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The medical applications of glucagon-like peptide-1 receptor (GLP-1R) agonists is

evergrowing in scope, highlighting the urgent need for a comprehensive understand-

ing of the mechanisms through which GLP-1R activation impacts physiology and

behaviour. A new area of research aims to elucidate the role GLP-1R signalling in glia,

which play a role in regulating energy balance, glycemic control, neuroinflammation

and oxidative stress. Once controversial, existing evidence now suggests that subsets

of glia (e.g. microglia, tanycytes and astrocytes) and infiltrating macrophages express

GLP-1Rs. In this review, we discuss the implications of these findings, with particular

focus on the effectiveness of both clinically available and novel GLP-1R agonists for

treating metabolic and neurodegenerative diseases, enhancing cognition and combat-

ing substance abuse.

LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands

(BJP 75th Anniversary). To view the other articles in this section visit http://

onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
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1 | INTRODUCTION

Glia denotes several groups of nonneuronal cell types (e.g. astrocytes,

microglia, tanycytes and oligodendrocytes) traditionally understudied

in the many disciplines of neuroscience, including in the context of

energy balance and glycaemic control. With respect to glucagon-like

peptide-1 (GLP-1) physiology, an up-to-date PubMed search using

keywords ‘GLP-1 and glia’ returned fewer than 100 papers, a tiny

portion of the 17,000+ publications containing the keyword ‘GLP-1’.
Recently, however, interests in understanding the role glia plays in the

physiology and pharmacology of GLP-1 have intensified. Accumulat-

ing evidence overwhelmingly support the assertion that glia are cellu-

lar substrates modulated by GLP-1 signalling, whether through direct

ligand action and/or through indirect recruitment. GLP-1 receptor

(GLP-1R) agonists have been shown to exert antiapoptotic and neuro-

protective effects (Li et al., 2009; McClean et al., 2011; Perry

et al., 2002; Sterling et al., 2020b), while reducing β-amyloid plaque

accumulation (Li et al., 2009; McClean et al., 2011; Perry et al., 2003),

enhancing neuronal progenitor cell differentiation (Hamilton

et al., 2011; McClean et al., 2011) and modulating LTP and synaptic

plasticity (Kobayashi et al., 2013; McClean et al., 2010) through glia-

mediated mechanisms. Fittingly, GLP-1R agonists are presently being

investigated as a means to improve cognitive function, reduce

depressive behaviours and, as a potential treatment for alcohol and

drug abuse (Erreger et al., 2012; Graham et al., 2013; Hayes
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et al., 2014; Hsu et al., 2015; Isacson et al., 2011; Shirazi, Dickson, &

Skibicka, 2013; Skibicka, 2013; Sorensen et al., 2015; Wang

et al., 2010). This brief review highlights recent evidence exploring the

neuroprotective potential of GLP-1R agonists in neuroinflammation

and neurologic disorders, and the contribution of GLP-1R signalling in

astrocytes as a putative means to regulate ingestive behaviour and

body weight. Where relevant, discussions involve exploring the role

glia plays in mediating the physiological effects of central GLP-1

signalling, the limitations of existing studies and the ongoing chal-

lenges facing the GLP-1 field in the effort to understand GLP-1–glia

interactions.

2 | ROLE OF GLIA IN CNS TRAFFICKING
GLP-1R LIGANDS

Astrocytes occupy a strategic position between the capillary endo-

thelial cells and neurons to help form the blood–brain barrier (BBB).

Astrocytes that contribute perivascular endfeet to the BBB have a

unique role in ionic, amino acid, neurotransmitter, neuropeptide and

water homeostasis in the brain. This subset of astrocytes are ideally

positioned to detect circulating neuroendocrine signals, pharmaco-

logical ligands and modulate the processing of neural circuitries rel-

evant to energy balance (Hermann & Rogers, 2009; J. G. Kim

et al., 2014; McDougal, Hermann, & Rogers, 2013; McDougal,

Viard, et al., 2013). Another intriguing but understudied glial popu-

lation relevant to CNS ligand trafficking are tanycytes. Tanycytes

are specialized, polarized ependymocytes that line the floor of the

third ventricle in the median eminence and the subpostrema

subnuclei that connects the area postrema (AP) to the nucleus

tractus solitarius (NTS) in the caudal brainstem (Guillebaud

et al., 2017; Langlet et al., 2013; Liberini et al., 2020; Prevot

et al., 2013). These unique cells allow for trafficking of circulating

signals relevant to food intake and energy balance control to adja-

cent neurons in the basal hypothalamic arcuate nucleus and the

AP/NTS, respectively.

A subset of astrocytes and tanycytes both express the GLP-1R

and the GLP-1R is internalized along with its ligand following bind-

ing (Gabery et al., 2020; Reiner et al., 2016; Secher et al., 2014),

suggesting that glial cells facilitate the trafficking of GLP-1 ligands

across the BBB (Gabery et al., 2020). Multiple studies from both

pharma and academia have begun to map the neuroanatomical dis-

tribution of GLP-1R agonists in rodent models (Fortin et al., 2020;

Gabery et al., 2020; Hernandez et al., 2018; Reiner et al., 2016;

Secher et al., 2014). Such studies clearly demonstrate GLP-1R ago-

nist accumulation in circumventricular nuclei of the AP and median

eminence, as well as in adjacent nuclei of the basal hypothalamus

and NTS. To a lesser degree, GLP-1R agonists were also present

but more sparsely in distributed in nuclei throughout the brain,

depending in part on what GLP-1R ligand is being analysed (Gabery

et al., 2020; Secher et al., 2014). Because many existing GLP-1R

agonists have prolonged half-lives, often of the order of days, what

is understudied is whether ligand distribution changes following

acute versus chronic weekly treatment. What is also unknown is

whether glia-facilitated penetration of GLP-1 ligands into the CNS

is altered by chronic GLP-1R agonist treatment, changes in

metabolic and neurodegenerative disease states or with aging in

general.

3 | CONTRIBUTION OF GLIA IN
MEDIATING THE EFFECT OF GLP-1 ON
ENERGY BALANCE

Acknowledging that a subset of glia, including a heterogeneous group

of astrocytes, express GLP-1Rs and/or are responsive to GLP-1 phar-

macology (C. H. Lee et al., 2018; Gong et al., 2014; Reiner et al., 2016;

Sterling et al., 2020b; Yun et al., 2018), along with the idea that glia

may facilitate the transport of GLP-1R ligands into specific nuclei of

the CNS, necessitates a discussion of the role of glia in controlling

energy balance. Although multiple studies have shown that

intraparenchymal delivery of GLP-1R agonists to distributed CNS

nuclei suppresses food intake and body weight, modulates reward,

and/or produces behavioural measures of malaise (Kanoski

et al., 2016), the contribution of glia in mediating GLP-1R agonist's

action has not been investigated in the majority of these nuclei.

Astrocytes are critical for the modulation of L-glutamic acid in the

extracellular space via two subtypes of astrocytic L-glutamic acid

transporters, excitatory amino acid transporter 2 (EAAT2 aka GLT-1

and SLC1A2) and excitatory amino acid transporter 1 (EAAT1 aka

GLAST and SLC1A3) (Danbolt, 2001; Perego et al., 2000). The idea

that GLP-1R ligands may act directly on astrocytes in nuclei that

receive glutamatergic inputs relevant to food intake and body weight

regulation is supported by circumstantial evidence. The NTS of the

dorsal vagal complex (DVC; composed of the NTS, AP and dorsal

motor nucleus of the vagus [DMV]) is the first central nucleus to

receive and process within-meal information, vagally mediated gluta-

matergic signals arising from the gastrointestinal (GI) tract (Grill &

Hayes, 2009; Moran, 2006). The DVC expresses the GLP-1R

(Hayes, 2012; Hayes, De Jonghe, & Kanoski, 2010; Merchenthaler

et al., 1999; Reiner et al., 2016) and also acts as a critical sensor for

circulating endocrine factors and nutrients (Blouet & Schwartz, 2012;

Filippi et al., 2012; Hayes, Skibicka, et al., 2010; Huo et al., 2007;

Marty et al., 2005; R. C. Ritter et al., 1981; S. Ritter et al., 2006). Not

only are axons of GLP-1 producing preproglucagon (PPG) neurons in

close apposition with NTS astrocytes, approximately one third of NTS

astrocytes respond to GLP-1R agonists by intracellular calcium signal-

ling (Reiner et al., 2016). In addition, pharmacological blockade of NTS

astrocytes has been shown to attenuate the intake and body weight-

suppressive effects of GLP-1R agonists (Reiner et al., 2016). It is

important to point out that these data do not suggest that astrocytes

are the cellular population required for all of the metabolic effects of

GLP-1 signalling but rather are likely to be one of many cellular sub-

strates by which GLP-1 and GLP-1R ligands control food intake and

body weight. Indeed, even within the NTS, recent reports have clearly

indicated that glutamatergic (Adams et al., 2018) and GABAergic
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(Fortin et al., 2020) neurons expressing GLP-1Rs are both needed to

observe full intake suppression following GLP-1 ligand delivery. The

evergrowing body of literature collectively suggests that multiple cell

types, including glial subtypes, in multiple nuclei relevant to energy

balance express GLP-1Rs and facilitate the anorectic response to

GLP-1 ligands. What remains to be determined is the unique mecha-

nisms by which glia modulate neurotransmission to contribute to

energy balance control.

Despite the long-standing appreciation that astrocytes are the

most abundant cells within the CNS, only recently have scientists

begun to embrace the idea that astrocytes serve a critical role in regu-

lating neuronal excitability and synaptic plasticity (Agulhon et al., 2013;

Halassa & Haydon, 2010; J. G. Kim et al., 2014). In fact, a single astro-

cyte may connect thousands of synapses and, along with presynaptic

terminals and postsynaptic neurons, form a tripartite synapse (Araque,

Parpura, et al., 1999; Araque, Sanzgiri, et al., 1999; Halassa &

Haydon, 2010). Like neurons, astrocytes are activated by neurotrans-

mitters released from presynaptic terminals and gliotransmitters

released by other astrocytes. Importantly, astrocytes also express

receptors for and are activated by other non-GLP-1-circulating signals

of energy availability (e.g. leptin and ghrelin) (Chowen et al., 1999; Iwai

et al., 2006; J. G. Kim et al., 2014; Kobayashi et al., 2013; Marina

et al., 2017; McDougal, Hermann, & Rogers, 2013; Stein et al., 2020).

Astrocytic activation increases calcium signalling, stimulating the

release of gliotransmitters such as L-glutamic acid, ATP and D-serine

(Araque et al., 2001; Coco et al., 2003; Halassa & Haydon, 2010;

Mothet et al., 2000; Parpura et al., 1994).

In the case of L-glutamic acid-mediated astrocyte–neuron signal-

ling, astrocytes are predominately responsible for the clearance of glu-

tamate from the synapse by EAAT1 and EAAT2 (Danbolt, 2001;

Perego et al., 2000). Interestingly, an increase in cAMP signalling

within astrocytes reduces the expression of these glutamate trans-

porters (Lim et al., 2005) and enhances synaptic glutamatergic

signalling. Consistent with our previous research examining cAMP/

PKA signalling in GLP-1R-expressing neurons (Hayes et al., 2011),

GLP-1R activation in rat astrocytes results similarly in a dose-

dependent increase in cAMP (Reiner et al., 2016). Likewise, in a coro-

nal brainstem slice preparation, exendin-4 produced a robust and

sustained live Ca++ signalling response in NTS astrocytes (Reiner

et al., 2016). In summary, the collective evidence supports the hypoth-

esis that within the NTS, GLP-1R activation of astrocytes may

enhance vagal glutamatergic transmission of GI-derived satiation sig-

nals, possibly through a down-regulation of synaptic L-glutamic acid

clearance and/or gliotransmission (see Figure 1 for a basic theoretic

working model of astrocytic contribution to GLP-1 signalling in the

NTS).

In addition to activating classic downstream intracellular signalling

pathways to mediate hypophagic effects (e.g. cAMP/PKA, MAPK,

AMPK and Akt) (Hayes et al., 2011; Rupprecht et al., 2013), hindbrain

GLP-1R activation also increases interleukin (IL) signalling (Shirazi,

Palsdottir, et al., 2013). Intriguingly, ILs can block the ability of astro-

cytes to clear L-glutamic acid from the synapses (Takahashi

et al., 2003). Furthermore, cytokine signalling sensitizes vagal afferent

signalling (Hermann & Rogers, 2008) and presumably modulates other

presynaptic glutamatergic signalling in GLP-1R-expressing astrocytes

throughout the CNS. Another glia-specific mechanism that may con-

tribute to GLP-1R-mediated suppression of intake and body weight

could be microglia GLP-1R-mediated increase of brain derived

neurotrophic factor (BDNF) expression, as seen in human glia cultures

(Spielman et al., 2017). Indeed, BDNF activation of the TrkB receptor

has been well characterized to suppress food intake and body weight

(B. Xu et al., 2003; Nakagawa et al., 2003; Spaeth et al., 2012; Tsao

et al., 2008). In short, a concerted effort is underway to uncover the

numerous mechanisms by which glia-derived GLP-1R activation could

modulate the neuronal excitability in the tripartite synapse to influ-

ence energy balance. Discussed in more detail below, it is important

F IGURE 1 The role of astrocytes
providing a supportive role to neurons has
been investigated heavily over the past
30 years. What we know now in the
context of glucagon-like peptide-1 (GLP-1)
signalling is that first, astrocytes could
theoretically help facilitate the transport of
GLP-1 across the blood–brain barrier, due
to the internalization of the receptor when
bound (1). GLP-1 could modulate synaptic
signalling indirectly by regulating astrocytic
glutamate transporters GLT-1 and GLAST
(2) or through the release of
gliotransmitters (3). GLP-1R, glucagon-like
peptide-1 receptor; NTS, nucleus tractus
solitarius. Abbreviations, Lac, lactate; Gln,
glutamine; Glu, glutamate; Ser, serine
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to note that the complexity of GLP-1-glia signalling with relevance to

energy balance control is altered in various energy states such as

obesity.

4 | GLP-1 IN NEURODEGENERATIVE
DISEASES AND GLAUCOMA

GLP-1R activation initiates a signalling cascade that inhibits the

release of pro-inflammatory cytokines and astrocyte transformation

to a neurotoxic (A1) phenotype, both key contributors to the patho-

genesis of Parkinson's and Alzheimer's neurodegeneration (Athauda &

Foltynie, 2016). Indeed, an evergrowing body of literature shows that

GLP-1R agonists exert an assortment of anti-inflammatory effects to

induce neuroprotection in multiple in vitro and animal models of

Parkinson's and Alzheimer's diseases (see Figure 2). Specifically, GLP-

1R agonists, such as exenatide (aka exendin-4), liraglutide and

lixisenatide, have been shown to prevent dopamine neuronal

degeneration in multiple studies utilizing toxin-induced nigrostriatal

degeneration, resulting in improved motor function (Bertilsson

et al., 2008; Harkavyi et al., 2008; Li et al., 2009; Liu et al., 2015;

S. Kim et al., 2009). GLP-1 analogues also reduce amyloid β deposition

and improve cognition in animal models (Gengler et al., 2012;

Hamilton et al., 2011; Han et al., 2013; Hsu et al., 2018; Li

et al., 2010; McClean et al., 2010; McGovern et al., 2012; Perry

et al., 2003; Porter et al., 2010; Wang et al., 2010). In human trials,

exenatide improved both motor and nonmotor deficits in patients

with Parkinson's disease (Athauda et al., 2017) and liraglutide

improved amyloid β accumulation (Gejl et al., 2016) and cognitive

function in Alzheimer's disease (Femminella et al., 2019).

Recently, a novel GLP-1R agonists, NLY01 (Neuraly, Germantown,

MD), prevented neurodegeneration and improved behavioural deficits

in a mouse model of Parkinson's disease (Yun et al., 2018). Indeed,

NLY01 is a pegylated form of exendin-4 with a long half-life in both

non-human primates (88 h) and mice (38 h), where it can efficiently

penetrate the BBB resulting in high concentration in the CNS (Yun

et al., 2018). In mouse models of Parkinson's disease and in culture,

NLY01 was shown to prevent neuron death by reducing IL-1α, TNF-α
and C1q release from microglia, thereby preventing astrocyte conver-

sion to a neurotoxic (A1) phenotype (Yun et al., 2018). Clinical trials

examining the safety and efficacy of NLY01 in treating early

Parkinson's and Alzheimer's diseases are ongoing (clinical trial identi-

fiers: NCT04154072 and NCT03672604).

The anti-inflammatory and neuroprotective effects of GLP-1R

agonists suggest that they may be similarly beneficial in other disease

processes with a neurodegenerative component. Glaucoma is an

example of such a neurodegenerative disease and is characterized by

retinal ganglion cell (RGC) degeneration and optic nerve atrophy,

resulting in progressive and permanent loss of vision. It is the leading

cause of irreversible blindness worldwide and has been projected

to affect more than 100 million people by 2040. Regardless of

the glaucoma subtype, all available treatment modalities for glaucoma

rely on intraocular pressure (IOP) reduction through either decreased

aqueous production or increased outflow. Intraocular pressure

lowering, however proves insufficient to prevent disease progression

in a significant number of patients and intraocular pressure-

independent treatment options are urgently needed for this blinding

disease.

In the retina, intraocular pressure elevation stimulates microglia/

macrophages (CD11b+ cells) to produce IL-1α, TNF-α and C1q, a trio

of pro-inflammatory cytokines necessary and sufficient to induce A1

astrocyte transformation and retinal ganglia cell death (Guttenplan

et al., 2020; Liddelow et al., 2017; Sterling et al., 2020a). Knocking out

the cytokine genes or neutralizing antibodies to these cytokines

F IGURE 2 A growing body of
preclinical evidence is supporting
the hypothesis that glucagon-like
peptide-1 receptor (GLP-1R)
agonism may be a novel
therapeutic tool to treat and/or
prevent the onset of multiple
neurodegenerative diseases. The
accumulating evidence is
suggestive of a complex putative
multicellular anti-inflammatory and
neuroprotective action of GLP-1R
agonists on neurons, astrocytes
and microglia. GLP-1, glucagon-like
peptide-1; RGC, retinal
ganglion cell
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rescued retinal ganglia cells in a microbead-induced mouse model of

acute, hypertensive glaucoma (Guttenplan et al., 2020; Sterling

et al., 2020a). In a recent study by our group, we showed that

treatment with NLY01 reduced production of all three pro-inflammatory

cytokines by microglia/macrophages in this mouse model of glaucoma

(Sterling et al., 2020a). Further, NLY01 treatment prevented A1 astro-

cyte transformation and rescued retinal ganglia cells in these animals

(Sterling et al., 2020a). GLP-1R agonists reduce blood–retina barrier

(BRB) permeability by down-regulating pro-inflammatory cytokines and

protect tight junctions in rodent models of diabetes (Simo &

Hernandez, 2017). However, it is unknown whether NLY01's ability to

rescue retinal ganglia cells involves modulating infiltration of myeloid

cells through the blood–retina barrier. In support of this possibility,

GLP-1R agonists have been shown to modulate macrophage pheno-

types and decrease macrophage infiltration in rodent models of diabetes

(Y. S. Lee et al., 2012), atherosclerosis and nephropathy (Y. S. Lee &

Jun, 2016), and multiple sclerosis (Chiou et al., 2019). The use of GLP-

1R agonists has also been associated with decreased glaucoma risk in

diabetic patients (Sterling et al., 2021). However, because diabetes is an

independent risk factor for glaucoma, it is not known whether GLP-1R

agonists directly alter glaucoma progression and/or if this is a secondary

outcome of improved glycaemic control following GLP-1R agonist

administration.

In addition to macrophage and microglia, Müller cells are another

important class of glia that spans the entire thickness of the retina to

provide structural support, establish cellular homeostasis and maintain

the blood–retina barrier. Increased glial fibrillary acidic protein (GFAP)

expression, signalling Müller activation and gliosis have been

demonstrated in animal models of glaucoma and human glaucomatous

retinas (Lam et al., 2003; Tezel et al., 2003), whereas decreased L-

glutamic acid uptake by Müller cells resulting in excitotoxicity has

been postulated in glaucoma pathogenesis (Kawasaki et al., 2000).

Pertinent to this review, GLP-1R agonists have been shown to exert a

beneficial effect in animal models of diabetic retinopathy by limiting

Müller reactivity and promoting survival resulting in improved blood–

retina barrier integrity (Fan et al., 2014a, 2014b; Ren et al., 2020).

Although direct evidence of reduced Müller reactivity following

GLP-1R agonist treatment has not been similarly demonstrated in

glaucoma, given the potential pathogenic role of Müller activation in

glaucoma pathogenesis, this may be another area in which GLP-1R

agonists are of benefit.

Notably, it remains to be seen whether GLP-1R agonists are

beneficial in models of other forms of glaucoma, either those with

chronic and progressive intraocular pressure elevation or for so-

called normotensive glaucoma, where optic degeneration occurs

without elevated intraocular pressure. Our group is presently work-

ing to answer one of these questions by evaluating the effect of

NLY01 in the DBA/2J mouse model of pigmentary glaucoma and

chronic, progressive intraocular pressure elevation. Collectively, exis-

ting data clearly highlight GLP-1R agonists as promising drug targets

for treating neurodegenerative diseases such as Alzheimer's and

hypertensive glaucoma through putative GLP-1-glia/macrophage-

mediated mechanisms.

5 | THE CHALLENGES IN MOVING THE
GLP-1 FIELD FORWARD IN GLIA RESEARCH

The concept that astrocytes, tanycytes and microglia, in addition to

neurons, facilitate the effects mediated by GLP-1R activation is rap-

idly gaining traction. We believe that multidisciplinary evaluation of

this idea portends widespread implications beyond improving treat-

ments for diabetes and obesity, but must overcome a number of

unique challenges, a few of which are highlighted below.

5.1 | Multiple neuroscience disciplines have
embraced glia as a focus in their research; the obesity
and diabetes fields are just joining the fray

The bulk of research on GLP-1 has focused on the metabolic diseases

of obesity and diabetes. To the average diabetologist or obesity expert,

the idea that glia contributes to normal glycaemic control or energy bal-

ance regulation is likely a foreign concept or, at best, one that is under-

stood as being under investigation. Although the therapeutic potential

of GLP-1's activity on glia has been predominately investigated in non-

metabolic diseases, similar studies are desperately needed in the

metabolic field. Investigation into the contribution of glia in modulating

neuronal processing of satiety signals is essential, as is investigating

glia-mediated synaptic pruning with regard to neural pathways of

relevance to ingestive behaviour. Although GLP-1 and GLP-1R ligands

clearly act on glia, it is also clear that the obesity and diabetes field has

not yet devoted a wealth of resources to the study of these interac-

tions. Nonetheless, investigating the cellular substrates that mediate

GLP-1's latent potential to treat neurological and metabolic diseases

through glia-mediated mechanisms is likely to uncover additional

therapeutic targets that can be martialled to treat these same diseases.

Although historically the tools have been lacking for interrogating glia

in vivo, multiple recent advancements are likely to be of interest to the

GLP-1 research community and should be utilized (Yu et al., 2020).

5.2 | Rat versus mouse and possible glia-specific
difficulties with transgenic reporter lines

In the GLP-1 field, there are notable differences between species in

both GLP-1 physiology and behavioural and metabolic effects pro-

duced by GLP-1 pharmacology (Huo et al., 2008; Lachey et al., 2005;

Perez-Tilve, 2010). Of relevance to this review, GLP-1R expression on

astrocytes may differ between mice (Cork et al., 2015) and rats

(Kobayashi et al., 2013; Marina et al., 2017; Mora et al., 1992; Reiner

et al., 2016). In light of these differences, a logical follow-up question

would be - which species is the appropriate model(s) for understand-

ing GLP-1 physiology in humans? Although primary human microglia

and astrocytes have been shown to express GLP-1Rs in culture

(Spielman et al., 2017), we believe that these data will require confir-

mation using additional methods for reasons described in detail below.

It is also worth stating that because no reliable or validated antibody
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for the GLP-1R is commercially available, progress in basic anatomical

approaches has been limited. Instead, as bulk single-nuclei trans-

criptomic analyses with 10� technology in human post-mortem brain

tissue become more widely available, we believe this technique will

shed light on the question of which animal model best recapitulates

human GLP-1 physiology. At present, however, existing single-nuclei

transcriptomic data throughout the human brain are not available to

answer this question.

In the near term, the notion of species differences between mice

and rats for CNS GLP-1R cellular expression may not be as marked as

once thought. This is supported by mounting evidence in both mice

and rats showing that a subset of glia, including astrocytes, express

GLP-1Rs and/or are responsive to GLP-1 pharmacology (C. H. Lee

et al., 2018; Gong et al., 2014; Reiner et al., 2016; Sterling

et al., 2020b; Yun et al., 2018). The confusion in the literature regarding

this difference may be traced back to an initial reliance on a Cre

recombinase-based reporter mouse for the GLP-1R (Cork et al., 2015).

Importantly, and not limited to the GLP-1R-Cre mouse, a reliance on

Cre recombinase can produce false-positive and false-negative expres-

sions (Song & Palmiter, 2018). Indeed, in the initial creation of the GLP-

1R–Cre founder strains, Richards et al. (2014) reported that although

one founder strain displayed expected GLP-1R expression, the other

strain showed sparse expression in pancreatic islets. This is a clear

example of a false-negative scenario for GLP-1R–Cre in one of the two

founder strains. In the report by Cork et al. (2015), the fact that the

heterozygote mouse expressing Cre recombinase under the Glp1r

promoter did not show expression of GLP-1R on GFAP-positive cells

may be the result of such an unintended false-negative scenario.

Another important consideration when using heterozygote mice is that

one cannot rule out possible unknown haploinsufficiency for the CNS

GLP-1R expression. Further, GFAP is only expressed by a subset of

astrocytes and should not be relied upon as a ubiquitous marker for

astrocytes (Bushong et al., 2002; J. Xu, 2018; Walz & Lang, 1998;

Zhang et al., 2019). Collectively, and in line with a growing body of lit-

erature in not only rats, but also in mice showing GLP-1R expression

and/or GLP-1R agonism in glia (C. H. Lee et al., 2018; Gong

et al., 2014; Sterling et al., 2020b; Yun et al., 2018), reliance on the Cre

reporter line may have lead the field to mistakenly conclude that

absence of evidence is equal to evidence of absence with respect

to GLP-1R–glia expression. For each CNS nucleus of interest, a

triangulation of analyses in mice, rats and human tissue using immuno-

histochemistry, in situ hybridization and bulk single-nuclei RNAseq 10�
transcriptomic may be necessary to better delineate GLP-1R expression

and understand putative direct actions of GLP-1 on glia.

5.3 | The potential implications of
intraparenchymal injections on macrophage
recruitment

Microglia are resident macrophages of the CNS and are unique among

macrophages in that they self-renew from their original yolk sac line-

age in adulthood (Ajami et al., 2007; Bruttger et al., 2015; Elmore

et al., 2014; Epelman et al., 2014; Ginhoux et al., 2010; Hoeffel

et al., 2015; Mildner et al., 2007; Sheng et al., 2015). Peripheral

macrophages, in contrast, derive not only from the primordial yolk sac

(Alliot et al., 1999; Ginhoux & Merad, 2011) but also from foetal mono-

cytes and haematopoietic stem cells (Epelman et al., 2014; Hoeffel

et al., 2015; Sheng et al., 2015). After infiltrating the CNS in response

to injury, disease and microglia depletion, peripheral macrophages dem-

onstrate morphology and expression profiles similar to resident

microglia (Ajami et al., 2011; Bennett et al., 2018; Varvel et al., 2012).

Yolk sac-derived macrophages, in particular, were shown to express

many microglia signature genes including Tmem119, Fcrls, Hexb and

Olfml3 when injected into the brain of microglia-deficient mice, compli-

cating efforts to differentiate resident microglia from infiltrating

macrophages (Bennett et al., 2018). Nevertheless, peripheral infiltration

versus local activation implicates important differences in disease

pathogenesis and necessitates accurate characterization. Similarities

between macrophages and microglia are of particular concern to the

study of GLP-1 action on glia. The neuroscience field relies heavily on

stereotaxically guided intraparenchymal implantation of electrodes,

fibre optics, adeno-associated viruse (AAV)-mediated transfections and

indwelling cannula. All techniques that begin with an experimenter-

induced brain injury in their execution and may potentiate macrophage

infiltration. Because GLP-1Rs are expressed on infiltrating macrophages

(Shiraishi et al., 2012), a challenge for the GLP-1 field will be to

differentiate between macrophage-mediated and glia-mediated GLP-1

function when using these approaches.

5.4 | In vitro, in situ, in vivo … the devil is in the
details when studying GLP-1-glia signalling

As research efforts examining GLP-1 action on astrocytes and microglia

intensify, and with respect to experiments looking at the contribution

of glia to energy balance control, it is important to remember that glia

are an unique and dynamic group of cells in constant states of trans-

criptomic and morphological flux. In the context of energy balance,

study results have clearly shown that perturbations to diet and/or

energy states can influence the in situ cytoarchitecture of hypothalamic

and brainstem DVC astrocytes, as well as microglia morphology and

activity (Fuente-Martin et al., 2012; Garcia-Caceres et al., 2011; J. G.

Kim et al., 2014; Liberini et al., 2020; MacDonald et al., 2020; Stein

et al., 2020). Interpretation of GLP-1 action on glia is therefore affected

by multiple factors that include, but are not limited to, age, diet and

energy states (i.e. fasted, fed, overfed and obese) of the animal model

or humans under investigation. Further, glia are ‘supporting cells’ of

the CNS, and it is necessary to appreciate that when cultured in isola-

tion, their transcriptomes and functions change (Bohlen et al., 2019;

Collins & Bohlen, 2018; Gosselin et al., 2017), thus making it difficult to

interpret physiological or pharmacological GLP-1 signalling on glia

in vitro. The best approaches for studying the role of glia in mediating

GLP-1 function will be ones that involve various assays to include in

situ analyses and, when possible, in vivo physiological and behavioural

assessments in addition to in vitro assays.
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6 | CONCLUSIONS

The old saying ‘less is more’ does not apply to GLP-1. Indeed, GLP-1 is

a hormonal axis that keeps on giving when it comes to combating not

only diabetes and obesity but also potentially other diseases such as

neurodegenerative diseases and substance abuse. The more the neuro-

science community as a whole investigates GLP-1 physiology and phar-

macology, the more we are likely to be rewarded with insights into the

innerworkings of both the peripheral and central GLP-1 systems.

Highlighted here is the emerging literature showing a complex role for

glia in putatively trafficking GLP-1 ligands into the CNS, as well as medi-

ating beneficial effects of GLP-1R signalling in neuroprotection, reducing

oxidative stress and leading to food intake and weight loss suppression.

Additional research is needed to interrogate the details through which

each of these glia-mediated mechanisms is targeted and influenced by

GLP-1 pharmacology and to understand how metabolic and neurode-

generative diseases impact the overall glia-GLP-1 landscape.

6.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY http://www.guidetopharmacology.org and are permanently

archived in the Concise Guide to PHARMACOLOGY 2021/22

(Alexander et al., 2021).
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