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Abstract

Modern neuroimaging studies frequently combine data collected from multiple scanners and 

experimental conditions. Such data often contain substantial technical variability associated with 

image intensity scale (image intensity scales are not the same in different images) and scanner 
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effects (images obtained from different scanners contain substantial technical biases). Here we 

evaluate and compare results of data analysis methods without any data transformation (RAW), 

with intensity normalization using RAVEL, with regional harmonization methods using ComBat, 

and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 

16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. 

Neuroradiological evaluation was conducted for 7 different regions of interest (ROI’s) pertinent to 

Alzheimer’s disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially 

improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the 

RAVEL-ComBat combination in terms of regional level harmonization due to more consistent 

harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially 

reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; 

and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due 

mainly to its larger variance.
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1. Introduction

Over the past few decades, neuroimaging studies of structural magnetic resonance imaging 

(MRI) have provided invaluable insights into the changes underlying neurodegenerative 

diseases, such as Alzheimer’s disease (AD) (Frisoni et al., 2010), Parkinson disease (Politis, 

2014) and many others. Large-scale studies obtained by aggregating already collected 

multi-site neuroimaging databases hold the promise to: (1) increase the power to detect 

important biological or clinical associations; and (2) provide resources for confirmatory 

analyses and for hypothesis generation for more targeted specialized studies. However, these 

aggregated datasets often contain hidden technical variability and biases due to differences 

in sites, scanners, and image acquisition protocols. This problem is widely recognized in 

genetics under the name of batch effects (Lander, 1999; Leek and Storey, 2007), and is now 

increasingly recognized in neuroimaging as scanner effects (Fortin et al., 2018). Scanner 

effects refer to both within- and between-scanner variability and harmonization refers to 

removal of such variability.

In neuroimaging, it has been shown that scanner effects can affect downstream analyses of 

derived measures of regional healthy tissue or brain lesion volumes (Jovicich et al., 2013; 

Schnack et al., 2010; Schwartz et al., 2019). These effects can be very large and exceed the 

biological variations of interest. For example, Shinohara et al. (2014a) provided evidence 

of striking differences among the raw image intensities at the different study sites of the 

ADNI (Mueller et al., 2005) and AIBL (Ellis et al., 2009) studies. Heinen et al. (2016) 

and Shinohara et al. (2017) demonstrated the difference in manual image volume measures 

when using 1.5T vs. 3T MRI data. With the increase of multi-site neuroimaging studies 

in neuroimaging, there is a pressing need to develop harmonization pipelines designed to 

ensure reproducibility and increase trust in downstream analyses (Karayumak et al., 2019; 

Ning et al., 2020; Yu et al., 2018).
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A different source of variability is due to the arbitrary nature of MRI intensity scale (Nyúl 

and Udupa, 1999; Shinohara et al., 2011; 2014b). This type of variability makes direct 

quantitative analysis of image intensities difficult (Shah et al., 2011). Indeed, consider the 

case when a study participant is scanned twice in an interval that is inconsistent with 

biological changes. Even if the two images are perfectly registered, their differences should 

not be expected to be zero (or close to zero) due to such variability. We refer to this 

type of variability as the intensity unit effects. It was defined as the unwanted technical 

variability both within- and between-scanners due to the arbitrary units of MRI scans. 

Intensity normalization refers to normalization of intensities both in terms of location and 

scale (Wrobel et al., 2020).

Intensity normalization is usually addressed during preprocessing steps such as: registration 

(Hellier, 2003), harmonization (Fortin et al., 2016), and segmentation (Sweeney et al., 

2013). A comprehensive review of the initial intensity normalization methods (Jäger et 

al., 2006; Leung et al., 2010; Madabhushi and Udupa, 2006; Nyúl and Udupa, 1999; 

Nyúl et al., 2000; Weisenfeld and Warfteld, 2004) can be found in (Shah et al., 2011). 

Histogram matching is a popular intensity normalization approach proposed by (Nyúl and 

Udupa, 1999) and refined by (Nyúl et al., 2000; Shah et al., 2011), though the approach 

is prone to removing wanted variation, such as false erosion of gray matter (GM) or 

elimination of white matter lesions (Shinohara et al., 2014b). Shinohara et al. (2014b) 

formalized the principle of intensity normalization in a seven-rule framework: the statistical 

principles of image normalization (SPIN). In that work, they also proposed White Stripe, an 

intensity normalization approach designed to use patches of normal-appearing white matter 

to estimate the latent sub-distributions of the z-score transformation. Variants of z-score 

normalization, i.e., the finding of a scan-specific scale and shift parameter to normalize 

intensities, are common. Fortin and colleagues (Fortin et al., 2016) proposed RAVEL to 

remove the inter-subject technical variability left after White Stripe intensity normalization. 

This variability is then extracted as latent variables from the cerebrospinal fluid (CSF) 

voxels, where intensities are known to be unassociated with disease status and clinical 

covariates, but might be associated with technical variability. Accordingly, RAVEL estimates 

the latent variables using singular value decomposition (SVD).

A distinction between various methods is that some operate at the subject level, while others 

operate at the population level. Subject-level methods are methods that use information 

from a single subject to derive subject specific estimates, such as White Stripe; while 

population level methods use information from multiple subject to derive estimates, such as 

ComBat harmonization. ComBat is a popular location and scale adjustment method that was 

developed for genomics data (Johnson et al., 2007). It was initially adapted to neuroimaging 

use for harmonizing Diffusion Tensor Imaging (DTI) measurements across two scanners 

(Fortin et al., 2017) and cortical thickness measurements obtained from structural MRIs 

across 11 scanners in two large multi-site studies (Fortin et al., 2018). ComBat was 

subsequently used for the harmonization of multi-site fMRI datasets (Nielson et al., 2018; 

Yu et al., 2018) and to address the covariance of multivariate image measurements across 

sites, named CovBat (Chen et al., 2019). Pomponio et al. (2020) proposed ComBat-GAM, 

which is an extension of ComBat to non-linear associations covariates (e.g., age) and image 

summaries (e.g., volumes). Beer et al. (2020) proposed longitudinal-ComBat, an extension 
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of ComBat that used mixed effects models to account for the within-study participant 

variability. Furthermore, Wachinger et al. (2020) addresses the concept of confounding bias 

in more detail and applied ComBat to explicitly address non-biological variables in the 

model.

Both intensity unit and scanner effects are sources of technical variability and should be 

addressed in multi-site/scanner studies. This type of variability can be expected as within-

subject variability in a scan-rescan sample. In this study, we investigated the separate 

and joint effects of RAVEL and ComBat on regional level harmonization in a study of 

16 healthy elderly study participants who were scanned on two different MRI scanners, 

GE 1.5T and Siemens 3T, at most three months apart. The within-subject variability is 

assumed as technical variability in this scan-rescan sample. The effects of these methods 

were assessed in terms of: (1) reproducibility of scanner intensities; (2) comparison 

of automatic and manual segmentations of the hippocampus, a region used extensively 

in evaluation of AD progression (Minhas et al., 2020; Schwarz et al., 2016); and (3) 

reproducibility of MRI derived summary measures that are pertinent to Alzheimer’s disease 

(Schwarz et al., 2016). Results indicate that (1) RAVEL significantly removed intensity 

unit effects between and within scanners; (2) RAVEL preserved the segmentation accuracy 

of hippocampus; (3) RAVEL, ComBat, and the combination of both achieved regional 

level harmonization to different extents; and (4) ComBat is preferred over RAVEL and 

RAVEL-ComBat combination due to more consistent harmonization across subjects and 

image-derived measures.

2. Materials and methods

2.1. Study population and image acquisition

The sample used in this study consists of 16 subjects that are part of an ongoing project 

(Normal aging, RF1 AG025516 to W.E. Klunk). These 16 subjects were scanned on both 

GE 1.5T and Siemens 3T MRI scanners, separated by at most 3 months to evaluate scanner 

differences. The median age in the sample was 77.5 years (range=70 – 79 years) and 25% 

(n = 4) were males. T1-weighted (T1-w) MRIs were acquired coronally on a GE Signa 1.5T 

MRI scanner with a birdcage volume coil (TE = 5 ms; TR = 25 ms; Flip Angle = 40°; Pulse 

Sequence = SPGR) and sagittally on a Siemens MAGNETOM Prisma 3T MRI scanner (TE 

= 2.22 ms; TI = 1000 ms; TR = 2400 ms; Flip Angle = 8°; Pulse Sequence = MPRAGE). No 

scanner-specific non-uniformity correction was applied to the 1.5T MRI. Siemen’s Prescan 

Normalize was applied to the 3T MRI. Image matrix and voxel sizes were 256 × 256 × 

124mm and 0.94 × 0.94 × 1.5mm, respectively, for the 1.5T T1-w MRI and 240 × 256 × 

160mm and 1.0 × 1.0 × 1.2mm, respectively, for the 3T T1-w MRI.

2.2. Image preprocessing

All images were preprocessed in R (R Core Team, 2020) following the exact preprocessing 

steps1 prescribed before using RAVEL. Accordingly, all images were first registered to 

a high-resolution T1-w image atlas (Oishi et al., 2009) using the non-linear symmetric 

1 https://github.com/Jfortin1/RAVEL

Torbati et al. Page 4

Neuroimage. Author manuscript; available in PMC 2022 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Jfortin1/RAVEL


diffeomorphic image registration algorithm proposed in (Avants et al., 2008). Then, the N4 

bias correction was applied (Tustison et al., 2010) to each of the images to correct for spatial 

intensity inhomogeneity. Images were then skull-stripped using the brain mask provided 

in (Fortin et al., 2016). Throughout this manuscript, these preprocessed but not intensity 

normalized images will be referred to as RAW images.

2.3. Intensity normalization: RAVEL

RAVEL is a voxel-wise intensity normalization technique (Fortin et al., 2016). This 

technique takes the RAW set of MRIs as input and: (1) applies the White Stripe intensity 

normalization; and (2) estimates and removes the remaining unwanted intensity variation, 

detailed in Algorithm 1. The second step extracts the singular value decomposition of the 

observed variability in control voxels (e.g., cerebrospinal fluid voxels) from the population 

of participants and selects the first b components of the decomposition as an estimation 

of the unwanted intensity variation. These steps can be found in Algorithm 1 lines 1:2. 

Once the unwanted variation is estimated from the control voxels, RAVEL then models the 

intensity values of all the image voxels as a linear combination of the unwanted variables 

and the clinical covariates (Algorithm 1 line 3). Using this model, the technical variability 

is estimated for each voxel and then removed from the original voxel intensity values 

(Algorithm 1 line 4:5). Henceforth, the set of RAVEL intensity normalized images and MRI 

derived summary measures will be referred to as RAVEL-normalized.

Although adjusting for clinical covariates are optional in RAVEL normalization, we 

investigated the effects of age and gender on density plots of the tissue types. While 

controlling for gender did not change the plots, age widened them. Moreover, it was 

observed that the higher rank resulted in greater overlap of the plots. Since better 

overlap and narrower density plots are desired, we fit RAVEL to our data by setting the 

decomposition rank (b) to three and controlling for no clinical variables. More details on the 
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fitting process were provided in the Supplementary File 1 and Supplementary Figures 1 and 

2.

2.4. Harmonization: ComBat

ComBat2 (Johnson et al., 2007) is an empirical location (mean) and scale (variance) 

adjustment based on empirical Bayes (EB) estimation. Data are first modeled as a linear 

combination of the biological variables of interest and scanner effects (as additive and 

multiplicative effects). Data adjustments are then made to harmonize across sites/scanners. 

Our focus is on regional level harmonization, harmonization of the summary measures (i.e, 

cortical thicknesses and volumes) extracted from RAW images, henceforth called features. 

Using ComBat, the value for each feature f, i.e. Yijf, for subject j for site/scanner i is first 

modeled as follows:

Y ijf = αf + Xijβf + γif + δifϵijf . (1)

Here αf is the average value for feature f, Xij is the design vector of biological variables, βf 

is the vector of regression coefficients corresponding to Xij, and γif and δif are the additive 

and multiplicative terms for site/scanner i and feature f, respectively. The error terms, ϵijf, 

are assumed to be independent with distribution N(0, σf
2). The estimated parameters of 

scanner effects are γif*  and δif* , respectively. Data are harmonized as follows:

Y ijf* =
Y ijf − (αf + Xijβf + γif* )

δif*
+ αf + Xijβf, (2)

where αf represents the average over the values of feature f for all subjects, and βf is 

estimated using a feature-wise ordinary least-squares approach. See (Johnson et al., 2007) 

for details on derivation of Eq. (2) and the non-parametric framework. Henceforth, the 

summary measures harmonized using ComBat will be referred to as ComBat-harmonized.

Here we have used the parametric EB framework and did not adjust ComBat for age and 

gender. We tested the addition of age, gender or age and gender to our model using F-tests. 

None of the F-tests were significant, therefore no age, gender or age and gender effects 

were added to the ComBat model. The summary measures (will be explained in Section 2.6) 

consist of cortical thickness and volume values, for which separate ComBat models were 

prepared.

2.5. Normalization and harmonization: RAVEL-ComBat

RAVEL and ComBat were used together in this order to harmonize imaging measures based 

on intensity normalized images. Figure 1 summarizes the pipeline, which we refer to as 

RAVEL-ComBat. Henceforth, the summary measures harmonized using RAVEL-ComBat 

will be referred to as RAVEL-ComBat-harmonized.

2 Used the public code from https://github.com/ncullen93/neuroCombat
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2.6. Data analysis

Analyses were performed on brain images obtained from two different scanners, a GE 1.5T 

and Siemens 3T, for 16 healthy study participants described in Section 2.1. Every 1.5T scan 

was followed by the 3T MR scans within three months, which would not be enough for 

naturally biologically meaningful changes between the scans. Thus, the observed variability 

is assumed to be technical variability.

First, to assess the effect of intensity normalization (i.e., RAVEL), we compared voxel 

intensity density plots before and after normalization for three brain tissue types, using the 

tissue mask provided in the EveTemplate package Oishi et al. (2009): gray matter (GM), 

white matter (WM), and cerebrospinal fluid (CSF).

Second, we estimated the scanner effects on summary measures derived using FreeSurfer 

7.1.1 (FS) (Fischl, 2012), and evaluated regional-level harmonization effect of RAVEL, 

ComBat, and the combination of both. FS was consistently run on native-space MRIs. For 

the RAVEL pipeline, non-linear registration to template space was performed specifically 

for skull-stripping and RAVEL processing, and inverse transformations were consistently 

applied to RAVEL images to return them to native space prior to running FS. The 

full FS pipeline includes its own internal bias correction and skull-stripping steps. Skull-

stripping is specifically performed using a watershed algorithm, different from the template-

based masking skull-strip in the RAVEL pre-processing pipeline. In examining RAW FS 

vs RAVEL FS volume and cortical thickness measures, with and without ComBat, we 

did not want to confound comparisons with inconsistent pre-processing steps, e.g., bias 

correction and skull-stripping. As such, pre-processing involved: (1) non-linear registration 

to a common template; (2) N4 bias correction; and (3) skull-stripping for RAW, RAVEL, 

ComBat, and RAVEL-ComBat pipelines. Subsequently, as stated previously, for both the 

RAW and RAVEL pipelines, pre-processed MRIs were returned to native space prior to 

running FS, and subsequently ComBat.

For FS summary measures, we used the cortical thickness for entorhinal, fusiform, inferior 

parietal, inferior temporal, and middle temporal regions, as well as the volume measure of 

the entorhinal, inferior temporal, middle temporal, amygdala, and hippocampus. This set 

is identified as the set of FS-derived measures pertinent to AD in (Schwarz et al., 2016) 

and were extracted for both hemispheres of images. We then computed the descriptive 

statistics, including means and standard deviations (SD) of these measures within each of 

the scanners, before and after applying methods. We also measured scanner effects and 

evaluated harmonization using two different metrics: 1) bias: the mean of cross-scanner 

differences (Siemens 3T - GE 1.5T), compared using paired t-tests with p < 0.05 indicating 

statistical significance, and 2) variance: the root mean square deviation (RMSD) of measures 

across scanners.

Lastly, to evaluate segmentation accuracy, a neuroradiologist visually rated FS-derived 

hippocampal segmentations of RAW and RAVEL-normalized MRIs. The RAW brain images 

were used to evaluate these segmentations of RAW and RAVEL-normalized MRIs. A four-

point scale was used for rating the accuracy of the segmentations (1 = poor, 2 = some errors, 

3 = good, 4 = excellent). The rater was blinded to subject demographics, segmentation 
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method and image preprocessing and normalization. We did not have the ground truth 

segmentation, thus we presented the relative accuracy.

3. Results

We first show the unwanted variability in the preprocessed MRIs without intensity 

normalization (RAW) in Section 3.1. We then present the results of applying other methods, 

including RAVEL, ComBat, and the RAVEL-ComBat pipeline to data in Sections 3.2, 3.3, 

and 3.4; respectively.

3.1. Unwanted variability in RAW data

Figure 2 displays the intensity density plots for each of the three brain tissues (CSF in 

column one, GM in column two, and WM in column three) and different levels of data 

processing (RAW: panel a, White Stripe: panel b, and RAVEL: panel c). Densities are shown 

in orange for the 1.5T scanner and in cyan for the 3T scanner. Results indicate that: (1) 

the distribution of RAW image intensities vary substantially between- and within-scanners; 

(2) White Stripe substantially improves the distance between densities, especially in white 

matter; and (3) RAVEL further improves the distance between densities, especially in CSF 

and GM.

Table 1, provides bias (mean of cross-scanner differences) and variance (RMSD values) of 

the 20 summary measures extracted for all 4 methods. Also, for each method in Table 1 

the statistically significant biases and increased RMSDs (compared to their corresponding 

values in RAW data) were highlighted and presented in bold, respectively. Focusing on 

these two metrics for RAW data in Table 1, we observed scanner effects as: (1) statistically 

significant bias for 11 summary measures, and (2) deviation of values across scanners for 

all summary measures. In addition, Supplementary Table 1 shows the within-scanner mean 

and SD of the summary measures (cortical thicknesses and volumes) in both hemispheres 

for RAW, RAVEL, ComBat, and RAVEL-ComBat data.

3.2. RAVEL

3.2.1. Segmentation accuracy result—Neuroradiological ratings comparing 

hippocampal segmentation of RAW to RAVEL-normalized images revealed that RAVEL 

neither significantly improve nor deteriorate the FS segmentations. In fact, ratings of the 

left hemisphere segmentation in Fig. 3a showed that RAVEL performed slightly worse than 

RAW, by having a greater number of erroneous (5 to 1) and fewer good (26 to 29) and 

excellent (1 to 2) segmentations. However, for the right hemisphere segmentations (Fig. 3b), 

RAVEL performed similarly to RAW, by having similar erroneous (2 to 2), one more good 

(29 to 28), and one less excellent segmentations (1 to 2). The Wilcoxon hypothesis testing 

on collected ratings of the left and right hemispheres resulted in (W-value = 10.0, p-value = 

0.096) and (W-value = 12.0, p-value = 0.705), respectively.

Two single cases are illustrated in Figs. 4 and 5, showing the hippocampual segmentation 

on RAW brain images by method with arrows pointing to the erroneous segmented voxels. 

Fig. 4 presents one single case in which RAVEL results in a more accurate hippocampal 

segmentation than RAW. The RAW brain image, without any segmentation on, is depicted 
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in Fig. 4a. Figure 4b shows that the segmentation based on RAW images (in yellow) 

has extraneous segmented voxels over the CSF and adjacent white matter areas, when 

compared to segmentation based on RAVEL (in red). The orange area shows the overlap 

of the two segmentations and the remained yellow and red areas are for RAW and RAVEL 

segmentations, respectively. Figure 5a depicts the RAW brain image for the second case. 

Fig. 5b presents this case in which RAVEL (in red) results in a less accurate hippocampal 

segmentation than RAW (in yellow), by not capturing the entire hippocampus, pointed by 

arrows. The overlapped area of these two segmentations is in orange.

3.2.2. Harmonization result—For most of the derived imaging measures reported in 

Table 1, RAVEL decreased bias (13 decreases versus 7 increases) and increased variability 

(SD) of differences (6 decreases versus 14 increases), when compared to the measures 

from the RAW data in column 1. The comparison has been done based on absolute values 

of bias. The number of measures with statistically significant bias decreased from 11 for 

RAW to 6 for RAVEL and the RAVEL-normalized images resulted in change of RMSDs as 

variances (11 decreases versus 9 increases), when compared to RAW. Fig. 6 presents these 

total number of changes (decrease, increase, and no change) in (a) bias, (b) variation (SD) 

of cross-scanner differences, and (c) variance (RMSD), in addition to (d) the number of 

statistically significant biases over all 20 summary measures.

Columns fourth and fifth in Table 1 show the mean (SD) of cross-scanner differences and 

RMSD values for all summary measures extracted from the RAVEL-normalized images. 

These results are complemented by the statistically significant biases (highlighted values) 

and increased RMSDs (values in bold). This table is accompanied by Fig. 7, visualizing the 

results of this table for the summary measures, including volumes respectively of inferior 

temporal and middle temporal for left and right hemispheres, as well as cortical thickness 

of entorhinal and inferior parietal in left hemisphere. In Fig. 7, the cross-scanner differences 

of all subjects were depicted as a line plot for each method. The smoother line plots 

indicate methods which resulted in lower variation (SD) of cross-scanner differences. The 

line plots closer to x-axis depict methods which resulted in smaller variances (cross-scanner 

differences are closer to zero).

Based on the results in Table 1, the volume of inferior temporal (left hemisphere) is one of 

the measures that RAVEL harmonized by decreasing bias, SD of differences, and variance, 

resulting in no statistically significant differences of bias. These results were supported in 

Fig. 7a where the line plot for RAVEL is smoother than RAW and closer to x-axis. However, 

the results in Table 1 showed that RAVEL resulted in increased variance for the rest of the 3 

summary measures. Such pattern could also be observed in Fig. 7b, c, and d, as the plots for 

RAVEL deviated from x-axis due to increased peaks when compared to the plots for RAW.

Based on our observations, RAVEL had some potential harmonization effect on our data by 

showing decrease in either bias, variance, or number of summary measures with statistically 

significant bias. However, this effect does not seem to be consistent among (1) summary 

measures (increased bias and variance for some summary measures), and (2) subjects 

(increased SD of differences for some summary measures, for example Fig. 7b, c, and 

d).
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3.3. ComBat

The results for ComBat-harmonized measures in Table 1 showed that ComBat decreased 

bias and SD of cross-scanner differences for most of the measures. Considering absolute 

values of bias, these statistics were 18 and 14 decreases for bias and SD of differences, 

respectively, while no changes have been seen for the rest of measures. These results were 

supported by the decreased number of statistically significant biases (11 for RAW decreased 

to 5 for ComBat) and RMSD values (17 decreases, 2 increases, and 1 no change). These 

statistics were depicted in Fig. 6.

Based on the results in Table 1, ComBat successfully harmonized volume of inferior 

temporal and cortical thickness of entorhinal (both for left hemisphere), by decreasing 

bias, SD of differences, and variance as well as removing statistical significance of bias. 

These results were supported by the corresponding line plots of ComBat in Figs. 7a and c, 

where they were similar to RAW but smoother and closer to x-axis. However, the results for 

cortical thickness of inferior parietal (left hemisphere) did not change noticeably (ComBat 

almost overlapped RAW in Fig. 7d) and the volume of middle temporal (right) still retained 

the increase in variance (Fig. 7b).

Based on our observations, ComBat had potential harmonization effect on our data by 

showing decrease in bias, variance, SD of differences, or number of summary measures 

with statistically significant bias. This effect seems to be more consistent across summary 

measures and subjects which makes ComBat to be preferred over RAVEL for the task of 

regional harmonization.

3.4. RAVEL-ComBat pipeline

Results of comparing RAVEL-ComBat to RAW in Table 1 showed that this method 

decreased bias for most of the summary measures (18 decreases versus 2 no changes), 

when the absolute values of bias were compared. The number of summary measures with 

statistically significant bias decreased from 11 for RAW to 1 for this pipeline. However, 

RAVEL-ComBat almost increased the SD of differences (6 decreases versus 14 increases) 

as well as the variance for almost half of the summary measures (11 decreases versus 9 

increases). These results were summarized in Fig. 6.

Results in Table 1 showed that RAVEL-ComBat followed almost similar pattern 

with RAVEL in harmonization of the 4 selected summary measures. RAVEL-ComBat 

successfully harmonized volume of inferior temporal (left), while increased the variance 

for the other 3 measures. These results were also visualized in Fig. 7 where all the line plots 

for RAVEL-ComBat closely followed RAVEL’s. However, comparing these two methods, 

minor improvements have been observed for RAVEL-ComBat which were (1) decreasing 

the number of biases and (2) resulting smaller increases in RMSD values (the number of 

changes in variance are similar between the methods). Such differences could be seen for 

cortical thickness of inferior parietal (left) in Fig. 7d.

Even though RAVEL-ComBat was improved by ComBat due to its decreased number of 

biases, this method was still more similar to RAVEL in terms of regional harmonization. 

Although the number of statistically significant biases decreased noticeably using RAVEL-
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ComBat, the harmonized measures still suffer from increased SD of differences and variance 

when compared to RAW and ComBat. In conclusion, ComBat would be preferred over 

RAVEL and RAVEL-ComBat as these two methods are inconsistent among subjects and 

summary measures.

4. Discussion

Unwanted technical variability in multi-site clinical trials and observational studies is 

an increasingly common problem and mainly introduced as two types of variability: 

(1) intensity unit effects, and (2) scanner effects. Scanner effects can be removed by 

harmonization techniques categorized into image level harmonization and regional level 

harmonization methods. The image level harmonization techniques for MRs were largely 

categorized in literature (Dewey et al., 2019, 2020; Zuo et al., 2021) into either unsupervised 

methods which use unpaired data, or supervised methods which use paired data.

A group of unsupervised methods approached harmonization as the image-to-image (I2I) 

synthesis problem, in which the images of one scanner are synthesized to be more similar 

to images of the other scanner, called target s scanner. However, if the synthesis process 

is left unconstrained on preserving the brain structure, it may result in unintentional 

anatomical modification of images during harmonization. In response, several approaches 

harmonized images at contrast level, aiming to preserve the structural information of them 

(Dewey et al., 2020; Zuo et al., 2021). These methods disentangled images into structural 

and contrast components using a cross-modality paired data. Even though this data is 

not paired across scanners, it still made these approaches situational. Another group of 

harmonization methods approached I2I translation using generative adversarial networks 

(GAN). Modanwal et al. (2020) used a CycleGAN to constraint on anatomical information 

of the images and Liu et al. (2021) preserved the structural information of images by 

adapting them to the style (contrast information) of target images. While the former is 

fundamentally limited to two scanners, the latter required an arbitrarily chosen target 

scanner.

Among the two supervised methods, DeepHarmony (Dewey et al., 2019), an I2I synthesis 

method used two U-Net networks for synthesizing the images of the two scanners that 

it can harmonize. While DeepHarmony is limited to two scanners, mica (Wrobel et al., 

2020) is a multi-scanner harmonization method aimed to modify voxels of images to 

have the cumulative distribution function (CDF) of their corresponding voxels in the target 

scanner. This method though, required an arbitrarily chosen target scanner. Even though the 

requirement of paired data (either across modalities or scanners) made many of the current 

harmonization methods situational, the experimental benefits from the paired images are 

quite informative at these early stages.

In this study, we focused on regional level harmonization of summary measures pertinent 

to AD. We hypothesized that the pipeline of intensity normalization method using RAVEL, 

and harmonization method using ComBat, would result in better removal of unwanted 

variability and consequently would improve regional level harmonization. Accordingly, we 

collected a paired cohort of 16 healthy elderly study participants scanned on two different 
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MRI scanners, GE 1.5T and Siemens 3T. We assumed that technical variability manifests 

as within-subject differences for summary measures and reducing these differences would 

achieve regional level harmonization appearing as lowered bias and variance.

Consistent with previous reports, our results showed that RAVEL further normalized the 

White-Stripe-normalized images, specifically CSF and GM areas (Fortin et al., 2016). 

Moreover, RAVEL preserved the anatomical information of images. For example, it 

preserved the segmentation accuracy for the hippocampus. These results are consistent with 

our previous findings from the group’s previously reported results for a multi-site Down 

Syndrome study (Minhas et al., 2020). Regarding regional harmonization, RAVEL, ComBat, 

and RAVEL-ComBat effectively harmonized the 1.5T and 3T MRI summary measures in 

this study, in that all techniques reduced the number of statistically significant biases across 

the regional cortical thicknesses and volumes examined. ComBat, however, demonstrated a 

more consistent harmonization effect across subjects and summary measures as compared 

to RAVEL and RAVEL-ComBat. Based on the results on our data, ComBat would be 

preferred to RAVEL and RAVEL-ComBat for the task of regional harmonization to avoid 

the inconsistency across subjects and summary measures that were observed with the other 

two pipelines.

Despite demonstrating an overall reduction in the number of statistically significant biases 

between FreeSurfer outcome measures from 1.5T and 3T MRI scans (Table 1 and Fig. 6d), 

the application of RAVEL introduced a significant difference in the left inferior parietal 

cortical thickness and increased RMSD across multiple regional cortical thickness and 

volume measures (Table 1). There are multiple possibilities as to why RAVEL introduced 

unwanted differences and variability. The quality of FreeSurfer segmentations, and therefore 

outcome measures, is dependent on the GM-WM contrast in the T1 MR image, with 

increased contrast resulting in more accurate FreeSurfer segmentations. To examine the 

effects of RAVEL on GM-WM contrast for the 1.5T and 3T scans, we calculated the area 

under the receiver operating characteristic (AU-ROC) for classification of voxel intensity 

values as GM relative to WM. For this, we first extracted the histograms of GM and WM 

using the tissue mask in the EveTemplate package (Oishi et al., 2009). We then looked at the 

classification of GM voxels from WM as the problem of estimating the separation of their 

histograms. For classifying the GM and WM voxels, we set the voxel intensity thresholds 

from one end of the union of histograms to the other. Every threshold position generated 

a point on the AUC curve. A complete separation of histogram would result in AUROC = 

1 and completely overlapped histograms would give AUROC = 0.5. AUROC values across 

subjects for 1.5T and 3T scans before and after RAVEL are shown in Fig. 8. RAW 3T 

scans consistently had better GM-WM contrast than RAW 1.5T scans (mean(SD) RAW 3T 

AUROC: 0.849(0.028); mean(SD) RAW 1.5T AUROC: 0.812(0.033)). The application of 

RAVEL reduced the mean of absolute differences between 3T and 1.5T AUROC values 

from 0.037 ± 0.021 to 0.017 ± 0.018. As such, just as RAVEL effectively normalized 

MRI voxel intensity distributions across scanners, it also normalized GM-WM contrasts. 

However, in doing so, RAVEL reduced GM-WM contrast, on average, across 3T MRIs 

(mean(SD) RAW 3T AUROC: 0.849(0.028); mean(SD) RAVEL 3T AUROC: 0.840(0.018)). 

This reduction in contrast may have reduced quantitative accuracy and increased variability 

in cortical thickness and volume FreeSurfer measures.
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Differences in motion artifacts may have also affected and possibly confounded 

harmonization of FreeSurfer outcome measures via RAVEL. Previous studies have 

demonstrated that motion artifacts, including blurring, ghosting, and ringing, reduce 

FreeSurfer measures of regional GM cortical thickness and volume (Alexander-Bloch et 

al., 2016; Backhausen et al., 2016). The effect of motion artifacts on RAVEL is not well 

understood, and characterizing it is beyond the scope of this study. Nevertheless, motion 

artifacts may introduce variability in CSF regions, from which the unwanted scanner-

associated variation component is estimated for RAVEL. In this study, motion artifacts, 

or the lack thereof, were not consistent across 1.5T and 3T MRI acquisitions. Significant 

motion artifacts were observed in the frontal cortex of the 1.5T scan but not 3T scan for a 

single subject, as shown in Fig. 9.

Further investigation into ComBat led to some additional insight with respect to effects of 

preprocessing before applying ComBat. In this study we applied the preprocessing steps 

recommended for RAVEL to our images for all four methods (RAW, RAVEL, ComBat, 

and RAVEL-ComBat) in order to avoid confounding the comparisons with inconsistent 

pipeline. However, the choice of preprocessing could affect the results of RAW and ComBat, 

which do not necessarily need any pre-processing before the segmentation with FreeSurfer. 

We investigated this issue by skipping the preprocessing step in the process of preparing 

RAW and ComBat-harmonized images and generated two new sets of data. We then 

compared RAW and ComBat with their corresponding new data using paired t-test. Our 

results showed that preprocessing was a source of variability in our data which resulted in 

statistically significant different values for summary measures within each scanner: RAW 

(1.5T: 9 measures, 3T: 10 measures) and ComBat (1.5T: 9 measures, 3T: 7 measures). This 

significant effect of the preprocessing step on results should be considered in studies when 

ComBat is used for the purpose of data harmonization and not for method comparison. 

The details of the experiments were reported in Supplementary File 2 and Supplementary 

Tables 3 and 4. Moreover, ComBat could be modified for handling the dependence for 

within-subject scans which is the case for our paired cohort. Thus, we added the subjects 

as a fixed effect to ComBat which resulted in a non-significant F-test when tested versus 

the original ComBat. We also handled the dependence by adapting the longitudinal Combat 

(Beer et al., 2020): we ran the model without the inclusion of time but, we included a 

random intercept. We presented these results in Supplementary Table 5.

Our study adds to the literature in at least three unique ways. First, we provided a thorough 

investigation of the existing RAVEL in a paired cohort. Second, we reported unique results 

of application on ComBat harmonization before and after performing RAVEL. Finally, we 

performed a neuroradiological rating of the hippocampus that can be used to assess AD 

progression. Additionally, we provide some insights on the effects of RAVEL intensity 

normalization on the GM-WM image contrast. Our study does have some limitations too. 

We only evaluated one cohort. In addition, we only assessed two methods: RAVEL and 

ComBat. As future work, we will study the generalizability of our results to other cohorts 

and will add more non-situational harmonization methods, such as mica (Wrobel et al., 

2020), to our method comparison. We will also investigate the disadvantages observed 

with RAVEL in this study, including 1) increased variability across subjects and imaging 

measures, and 2) the unimproved segmentation accuracy of important regions of brain, such 
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as hippocampus. These two aspects will benefit the neuroimaging community with better 

methods of normalization and accordingly harmonization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
RAVEL-ComBat pipeline.
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Fig. 2. 
Density plots of MRI voxel intensities by tissue type (cerebrospinal fluid (CSF), grey matter 

(GM), and white matter (WM)) across scanners (GE 1.5T (orange) and Siemens 3T (cyan)) 

for (a) RAW, (b) White-Striped, and (c) RAVEL-normalized MRIs. Note that White Stripe 

increases the overlap of the densities greatly for WM, which was the intent of the method, 

but there is still some non-overlapping regions for GM and CSF, which RAVEL improves. 

Initially referenced in Section 3.1. For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.
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Fig. 3. 
Visual ratings of FS-based hippocampal segmentations for RAW and RAVEL-normalized 

(RAVEL) MRIs, using a four-point rating scale (1 = poor, 2 = some errors, 3 = good, and 4 = 

excellent). Initially referenced in Section 3.2.1.
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Fig. 4. 
Axial, sagittal, and coronal slices of a single subject MRI with overlaid hippocampal 

segmentations generated by FS for RAW and RAVEL-normalized images. Initially 

referenced in Section 3.2.1. For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.
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Fig. 5. 
Axial, sagittal, and coronal slices of two single subjects MRI with overlaid hippocampal 

segmentations generated by FS for RAW and RAVEL-normalized images. Initially 

referenced in Section 3.2.1. For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.
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Fig. 6. 
Bar plots showing number of regional summary measures with changes (classified as 

decrease, increase, and no change) in (a) cross-scanner bias, (b) variation (SD), and (c) 

variance (RMSD) for tested methods compared to RAW. Part (d) shows the number of 

regional summary measures with statistically significant cross-scanner bias for each method. 

Statistical measures were calculated over 20 FS-derived summary quantities (listed in 

Section 2.6). For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.
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Fig. 7. 
Line plots depicting cross-scanner differences (Siemens 3T - GE 1.5T) for all subjects 

and methods. The plots depicted for 4 summary measures which were also reported in 

Table 1. The plotted differences were in millimeter (mm) and cubic centimeter (cm)3 for 

cortical thicknesses and volumes, respectively. A smoother line plot indicates a lower SD of 

differences and a plot closer to x-axis (zero differences) shows lower variance. The line plots 

showed that in (a) all three methods succeed in harmonization, in (b) all methods increased 

variance, in (c) and (d) RAVEL and RAVEL-ComBat increased variance while ComBat 

succeed in harmonization. For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.
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Fig. 8. 
AUROC for classification of voxel intensity values as GM relative to WM. The AUROCs 

were estimated as the separation of the GM and WM histograms. On the left, the line plots 

depict the AUROC of the classification for all subjects. On the right, the plots show the 

overlap/separation of the histograms of tissues for one single subject. The two plots were 

depicted separately for each scanner (GE 1.5T and Siemens 3T), for RAW (a) and RAVEL 

(b). For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.
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Fig. 9. 
Inconsistent motion artifact across scanners for a single subject in our data. More significant 

motion artifacts were observed in the frontal cortex of 1.5T scan (a) relative to the 3T scan 

(b).
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