useful toward post-hoc mutations to Mach miniproteins, and found a 

significant boost in activity when mutating Ahx (6-carbon chain) to aminoundecanoic acid 

(11-carbon chain) in Mach3 (Supplementary Fig. 16).

Schissel et al. Page 6

Nat Chem. Author manuscript; available in PMC 2022 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mach miniproteins enhance PMO delivery

We synthesized and characterized twelve candidates from hundreds of miniproteins 

predicted by the model, selecting diverse sequences and predicted activities. Mach1, 2 and 6 

were selected because they had high predicted activity among 50-mer sequences. Mach3 was 

selected as a mid-length peptide (39 residues), Mach4 was selected as a shorter sequence 

(33 residues) with only two Arg residues, and Mach5 was selected because it was predicted 

to have moderate activity while having the lowest net charge (10.5). Mach7 was initially 

designed to be a negative control—where the sequence of Mach1 was rearranged until the 

model predicted the lowest activity. Mach8 and 9 were selected from a list of much longer 

miniproteins (around 80 residues) and Mach12 and 13 were selected from sequences that 

contained Cys-linked macrocycles. Finally, Mach11 was selected from a list of sequences 

for which the activity was optimized in the negative direction, to show that the algorithm 

could predict peptides of similar length, charge, and amino acid composition, but with 

no PMO delivery activity. Each candidate was synthesized using automated fast-flow solid-

phase peptide synthesis, and when applicable, the two cysteine residues were connected 

with decafluorobiphenyl as previously reported (Supplementary Fig. 1).43,19 Conjugation of 

azido-Mach to PMO IVS2-654 was achieved in the same manner as in the library. The final 

PMO-Mach constructs are described in Supplementary Table 12.

Nearly all sequences predicted to have activity greater than 20-fold did indeed surpass the 

highest performing modular library construct, with the exception of Mach5. Because the 

model is extrapolating outside the range of the training data, the predicted and experimental 

activity of PMO-Mach constructs shows greater % error than the test dataset (Fig. 2c). The 

PMO-Mach constructs were first tested for PMO delivery in the HeLa 654 assay as was 

done with the library (Supplementary Fig. 20).

Physicochemical properties of validated predictions show little correlation with PMO 

activity. We compared the activities of Mach constructs to the training library in relation 

to various physicochemical properties (Fig. 2d–e). While library constructs clearly show an 

increase in activity with an increase in arginine content relative to length, and net charge 

relative to length, there is no obvious correlation between activity of Mach constructs and 

these same properties. In addition, truncated versions of PMO-Mach constructs do not 

retain the activity of the parent sequences (Supplementary Fig. 17). These observations 

suggest that the model is taking advantage of sequence-activity relationships that go beyond 

sequence length and charge.

Several PMO-Mach constructs have greater potency than previously characterized PMO-

CPPs, while remaining nontoxic. This type of macromolecular delivery is a historic 

challenge, often suffering from either membrane toxicity or endosomal entrapment. We first 

verified that PMO-Mach constructs enter cells via energy-dependent uptake using a panel 

of chemical endocytosis inhibitors and the HeLa 654 assay (Supplementary Fig. 13). We 

then performed dose-response experiments to characterize activity in the EGFP assay and 

toxicity in a lactate dehydrogenase (LDH) release assay. PMO-Mach2, 3, 4, and 7 each had 

an EC50 value near 1 μM and were nontoxic at the concentrations tested, as determined 

by viability staining with propidium iodide (PI) and an LDH release assay (Fig. 4a–c, 

Supplementary Fig. 21–22). Extending toxicity tests to higher concentrations in renal cells 
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showed that no toxicity was observed at the highest concentration needed for maximum 

PMO activity in HeLa 654 cells (Supplementary Fig. 23). We compared these results to a 

previously well-performing CPP for PMO delivery, Bpep-Bpep.28 This peptide has similar 

activity, but is composed of mostly Arg residues and exhibits cytotoxicity above 10 μM 

(Supplementary Fig. 22). This contrast between Mach peptides and Bpep-Bpep indicates 

that there is no apparent direct connection between toxicity and cargo delivery efficacy. 

PMO-Mach constructs have high activity, low arginine content, and a wide therapeutic 

window, highlighting their suitability for cytosolic and nuclear delivery.

Mach miniproteins deliver other biomacromolecules

Mach miniproteins are versatile in that they can deliver other large biomolecules to the 

cytosol. Peptide nucleic acid (PNA), is a class of synthetic antisense oligonucleotides that 

has the same mechanism of action as PMO but has a highly flexible backbone structure.44 

We tested for delivery of a PNA variant of PMO 654 that is compatible with the EGFP assay. 

Each of the four Mach miniproteins tested was able to significantly enhance PNA delivery 

(Fig. 4d, Supplementary Fig. 24).

In addition to antisense oligonucleotides, Mach peptides can also deliver charged proteins, 

such as Diphtheria toxin A (DTA). DTA is a 21 kDa anionic protein segment containing the 

catalytic domain of the toxin but lacking the portions that endow cell entry.45 Delivery of 

this enzyme can be monitored using a cell proliferation assay as it inhibits protein synthesis 

in the cytosol. We found that Mach-DTA constructs were delivered into the cell cytosol 

significantly more efficiently than protein alone, and that covalent linkage was required 

for delivery (Fig. 4e, Supplementary Fig. 25). Furthermore, we confirmed that toxicity is 

due to the cytosolic delivery of active DTA by comparing the wild-type constructs to those 

containing DTA(E148S), a mutant with 300-fold lower activity that the wild-type.46 As 

expected, the mutant DTA conjugates lead to significantly reduced toxicity.

Conjugation to Mach miniproteins also improves the delivery of EGFP, a fluorescent protein 

commonly used as a reporter. Confocal micrographs of HeLa cells displayed diffuse green 

fluorescence in the cytosol and intense fluorescence in the nucleus after incubation with 

Mach-EGFP (Fig. 4f). This observation is in contrast with the EGFP alone condition, in 

which no diffuse fluorescence was observed in either location, indicating reduced uptake.

PMO-Mach restore protein synthesis in mice

After verifying Mach miniproteins’ propensity for in vitro macromolecule delivery, we 

looked towards in vivo antisense applications. In vitro tests with human macrophages 

suggested that the constructs are not inflammatory and therefore may be safe to evaluate 

in animals (Supplementary Fig. 15). Existing predictive models also suggest that Mach 

sequences would not be T cell epitopes (Supplementary Fig. 12).

Lastly, we demonstrated that PMO-Mach constructs safely correct protein synthesis in 

animals. Transgenic mice containing the same EGFP IVS2-654 gene as used in cell assays 

were given a single intravenous injection of varying doses of PMO-Mach3 or PMO-Mach4 

and evaluated after 7 days. Both constructs exhibited a dose-dependent increase in EGFP 

expression in quadriceps, diaphragm, and heart (Fig. 4g–i). PMO delivery to the heart is a 
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critical but challenging objective. Here we observe similar levels of protein synthesis in both 

skeletal and cardiac tissue. In addition, there were no significant changes in the level of renal 

function biomarkers 7-days post-treatment (Supplementary Fig. 26). These findings indicate 

that Mach miniproteins may be safe delivery materials for PMO to muscle tissue.

Discussion

We demonstrate a method to efficiently sample the vast chemical search space of functional 

peptides using machine learning and standardized experimentation. Our model was applied 

to the design of abiotic miniproteins that can deliver an antisense PMO to the nucleus with 

greater efficiency than any previously known polypeptide-based variant. Importantly, the 

new constructs are effective in animals and are non-toxic up to a dose of 30 mg/kg. These 

miniproteins are versatile intracellular carriers, delivering other classes of biomolecules to 

the nucleus and cytosol, including antisense PNA, fluorescent protein, and enzymes. The 

core strengths of our model lie in: (1) standardized quantitative activity data, (2) the model’s 

ability to extrapolate beyond the training set and (3) a visual attribution tool to interpret the 

decision-making process of the model.

A critical factor in building a robust machine learning model was the training dataset; 

the 600-member library was synthesized by combining peptide modules, and tested in a 

standardized assay that provides quantitative activity information. Synthesis and testing 

of the modular PMO-CPP library produced a broad spectrum of sequence and activity 

data with which we trained the model. By representing peptide sequences as topological 

fingerprints rather than categorical choices or descriptors such as molecular weight, charge, 

and hydrophobicity, the model has access to inherent structural information and can be used 

on monomers not encountered in the training data. The standardized activity values allowed 

us to use a quantitative regressor, rather than an active/inactive classifier, and thus design 

sequences with a broad spectrum of activity predictions. While we have previously tested 

CPPs designed by other machine learning methods, we found that they were not able to 

deliver PMO.7 The CNN model using fingerprints was able to extrapolate predicted activity 

beyond that of the training dataset, while models using other frameworks and representations 

were not. While the other models and methods to generate seed sequences may be able to 

produce sequences with high experimental activity, the ability to predict that high activity 

is critical for the informed selection of predicted sequences to validate. Since our goal is to 

discover unique peptides with higher activity than any previously known, a model able to 

predict values outside the range of the training data is required, thus necessitating the use of 

CNN with fingerprint representations.

The interpretability of the model is an additional advantage. By overlaying the output of 

the predictor with the sequence matrix of a given peptide, we can visualize the activated 

residues and substructures important for the decision-making process. Several observations 

from the interpretations match our current understanding of CPP motifs, such as the benefit 

of cationic residues. The model also identified Ahx as an important residue, one which has 

only been investigated in the context of endosomal escape in Arg-rich sequences.47 This tool 

allowed for post-hoc analysis to validate empirical hypotheses and enhance the activity of 
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Mach3 by mutating aminohexanoic acid to aminoundecanoic acid, an amino acid not present 

in the training dataset.

In addition to PMO, Mach peptides deliver other antisense oligonucleotides as well as 

functional proteins into the cell cytosol. Delivery of EGFP reveals diffuse green fluorescence 

in the cytosol and clear accumulation of EGFP to the nucleus. We believe that Mach 

peptides may contain nuclear localization sequences (NLS), which have been described 

previously and are typically lysine-rich.48 However, nuclear localization is not solely due 

to the cationic charge, as shown by a previous study.49 The model likely selected for 

such NLS sequences because the activity used in the training was acquired from a nuclear 

delivery-based assay.

PMO-Mach conjugates effected a dose-dependent increase in protein synthesis in all three 

examined mouse muscle tissues including heart after a single intravenous injection. The 

mouse model used contains the same transgene as the in vitro assay, and the Mach 

sequences recapitulated the in vitro results in vivo, indicating that the model implemented 

here could be applied to data obtained from animal experiments. If a sequence-activity 

training set were generated from data obtained in animals, then this model may be applicable 

further downstream in the drug design pipeline. A greater challenge remains toward in vivo 

delivery to target tissues. In Duchenne muscular dystrophy, PMO must access the nucleus 

of muscle cells to have therapeutic effect. Targeting to cardiac tissue is a primary concern 

given that the leading cause of death from this disease is heart failure. Our animal model 

confirmed localization of the PMO-Mach constructs to the heart, suggesting a potential 

solution to the tissue targeting challenge.

In conclusion, this strategy illustrates how deep learning can be applied to de novo design of 

functional abiotic miniproteins. The Mach miniproteins are the most effective PMO delivery 

constructs developed to date and are effective in animals. Our machine learning framework 

could potentially be repurposed to discover sequence-optimized peptides with other desired 

activities, solely requiring a standardized high-quality input dataset. We envision that this 

strategy will enable the rapid future design of de novo functional peptides with impact on 

chemical, biological and material sciences.

Methods

Peptide synthesis:

All peptides and miniproteins were synthesized by automated solid-phase peptide 

synthesis as previously described.43,50 If the predicted sequence contained a cysteine 

macrocycle, we subsequently utilized SNAr chemistry to link the two cysteine residues 

with decafluorobiphenyl before additional purification. PMO was acquired from Sarepta 

and functionalized with a DBCO acid handle. A complete description of the synthesis, 

purification, and characterization protocols can be found in the supplementary information.

Mach miniproteins were conjugated to PMO via strain-promoted azide-alkyne 

cycloaddition. PMO-DBCO (5 mM in water) was stoichiometrically combined with azide-

peptide (5 mM in water) and incubated at room temperature until reaction completed 
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(between 2 and 12 hours), monitored by LCMS. The reaction was purified using reversed-

phase HPLC (Agilent Zorbax SB C3 column: 21.2 x 100 mm, 5 μm) and a linear gradient 

from 2 to 60% B (solvent A: 100 mM ammonium acetate in water pH 7.2; solvent B: 

acetonitrile) over 58 min (1% B / min). Pure fractions were pooled as determined by LCMS 

and lyophilized.

50 nmol of PNA 654 (O-GCTATTACCTTAACCCAG-Lys(DBCO)) was purchased from 

PNABio. PNA-DBCO (1 mM in water) was stoichiometrically combined with azide-peptide 

(1 mM in water) and incubated at 4 °C for 12 hours. The product was then used in cell 

assays without purification. Conversion was checked by LCMS.

Library synthesis:

The library was synthesized in a combinatorial fashion and analyzed by LCMS 51. The 

600-member library was synthesized using 50 peptide members in module 4 (SM).

Reaction 1: PMO-DBCO was dissolved in water to 10 mM concentration (determined 

by UV-Vis). The module 2 peptides were dissolved in water containing 0.1% TFA at 10 

mM concentration (determined gravimetrically; the molecular weight was calculated to 

include 0.5 trifluoroacetate counter ions per lysine, arginine, and histidine residue). In a 

microcentrifuge tube, 50 μL each of PMO-DBCO solution and module 2 peptide solution 

were mixed and incubated for 1 h. The product was analyzed by LC-MS and dried by 

lyophilization. Lastly, the product was resuspended in 100 μL of DMSO to provide a 5 mM 

solution and stored at −20 °C.

Reaction 2: Stock solutions were prepared by dissolving module 3 peptides and module 4 

peptides in water at 10 mM concentration (determined gravimetrically). For each reaction, 4 

μL of module 3 peptide was mixed with 4 μL of module 4 peptide in a PCR tube. Separately, 

the copper bromide solution was prepared by mixing 1 mL of degassed DMSO with 2.8 mg 

copper (I) bromide under N2 to afford a 20 mM solution. Under ambient conditions, 4 μL of 

the CuBr solution was added to the mixture of module peptides 3 and 4. The reaction was 

capped and the reaction was allowed to proceed for 2 hours; the small amount of O2 present 

during reaction setup does not substantially impede reaction progress. After 2 hours, 2 μL 

of a 100 mM solution of Na2HPO4 was added. The PCR tube was then sonicated, vortexed, 

and centrifuged. To remove the solvent, the PCR tube was centrifuged under vacuum using a 

Savant SPD121P Speed-Vac set at 35 °C for 2 hours. Lastly, the product was resuspended in 

16 μL of DMSO to provide a 5 mM solution and stored at −80 °C. The product was analyzed 

by LCMS.

Reaction 3: The final modular construct was synthesized through the combination of 

module 1-2 and module 3-4. First, 1.6 μL of reaction 2 was added to a 384-well plate. 

Separately, 30 μL of reaction 1 was mixed with 15 μL of TCEP solution (100 mM 

TCEP·HCl in 50/50 water/DMSO containing 400 mM NaOH) and 75 μL DMSO. Then, 1.6 

μL of the reaction 1 solution was added to reaction 2 in the 384 well plate. Each individual 

reaction ultimately contained 0.4 μL of reaction 1 (at 5 mM in DMSO), 1.6 μL of reaction 2 

(at 5 mM in DMSO), 0.2 μL TCEP solution (at 100 mM in water/DMSO), and 1 μL DMSO. 
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Excess reaction 2 was used to force the reaction to go to completion; the presence of copper 

hinders the efficiency of this conjugation. Reaction 1 was used as a limiting reagent to avoid 

excess PMO, which is the active component for the cell culture assays. The reaction was 

allowed to proceed for 2 hours, and then the plate was stored at −80 °C. The reaction was 

analyzed by LCMS.

EGFP assay:

HeLa 654 cells obtained from the University of North Carolina Tissue Culture Core facility 

were maintained in MEM supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% 

(v/v) penicillin-streptomycin at 37 °C and 5% CO2. 18 h prior to treatment, the cells were 

plated at a density of 5,000 cells per well in a 96-well plate in MEM supplemented with 

10% FBS and 1% penicillin-streptomycin.

For testing of the library, on the day of the experiment, the 384 well plate containing the 

crude reaction mixtures in DMSO was diluted to 100 μM by the addition of 16.8 μL of 

PBS to the 3.2 μL reaction mixture. Then, each construct was diluted to 5 μM in MEM 

supplemented with 10% FBS and 1% penicillin-streptomycin. For individual peptide testing, 

PMO-peptides were dissolved in PBS without Ca2+ or Mg2+ at a concentration of 1 mM 

(determined by UV) before being diluted in MEM. Cells were incubated at the designated 

concentrations for 22 h at 37 °C and 5% CO2. Next, the treatment media was removed, 

and the cells were washed once before being incubated with 0.25% Trypsin-EDTA for 

15 min at 37 °C and 5% CO2. Lifted cells were transferred to a V-bottom 96-well plate 

and washed once with PBS, before being resuspended in PBS containing 2% FBS and 2 

μg/mL propidium iodide (PI). Flow cytometry analysis was carried out on a BD LSRII flow 

cytometer at the Koch Institute. Gates were applied to the data to ensure that cells that 

were positive for propidium iodide or had forward/side scatter readings that were sufficiently 

different from the main cell population were excluded. Each sample was capped at 5,000 

gated events (SM).

Analysis was conducted using Graphpad Prism 7 and FlowJo. For each sample, the mean 

fluorescence intensity (MFI) and the number of gated cells was measured. To report activity, 

triplicate MFI values were averaged and normalized to the PMO alone condition.

Inverse Design Model:

Generator – Recurrent Neural Network.—The generator is a data-driven tool to 

generate new peptide sequences that follow the ontology of cell penetrating peptides to 

seed the optimization from likely starting points, and is based on recurrent neural network 

(RNN) - Nested LSTM architecture.38 It was trained using one-hot encoding representations 

of the amino acids to predict the next amino acid in the sequence, from the preceding 

sequence. The inputs were size 5 to 50 amino acids, left-padding with zeros and representing 

termination with a unique token. The training dataset comprised of 1,150 sequences and a 

total of 19,800 sequence-next character pairs, including the non-modular sequences used in 

the creation of the library and sequences from CPPSite2.0.39 The training was performed 

using 80% of this dataset, and validated using the remaining 20%. A validation accuracy 

of 76% was obtained in the training. For the model, multiple combinations of LSTM and 
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Nested LSTM layers were tried with different cell sizes.38 The final model was chosen after 

the optimization of hyperparameters. All hyperparameters were optimized using SigOpt.52

Predictor – Convolutional Neural Network.—The predictor, based on convolutional 

neural network (CNN), estimates the normalized fluorescence intensity from PMO delivery 

by a given peptide sequence, as measured in the HeLa 654 assay. The model was trained on 

a row matrix of residue fingerprints. The row matrix of 2048-bit vectors (vector of 0s and 

1s) represents the arrangement of the residues along the backbone of the peptide chain. This 

representation is analogous to 1D image with 2048 color channels. Fingerprints have radius 

3 and were generated using RDKit.53 By combining the CPP library from this work as well 

as the collection of CPPs from previous work, we compiled 640 PMO-peptides sequences 

for training.7

We used fingerprints and one-hot encodings to train non-CNN models such as those based 

on support vector regression, Gaussian process regression, kernel ridge regression, k-nearest 

neighbors regression and XGBoost regression.

Optimizer.—The optimization was done using genetic algorithm (GA), where single 

residue mutations involved insertion, deletion and swapping, and multi-residue mutation 

was done using hybridization. For hybridization, the sequence length and position to 

be hybridized, and the hybridized sequence (from the list of all CPPs) were all chosen 

randomly. In the case of hybridization mutation, the selection and replacement of motifs was 

done at random without conservation of the sequence length. For the case of mutations with 

cysteine macrocycles, explicit conditions were built in to keep the number and position of 

cysteine residues separate in the case of a single through-space covalent bond or bicycle. 

A constrained hybridization condition conserving the sequence length was also set-up for 

specific optimization tasks. In the case of cysteine macrocycles, different fingerprints were 

used to denote the residues. The GA was used the following objective function, starting from 

LSTM-generated sequences and taking 1000 evolution steps:

GA Score = 1
2 Intensity − 1

2
1
2 Rcount + 1

5Lengtℎ − 1
10Net Cℎarge + Similarity

Set up of Generator-Predictor-Optimizer Loop:

The generator was primed with a 5-long random sequence from the training dataset 

and sampled until a termination character is produced. The randomly sampled sequences 

were then set-up for optimization. The directed evolution of the generated sequences was 

carried using the predictor-optimizer feedback loop. Each sequence was mutated by the 

optimizer. Post mutations, the normalized fluorescence values for the new sequence was 

predicted by the predictor and the optimization parameters (similarity, % arginine, length, 

net charge) were calculated. The objective function (equation with optimization parameters) 

was evaluated for both the old and mutated sequences. If the value for the mutated sequence 

was higher for the mutated than the older, then the old sequence was replaced by the mutated 

sequence. 1000 such optimization rounds were conducted for each sequence. The output was 

hundreds of sequences with varying predicted activity.
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Toxicity assays:

Cytotoxicity assays were performed in both HeLa 654 cells and human RPTEC (Human 

Renal Proximal Tubule Epithelial cells, TH-1, ECH001, Kerafast). RPTEC were maintained 

in high glucose DMEM supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% 

(v/v) penicillin-streptomycin at 37 °C and 5% CO2. Treatment of RPTEC was performed 

as with the HeLa 654 cells. After treatment, supernatant was transferred to a new 96-well 

plate. To each well of the 96-well plate containing supernatant, described above, was added 

CytoTox 96 Reagent (Promega). The plate was shielded from light and incubated at room 

temperature for 30 minutes. Equal volume of Stop Solution was added to each well, mixed, 

and the absorbance of each well was measured at 490 nm. The blank measurement was 

subtracted from each measurement, and % LDH release was calculated as % cytotoxicity = 

100 × Experimental LDH Release (OD490) / Maximum LDH Release (OD490).

Synthesis and testing of Mach-DTA:

Mach-LPSTGG peptides were synthesized and purified by standard protocol as described. 

G5-DTA (50 μM) was incubated with either Mach3-LPSTGG (250 μM) or Mach7-LPSTGG 

(750 μM) and SrtA* (2.5 μM) for 90 minutes at 4 °C in SrtA buffer (10 mM CaCl2, 50 mM 

Tris, 150 mM NaCl, pH 7.5). The reaction was monitored by LCMS and gel electrophoresis. 

After 90 minutes, Mach-DTA conjugate was isolated using HiLoad 26/600 Superdex 200 

prep grade size exclusion chromatography column (GE Healthcare, UK) in 20 mM Tris, 150 

mM NaCl, pH 7.5 buffer. Fractions containing the pure product as determined by LCMS and 

gel electrophoresis were concentrated using a centrifugal filter unit (10K, Millipore).

To test for DTA delivery to the cytosol, HeLa cells were plated at 5,000 cells/well in a 

96-well plate the day before the experiment. Wild-type and mutant constructs of G5-DTA, 

Mach3-DTA, and Mach7-DTA, as well as Mach3-LPSTGG and Mach7-LPSTGG were 

prepared at varying concentrations in complete media and transferred to the plate. Cell 

proliferation was measured after 48 h using the CellTiter-Glo assay.

Synthesis and testing of Mach-EGFP:

G5-EGFP (60 μM) was incubated with either Mach3-LPSTGG (1000 μM) or Mach7-

LPSTGG (1000 μM) and SrtA* (5 μM) in SrtA buffer (10 mM CaCl2, 50 mM Tris, 150 

mM NaCl, pH 7.5) for 90 minutes at room temperature under exclusion of light. The 

reaction was monitored by LCMS and gel electrophoresis. After 90 minutes, Mach-eGFP 

conjugate was isolated using cation exchange chromatography using HiTrap SP HP cation 

exchange chromatography column (GE Healthcare, UK) in (0–100 %B over 20 CV) where 

A: 50 mM NaCl, 20 mM Tris, pH 7.5 buffer and B: 1 M NaCl, 20 mM Tris, pH 12 buffer. 

Fractions containing the pure product as determined by LCMS and gel electrophoresis were 

immediately desalted and concentrated using a centrifugal filter unit (10K, Millipore).

To visualize delivery of EGFP into cells, HeLa were plated at 5,000 cells/well in a coverslip 

glass-bottomed 96-well plate the day before the experiment. Mach3-EGFP, Mach7-EGFP, 

or EGFP were added to each well at 10 μM and incubated at 37 °C and 5% CO2 for 3 h. 

Treatment media was replaced with fresh media 1 h before being imaged in the W.M. Keck 
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microscopy facility on an RPI Spinning Disk Confocal microscope on brightfield and GFP 

setting (488 nm, 150 mW OPSL excitation laser, 525/50 nm emission).

In vivo studies

EGFP-654 transgenic mice (FVB/NJ mice transformed with CX-EGFP-654 plasmid) 

obtained from Dr. Ryszard Kole’s lab54 ubiquitously express EGFP-654 transgene 

throughout body under chicken β-actin promoter. Identical to the HeLa 654 cell line, a 

mutated nucleotide 654 at intron 2 of human β-globin gene interrupts EGFP-654 coding 

sequence and prevents proper translation of EGFP protein. The antisense activity of PMO 

blocks aberrant splicing and resulted in EGFP expression, the same as in the HeLa 

654 assay. In this study, 6- to 8- week-old male EGFP-654 mice bred at Charles River 

Laboratory were shipped to the vivarium at Sarepta Therapeutics (Cambridge, MA). These 

mice were group housed with ad libitum access to food and water. All animal protocols 

were approved by and conducted in accordance with the Institutional Animal Care and Use 

Committee (IACUC) of Sarepta Therapeutics.

After 3 days of acclimation, mice were randomized into groups to receive a single i.v. 
tail vein injection of either saline or PMO-peptide (PMO-Mach3 or PMO-Mach4) at the 

indicated doses; 5, 10 and 30 mg/kg. 7-days after the injection, the mice were euthanized 

for serum and tissue sample collection. Quadriceps, diaphragm, heart were rapidly dissected, 

snap-frozen in liquid nitrogen and stored at −80 °C until analysis.

Serum from all groups were collected 7 days post-injection and tested for kidney injury 

markers using a Vet Axcel Clinical Chemistry System (Alfa Wassermann Diagnostic 

Technologies, LLC.) Specifically, serum BUN, creatinine, and cystatin C levels were 

measured using ACE® Creatinine Reagent (Alfa Wassermann, Cat# SA1012), ACE® 

Blood Urea Nitrogen Reagent (Alfa Wassermann, Cat# SA2024) and Diazyme Cystatin 

C immunoassay (Diazyme Laboratories, Cat# DX133C-K), respectively, per manufacturer’s 

recommendation.

20-25 mg of mouse tissue was homogenized in RIPA buffer (Thermo Fisher, Cat# 89900) 

with protease inhibitor cocktail (Roche, 04693124001) using a Fast Prep 24-5G instrument 

(MP Biomedical). Homogenates were centrifuged at 12,000 g for 10 min at 4 °C. The 

resultant supernatant lysates were quantified by Pierce BCA Protein Assay Kit (Thermo 

Fisher, Cat# 23225) and saved for EGFP expression measurement. Specifically, 80 μg 

of lysates were aliquoted in each well in a black-wall clear-bottom 96-well microplate 

(Corning). EGFP fluorescent intensity of each sample was measured in duplicates using 

a SpectraMAx i3x microplate reader (Molecular devices) by default setting. The average 

EGFP fluorescent intensity of each sample was then plotted against a standard curve 

constructed by recombinant EGFP protein (Origen, Cat#TP790050) to quantify EGFP 

protein level per μg protein lysate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Machine learning model based on directed evolution predicts highly active abiotic 
miniproteins for macromolecule delivery.
(a) A 600-membered library of PMO-miniprotein conjugates was synthesized using linear 

combinations of abiotic peptide modules. (b) A standardized in vitro activity assay tests 

for nuclear delivery using a quantitative fluorescence readout. (c) Members of the modular 

library exhibit a broad spectrum of activities. Each bit corresponds to a PMO-peptide in the 

library and its corresponding activity. (d) Sequences are encoded into a fingerprint matrix, 

labeled with experimental activity, and used to train a machine learning model. The model 

designs novel sequences in a loop based on directed evolution. X = aminohexanoic acid, B 

= β-alanine, C = cysteine macrocycles linked through decafluorobiphenyl. (e) Normalized 

activity from peptides designed in this work (Mach) compared to peptides in the modular 

library and known CPPs tested using the same assay.
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Fig. 2. Machine learning-based generator-predictor-optimizer loop predicts nuclear-targeting 
abiotic miniproteins.
(a) Each amino acid residue is represented as a unique fingerprint, constructed as a bit-

vector encoding for the presence or absence of 191 possible substructures in the residue. (b) 

Sequences are represented as residue fingerprints stacked in a row matrix. (c) Performance 

of machine learning model, comparing the predicted and experimental activity values for 

the holdout test set and novel Mach sequences. Twelve predicted “Mach” peptides were 

synthesized and tested in the same activity assay (red) and compared to the modular library 

(grey) in relation to (d) relative charge and (e) arginine content.
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Fig. 3. Interpretation of predictor CNN unveils activated substructures.
(a) CNN positive activation gradient map was calculated for input sequence representation 

of Mach3. The averaged activation values over fingerprint indices and residue positions 

are shown. Fingerprint index represents a corresponding substructure. (b) The activation 

gradient map of aminohexanoic acid in Mach3 indicates the activated substructures of this 

residue. The alkyl backbone substructure (136) is shown. (c) Gradient maps of predicted 

sequences with lengths 35, 40, 45 and 50 are shown relative to residue position. (d) Percent 

composition of each type of residue (positive, negative, nonpolar, and polar) relative to 

predicted sequences with lengths 35, 40, 45 and 50 is shown. Each bar represents group 

mean ± SD, n = 5. (e) Gradient maps of predicted sequences with lengths 35, 40, 45 and 50 

are shown relative to substructure fingerprints. (f) Several residues and substructures that are 

consistently activated across all sequence lengths are shown, including the amine side chain 

of Lys, polar side chain of Ser, and the carboxylic acid side chain of Asp.
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Fig. 4. Mach miniproteins are highly active in vitro and in vivo and deliver other 
biomacromolecules into the cytosol.
(a-c) Shown are dose-response curves corresponding to activity in the EGFP assay and 

toxicity in the LDH assay for PMO-Mach3, 4, and 7. Activity is shown as fluorescence 

intensity relative to unconjugated PMO at 5 μM, and toxicity is shown as LDH release 

relative to a lysis control. (d) The relative fluorescence of Mach conjugated to PNA 654 

are compared to PNA alone, as determined by EGFP assay. (e) Comparison of the toxicity 

of wild-type and inactive mutant DTA and DTA(E148S) alone or conjugated to Mach3 

or Mach7. Delivery of the active toxin to the cytosol results in toxicity as measured by 

luminescence. (f) Confocal micrographs displaying green fluorescence produced by EGFP, 
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Mach3-EGFP, or Mach7-EGFP in HeLa cells after 3 h incubation at 10 μM. (g-i) EGFP 

synthesis in EGFP transgene mice after treatment with PMO-Mach. Dose-response EGFP 

protein level in (g) quadriceps (h) diaphragm and (i) heart. (a-c) Points show mean ± SD, 

for EGFP assay n = 3, and mean for LDH assay, n = 2 distinct samples. EGFP assay 

experiments were repeated at different concentration ranges with similar results, reported in 

Supplementary Figure 21 (d) Each bar represents group mean ± SD, n = 3 distinct samples, 

p-values calculated from student’s two-tailed t-test (PNA-Mach3 p = 0.0005, PNA-Mach7 p 

= 0.0002. (e) Each bar represents group mean ± SD, n = 3, except for Mach3-DTA(E148S) 

and Mach7-DTA(E148S) which show mean, n = 2 distinct samples. Full concentration 

curves are reported in Supplementary Figure 25. (f) Scale bar shows 10 μm. This experiment 

was conducted twice independently with similar results. (g-i) Saline (n = 6), Mach3 and 

Mach4 at 5 mg/kg (n = 4), all other n = 8 mice. Each bar represents group mean ± 

SD, p-values calculated from two-tailed Mann-Whitney U test. (Quadriceps: PMO-Mach3 

10 mg/kg p = 0.0003, PMO-Mach3 30 mg/kg p < 0.0001, PMO-Mach4 30 mg/kg p < 

0.0001; Diaphragm: PMO-Mach3 10 mg/kg p < 0.0001, PMO-Mach3 30 mg/kg p <0.0001, 

PMO-Mach4 30 mg/kg p < 0.0001; Heart: PMO-Mach3 5 mg/kg p = 0.0001, PMO-Mach3 

10 mg/kg p < 0.0001, PMO-Mach3 30 mg/kg p < 0.0001, PMO-Mach4 10 mg/kg p < 

0.0001, PMO-Mach4 30 mg/kg p < 0.0001.)
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