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Drug, alcohol and tobacco use disorders are a global burden affecting millions of peo-

ple. Despite decades of research, treatment options are sparse or missing, and

relapse rates are high. Glucagon-like peptide 1 (GLP-1) is released in the small intes-

tine, promotes blood glucose homeostasis, slows gastric emptying and reduces appe-

tite. GLP-1 receptor agonists approved for treating Type 2 diabetes mellitus and

obesity have received attention as a potential anti-addiction treatment. Studies in

rodents and non-human primates have demonstrated a reduction in intake of alcohol

and drugs of abuse, and clinical trials have been initiated to investigate whether the

preclinical findings can be translated to patients. This review will give an overview of

current findings and discuss the possible mechanisms of action. We suggest that

effects of GLP-1 in alcohol and substance use disorders is mediated centrally, at least

partly through dopamine signalling, but precise mechanisms are still to be uncovered.

LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands

(BJP 75th Anniversary). To view the other articles in this section visit http://

onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc
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1 | INTRODUCTION

Worldwide, an estimated 35 million people suffer from substance use

disorders (SUDs) (United Nations Publication, 2020) and 280 million

people from alcohol use disorder (AUD) (World Health Organization

[WHO], 2018). In 2015, a quarter of the global adult population

(above 15 years of age) were current users of tobacco (WHO, 2019).

AUD is associated with high mortality due to medical complications,

injuries (Carvalho et al., 2019) and suicide (Borges et al., 2017). AUD

has serious consequences not only for the individual suffering from

this disease but also for the relatives (Connor et al., 2016) and society

at large due to high healthcare and socio-economical costs

(WHO, 2018). Harmful use of alcohol is globally estimated to account

for over 5% of deaths, making it a leading cause of preventable deaths

(WHO, 2018), and the treatment gap is wide when compared with

other psychiatric disorders (Kohn et al., 2004).

Globally, an estimated 19 million people are users of cocaine (United

Nations Publication, 2020), and about five million people suffer from

cocaine use disorder (CUD) (Peacock et al., 2018). Deaths caused by

cocaine overdose are rapidly increasing in recent years, now rivalling or

exceeding opioid overdose deaths in some American populations

(Kampman, 2019). When it comes to stimulants, an estimated 27 million
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people used amphetamines in 2018 (United Nations Publication, 2020).

Amphetamines are associated with severe physical health consequences,

psychiatric illness, aggressive behaviours, risky sexual behaviour and the

risk of contracting blood-borne viruses after needle sharing (Lee

et al., 2018). In 2018, an estimated 58 million people used opioids; this

number includes those who misused pharmaceutical synthetic opioids

(United Nations Publication, 2020). In 2016, more than 100,000 people

died from opioid overdose, most likely from respiratory depression. The

societal costs are high, due to harm to family cohesion, reduced employ-

ment and the cost of crimes (Strang et al., 2020).

Together with alcohol, tobacco use is one of the largest prevent-

able causes of premature death, but still, six million people die due to

tobacco-related diseases every year (The Tobacco Atlas, 2021).

Despite the available treatment options, many smokers attempt to

quit without medication or support, with a failure rate of 95–98%

(Prochaska & Benowitz, 2016). There is also a high prevalence of co-

use of two or more substances. This has consequences for the associ-

ated disease burden, treatment strategies and outcomes. Most (50 -

90%) people who use cocaine also consume alcohol simultaneously

(Goldstein et al., 2009), and 80% of individuals who use cocaine or

opioids are also smoking tobacco (Kalman et al., 2005). A review

based on preclinical and clinical studies has shown that co-use of alco-

hol and nicotine potentiates craving and self-administration of both

substances (McKee & Weinberger, 2013).

The mechanisms behind addictive disorders have been exten-

sively reviewed by several authors and comprise drug-induced dys-

regulations of numerous neurocircuits and neurochemicals, such as

dopamine, opioid peptides, corticotropin-releasing factor (CRF),

dynorphin, glutamate and GABA, and also vulnerability factors such

as genetics, initial drug exposure and social environment (Badiani

et al., 2011; Berridge & Robinson, 2016; Koob & Volkow, 2016;

Volkow, Michaelides, et al., 2019; Zorrilla & Koob, 2019). Attention

has also been directed to the behavioural, cognitive and neurobiologi-

cal heterogeneity of different SUDs, even though they are all classi-

fied diagnostically, without regard to drug class (Badiani et al., 2011).

There are several theories about the development of addiction, but

among the most dominant is the idea that a process termed ‘incentive
sensitization’ underlies the excessive ‘wanting’ triggered by reward cues

in addicted individuals, without necessarily ‘liking’ the drug. ‘Wanting’ is
believed to be generated in the dopaminergic mesolimbic system,

projecting from the ventral tegmental area (VTA) to the nucleus

accumbens (NAc), whereas ‘liking’ comes from tiny hedonic hotspots in

the brain and is not dependent on dopamine release. As an individual

becomes more addicted, ‘wanting’ will overshadow ‘liking’ and become

independent of ‘liking’ (Berridge & Robinson, 2016). ‘The dark side’ the-
ory of addiction contends that impulsivity, compulsivity and negative

urgency are derived from stress experienced during withdrawal or ‘nega-
tive affect stage’, even several months into abstinence. The neurocircuitry

identified involves several neuropeptides, including CRF (Zorrilla &

Koob, 2019). Dopamine plays a prominent role in the immediate rein-

forcing/rewarding effects of drugs—‘the dopamine theory’, and dys-

regulation of the dopamine system is thought to contribute to the

addicted state as a predisposing factor and/or a consequence of chronic

substance use (Volkow, Michaelides, et al., 2019).

Pharmacological treatments against AUD, opioid use disorder (OUD)

and tobacco use disorder are available (see Table 1) (European Monitoring

Centre for Drugs and Drug Addiction, 2012; Kampman, 2019; Kranzler &

Soyka, 2018; Lee et al., 2018; Prochaska & Benowitz, 2016; Wang

et al., 2019). The U.S. Food and Drug Administration (FDA) and European

Medicines Agency (EMA) do not approve any medications for the treat-

ment of cocaine or stimulant use disorders. Even when pharmacotherapy

is available, success rates for achieving long-term abstinence are modest,

highlighting the urgent need for new, effective medications against SUD

and AUD (Kampman, 2019; Lee et al., 2018; Lyon, 2017; National Institute

on Drug Abuse [NIDA], 2020; Volkow, 2020; Volkow, Jones, et al., 2019).

2 | GLUCAGON-LIKE PEPTIDE 1

In the search for new treatments of AUD (Lyon, 2017), nicotine use

disorder (Polosa & Benowitz, 2011) and SUD (Klein, 2016), the gut

hormone glucagon-like peptide 1 (GLP-1) has received much atten-

tion (Eren-Yazicioglu et al., 2021; Fink-Jensen & Vilsbøll, 2016;

Jerlhag, 2020; Reddy et al., 2014; Skibicka, 2013). Endogenous

GLP-1 is produced by cleavage of the prohormone proglucagon in

the intestinal endocrine L cells and is released in response to food

intake. It is rapidly inactivated with a half-life of just 1–2 min by the

enzyme, dipeptidyl peptidase 4 (DPP-4). GLP-1 receptors are pre-

sent in many tissues throughout the body, and GLP-1 potentiates

insulin secretion, inhibits glucagon secretion, slows gastric emptying

TABLE 1 Current FDA- and EMA-approved pharmacological treatments for alcohol and substance use disorders

SUD FDA and EMA approved Reference

Alcohol (AUD) Disulfiram, acamprosate, naltrexone, nalmefene (only EMA-approved) Kranzler & Soyka, 2018

Cocaine (CUD) No approved medications Kampman, 2019

Stimulants No approved medications Lee et al., 2018

Opioids (OUD) Opioid agonist therapy: methadone and buprenorphine, naltrexone,
supervised injectable heroin (few countries)

Wang et al., 2019; European Monitoring

Centre for Drugs and Drug Addiction, 2012

Nicotine Bupropion, varenicline Prochaska & Benowitz, 2016

Nicotine replacement therapies: lozenges, patch, gum, spray, inhaler

Abbreviations: AUD, alcohol use disorder; CUD, cocaine use disorder; EMA, European Medicines Agency; FDA, U.S. Food and Drug Administration; OUD,

opioid use disorder; SUD, substance use disorder.
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and reduces appetite (Holst, 2007). GLP-1 is also produced in the

nucleus tractus solitarius (NTS) of the brain stem and is released as

a neurotransmitter in several brain regions. GLP-1 receptors are

expressed in brain regions believed to be involved in reward and

addiction (Cork et al., 2015; Han et al., 1986; Jensen et al., 2018;

Merchenthaler et al., 1999; Rinaman, 2010; Vrang & Grove, 2011).

Studies in mice indicate that several GLP-1 receptor agonists can

cross the blood–brain barrier at least to some extent when adminis-

tered systemically (Gabery et al., 2020; Kastin et al., 2002; Salinas

et al., 2018; Secher et al., 2014; Zhang et al., 2020). A recent clini-

cal trial including patients with Parkinson's disease reported that

systemically administered exenatide, a GLP-1 receptor agonist, in a

licensed dose for the treatment of Type 2 diabetes, did cross the

blood–brain barrier (Athauda et al., 2017). In contrast, another clini-

cal study including patients with Type 2 diabetes treated with the

GLP-1 receptor agonist liraglutide found limited transfer of

liraglutide to the CSF (Christensen et al., 2015). Still, it remains to

be determined if other available GLP-1 receptor agonists differ with

respect to brain penetration in humans.

2.1 | Types of GLP-1 receptor agonists and safety

One attractive aspect of GLP-1 receptor agonists, as opposed to other

neuropeptides examined in the context of addiction (such as orexin,

relaxin, ghrelin, NPY, CART, dynorphin, neurotensin, oxytocin and

α-MSH—for an overview, see ‘The Role of Neuropeptides in Addic-

tion and Disorders of Excessive Consumption’, International Review
of Neurobiology, Vol. 136, 2017, Edited by Todd E. Thiele), is that a

number of these compounds are already used clinically, meaning that

they could become available rapidly to AUD or SUD patients if the

approach proves successful. The FDA and EMA have approved a

number of GLP-1 receptor agonists, but in this review, we will focus

on those compounds that have been investigated preclinically, that is,

exenatide, liraglutide, semaglutide and dulaglutide. GLP-1 receptor

agonists differ in pharmacokinetic and pharmacodynamic properties,

with newer agonists developed to be much longer acting relative to

the native GLP-1 peptide and the first synthetic GLP-1 receptor ago-

nists. The ligands also differ in their ability to activate second messen-

ger systems (biased agonism; see another chapter in this themed

issue), and with respect to the degree of receptor internalization they

stimulate, all of which may influence their effectiveness as possible

AUD or SUD treatments.

Early observational studies (Chis & Fodor, 2017; Elashoff

et al., 2011) reported an increased risk of pancreatitis or pancreatic

cancer when patients were treated with GLP-1 receptor agonist. This

might have hampered the incentive to investigate the potential effects

of GLP-1 receptor agonists as a treatment against AUD, as patients

are already at a higher risk for developing pancreatitis or pancreatic

cancer (National Institute for Health and Care Excellence, 2011).

However, a recent systematic review and meta-analysis including

three high-quality long-term randomized clinical trials with 9347

patients with Type 2 diabetes allocated to GLP-1 receptor agonist

treatment, found no significant association (Storgaard et al., 2017).

Another meta-analysis confirmed this finding in data based on GLP-1

receptor agonist therapy and cardiovascular outcome, including

55,921 patients (Abd El Aziz et al., 2020), as well as studies comparing

the risk of pancreatitis (Azoulay et al., 2016a) or pancreatic cancer

(Azoulay et al., 2016b) between GLP-1 receptor agonists and other

antidiabetic medications.

3 | ROLE OF GLP-1 IN ALCOHOL USE
DISORDER

3.1 | Basic research, effects of GLP-1 receptor
agonists

The effects of GLP-1 receptor activation on alcohol consumption in

laboratory animals have been investigated more extensively compared

with other substances of abuse. Several GLP-1 receptor agonists have

been tested in male rats, mice and non-human primates. Most studies

have focused on acute effects, but more recent investigations have

also assessed the effects of subchronic or repeated dosing regimens

(Marty et al., 2020; Thomsen, Barrett, et al., 2017). This is important,

as AUD is a chronic, relapsing illness that typically requires long-term

treatment, and acute effects do not always adequately predict the

effectiveness of repeated or chronic dosing.

Systemic administration of the GLP-1 receptor agonist exenatide

has been reported to decrease or abolishe the rewarding effects of

systemically injected alcohol, measured by conditioned place prefer-

ence. This was the case when treatment was administered during the

conditioning phase and also during the expression phase (Egecioglu,

Steensland, et al., 2013; Shirazi et al., 2013) or when injected directly

into the NTS (Vallöf, Vestlund, et al., 2019) or into the shell region of

the NAc (Vallöf, Kalafateli, et al., 2019). Similar results were reported

for the GLP-1 receptor agonist liraglutide (Vallöf et al., 2016).

Systemically administered exenatide (Egecioglu, Steensland,

et al., 2013; Shirazi et al., 2013; Sirohi et al., 2016) or the exenatide

analogue AC3174 (Suchankova et al., 2015) and centrally adminis-

tered exenatide into the VTA (Colvin et al., 2020; Shirazi et al., 2013),

NTS (Vallöf, Vestlund, et al., 2019), NAc, dorsal hippocampus, lateral

hypothalamus (Colvin et al., 2020), NAc shell (Colvin et al., 2020;

Vallöf, Kalafateli, et al., 2019) and laterodorsal tegmental area (Vallöf,

Kalafateli, et al., 2019) has been reported to significantly decrease

alcohol intake in a two-bottle choice paradigm. Exenatide also

decreases operant oral alcohol self-administration in rats when

injected systemically (Egecioglu, Steensland, et al., 2013) or into the

VTA (Dixon et al., 2020). However, all those treatment modalities also

affect food consumption (Grill, 2020), and it is therefore not clear, if

the effects of GLP-1 receptor agonists in these models can be distin-

guished from potential effects due to the caloric value of alcohol.

The effects of systemically injected exenatide were abolished in

mice where GLP-1-receptors were ablated in the CNS, indicating that

the effects on alcohol intake are most likely to be centrally rather than

peripherally mediated (Sirohi et al., 2016).
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Effects of chronic or repeated GLP-1 receptor agonist administra-

tion are less consistent: In one study, the GLP-1 receptor agonists

liraglutide and semaglutide potently decreased ethanol intake when

given acutely, but when testing repeated administration, effects were

transient, not lasting more than 48 h (Marty et al., 2020). Another

study found modest or variable indications of development of toler-

ance after repeated liraglutide administration (Vallöf et al., 2016).

However, once-weekly injections of the long-acting GLP-1 receptor

agonist dulaglutide for 5 or 9 weeks decreased alcohol intake in male

and female rats with no indication of tolerance (Vallöf et al., 2020).

Also, subchronic administration of liraglutide reduced operant oral

alcohol self-administration in rats (Vallöf et al., 2016). Finally, a model

of relapse behaviour reported an attenuated binge-like increase in

alcohol drinking, with protracted latency to the first drink and reduced

drinking bouts, after subchronic treatment with exenatide (Thomsen,

Dencker, et al., 2017).

The effects of GLP-1 receptor stimulation on alcohol intake have

also been reported in non-human primates (Thomsen et al., 2018).

The GLP-1 receptor agonists exenatide and liraglutide were tested in

alcohol-preferring African vervet monkeys with long-term alcohol

experience. In the exenatide experiment, exenatide or vehicle was

administered for 5 weeks, and in the liraglutide experiment, liraglutide

or vehicle was administered for 2 weeks, to obtain steady-state blood

levels. In both studies, no alcohol was available under up-titration of

the study-drug. Alcohol was then reintroduced for 2 weeks, and alco-

hol intake was recorded while the assigned GLP-1 receptor agonist

treatment was continued. Both GLP-1 receptor agonists reduced alco-

hol consumption without emetic events (Thomsen et al., 2018).

To investigate the effect of endogenous GLP-1 on alcohol intake,

GLP-1 release from the small intestines (as the precursor proglucagon)

was stimulated using two different receptor agonists of the orphan

receptor GPR119, AR231453 and APD668. However, neither recep-

tor agonist decreased alcohol intake (Marty et al., 2020). This might

be due to rapid degradation or limited access to the brain of systemi-

cally released native GLP-1 and supports the contention that GLP-1

effects on alcohol consumption are centrally mediated. Another

approach employed to increase levels of endogenous GLP-1 is the

inhibition of DPP-4, an enzyme responsible for the degradation of

GLP-1 and other peptides, by compounds such as sitagliptin. Still, this

approach did not significantly affect alcohol intake (Marty

et al., 2020). However, systemic administration of the GLP-1 receptor

antagonist exendin-9 increased alcohol intake (Shirazi et al., 2013),

supporting a role for endogenous GLP-1 in modulating alcohol con-

sumption. DPP-4 degrades endogenous GLP-1 within minutes, and

DPP-4 inhibitors are approved for treatment of Type 2 diabetes

(Deacon, 2020) as an indirect way to stimulate GLP-1 receptors

(Łupina et al., 2020). One study of ethanol withdrawal-induced anxi-

ety in rats reports delayed withdrawal-induced anxiety after treat-

ment with a DPP-4 inhibitor (Sharma et al., 2015a), but it is not clear

what the neural mechanism behind this effect might be.

Regarding interactions between alcohol consumption and the

endogenous GLP-1 system, elevated GLP-1 receptor expression in

F IGURE 1 Effects of glucagon-like peptide 1 (GLP-1) receptor stimulation on alcohol reward-related behaviours in preclinical models. CPP,
conditioned place preference; DHipp, dorsal hippocampus; ex-4, exenatide; ex-9, exendin 9–39; LDTg, laterodorsal tegmental nucleus; LH, lateral
hypothalamus; NAc, nucleus accumbens; NAcs, nucleus accumbens shell; NTS, nucleus tractus solitarius; VTA, ventral tegmental area
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the NAc has been reported in high alcohol-consuming animals com-

pared with low alcohol-consuming animals (Vallöf, Kalafateli, et al.,

2019). No changes in GLP-1 receptor expression in the VTA, amyg-

dala, hippocampus, prefrontal cortex or striatum were observed in the

same study (Vallöf, Kalafateli, et al., 2019).

A notable omission from the published reports are those on the

effects of GLP-1 receptor agonists on truly alcohol-dependent ani-

mals. In most of the studies described above, animals were exposed to

modest quantities of alcohol in models focusing on the reinforcing

aspects of alcohol consumption. AUD is characterized by continued

drinking despite negative consequences, and studies addressing this

aspect of AUD are lacking. Also, studies addressing the effects of

GLP-1 receptor agonists on the long-term adaptations of the brain to

high levels of alcohol consumption are needed (see Figure 1 for a

summary).

3.2 | Clinical/human studies

The potential effects of GLP-1 receptor agonists in reducing alcohol

intake in humans were first reported in a scientific meeting abstract

from 2011, in a cross-sectional review among patients with Type

2 diabetes treated with liraglutide for 3 months (Kalra, 2011).

Two clinical trials have investigated the effects of GLP-1

receptor agonists on alcohol intake in ‘heavy drinkers’ or patients

diagnosed with AUD (Table 2). The first study—performed by our

group—is a randomized, double-blinded, placebo-controlled clinical

trial investigating reduction in heavy drinking days after treatment

with exenatide once weekly for 26 weeks in patients diagnosed

with AUD. A subgroup of the patients had functional MRI (fMRI)

and single-photon emission CT (SPECT) scans performed at base-

line and after 26 weeks of treatment, to investigate potential neu-

robiological changes (the clinical study has been completed, and

the manuscript is in preparation, ClinicalTrials.gov identifier

NCT03232112) (Antonsen et al., 2018). The second trial is a

double-blind, randomized, placebo-controlled, crossover study

design investigating the acute effects of exenatide on alcohol

intake in heavy drinkers (ClinicalTrials.gov identifier NCT03645408;

recruitment is ongoing [April 2021]).

In terms of GLP-1-related mechanisms that might affect vul-

nerability to or development of AUD, a genetic study composed of

four human genetic association studies has shown that the GLP-1

receptor 168Ser allele is associated with increased alcohol self-

administration and a higher fMRI blood-oxygen-level-dependent

(BOLD) response in the globus pallidus when receiving rewarding

feedback in the monetary incentive delay task. This suggests a

more dysfunctional reward system, which might contribute to a

higher vulnerability to AUD (Suchankova et al., 2015). A clinical

trial investigating the effects of alcohol given intravenously or

intragastrically reports no changes in plasma GLP-1 concentrations

in healthy male volunteers (Lanng et al., 2019). This is supported

by other studies in healthy volunteers, consuming alcohol before

an oral glucose test (Svartberg et al., 1998), after an overnight fast T
A
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(Calissendorff et al., 2012) or after consumption of red wine

(Abraham et al., 2016). However, in patients with Type 2 diabetes,

who consumed alcohol and a fat-rich meal, postprandial GLP-1

levels were decreased (Dalgaard et al., 2004). It is thus unclear

whether the latter result can be attributed to alcohol ingestion, as

opposed to other nutrients.

Detoxified patients with AUD have been reported to have a

lower serum DPP-4 concentration than healthy controls, and it is

hypothesized that this diminished activity, may be involved in the

neuroendocrine pathophysiology of alcohol dependence (Maes

et al., 1999).

4 | ROLE OF GLP-1 IN SUBSTANCE USE
DISORDER

4.1 | Cocaine: Basic and clinical research

Modulation of the addiction-related effects of cocaine by GLP-1

receptor agonists is also well documented (Hernandez &

Schmidt, 2019). Systemic exenatide administration has been reported

to suppress both the acquisition and the expression of cocaine-

conditioned place preference in mice (Egecioglu, Engel, &

Jerlhag, 2013a; Graham et al., 2013). Two studies examined the acute

effects of exenatide on intravenous cocaine self-administration and

this is considered the ‘gold standard’ approach for studying the

effects of injectable drugs including cocaine. Both systemically admin-

istered in mice and centrally administered exenatide into the VTA in

rats decreased cocaine self-administration (Schmidt et al., 2016;

Sørensen et al., 2015). Exenatide injected systemically or into the

NAc, VTA or laterodorsal tegmental nucleus suppressed operant

responding during reinstatement paradigms thought to reflect cocaine

seeking; that is, reinstatement of lever pressing was induced by

cocaine injections or cues previously associated with cocaine rein-

forcement (Hernandez et al., 2018, 2019, 2020).

Acute exenatide has been reported to inhibit cocaine-stimulated

locomotor hyperactivity and decrease or abolish cocaine-induced

dopamine release in the NAc and lateral septum in mice (Egecioglu,

Engel, & Jerlhag, 2013a; Reddy et al., 2016; Sørensen et al., 2015).

This effect appears to be centrally mediated, as exenatide adminis-

tered into the lateral ventricles of the brain similarly suppressed

cocaine-evoked dopamine signalling in the NAc (Fortin &

Roitman, 2017). Mice lacking GLP-1 receptors showed exaggerated

locomotor and conditioned place preference responses to cocaine

(Harasta et al., 2015). The effects were reversed by viral vector-

mediated expression of GLP-1 receptors in the lateral septum, indicat-

ing a crucial role of this structure in GLP-1 modulation of cocaine

effects (Harasta et al., 2015).

Self-administration of cocaine, and expectancy of cocaine injec-

tions, increased endogenous GLP-1 in rats (You et al., 2019). In con-

trast, a human study reported decreased GLP-1 levels 1 h after

intravenous cocaine injection in experienced cocaine users (Bouhlal

et al., 2017). These findings were replicated in a recent study with

13 non-treatment-seeking patients with CUD (Angarita et al., 2021).

However, the latter study could not demonstrate an effect of acute

pretreatment with exenatide on cocaine self-administration or

cocaine-induced subjective effects. Although these early findings in

human subjects are somewhat surprising, as pointed out by the

authors, they do not preclude the possibility that different doses,

ligands, dosing regimens (e.g., subchronic) could modulate cocaine-

taking behaviour in patients with CUD (Angarita et al., 2021).

In summary, preclinical studies show promising effects of GLP-1

receptor agonists against cocaine intake, but little information is yet

available regarding possible effects of cocaine use on the GLP-1 sys-

tem or GLP-1 as a predisposing factor to developing CUD.

4.2 | Amphetamine: Basic and clinical research

Fewer studies have examined the effects of GLP-1 receptor activation

on central stimulant effects, all of them using D-amphetamine. Two

studies investigated the acute effects of systemically injected

exenatide on the expression of amphetamine-conditioned place pref-

erence in mice. Both studies reported attenuated amphetamine-

conditioned place preference (Egecioglu, Engel, & Jerlhag, 2013a;

Sirohi et al., 2016). The psychomotor stimulant effects of amphet-

amine were also reduced by exenatide or liraglutide administration,

measured by locomotor activity in rats and mice, respectively (Chaves

Filho et al., 2020; Erreger et al., 2012). Moreover, liraglutide inhibited

the deleterious effects of amphetamine on cognitive performance in

some assays (Chaves Filho et al., 2020). DPP-4 inhibitors reduced

amphetamine-induced hyperactivity in rats receiving an acute dose of

D-amphetamine (Lautar et al., 2005).

To the best of our knowledge, no clinical trials have or are cur-

rently investigating GLP-1 receptor activation as a treatment of cen-

tral stimulant use disorder in humans.

4.3 | Opioids: Basic and clinical research

Two larger preclinical studies have reported on the effects of

exenatide on opioid-related behaviours in rodents. The first study was

performed in male mice and reported that morphine-conditioned

place preference, intravenous self-administration of the short-acting

synthetic opioid remifentanil, morphine-stimulated locomotor activity

and somatic symptoms of morphine withdrawal (measured as jumps)

were not affected by exenatide treatment (Bornebusch et al., 2019).

Neither did exenatide significantly affect the analgesic effects of mor-

phine in a hotplate assay (including male and female mice)

(Bornebusch et al., 2019). Reinforcing effects of remifentanil (self-

administration assay) were comparable or increased in mice lacking

GLP-1 receptors in the CNS, compared with wild-type controls

(Bornebusch et al., 2019).

The second study investigated the behavioural and neurochemical

effects of exenatide and oxycodone in rats. In discordance with the

previous study, it was reported that exenatide injected systemically or
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centrally into the NAc shell region decreased oxycodone self-

administration, as well as responding in a reinstatement paradigm

(Zhang et al., 2020). However, in agreement with the previous study,

exenatide did not significantly affect the analgesic effects of oxyco-

done using a tail immersion test (Zhang et al., 2020). To identify the

central mechanisms of action, a group of rats was injected systemi-

cally with fluorescently labelled exenatide, which was shown to cross

the blood–brain barrier and bind putative GLP-1 receptors expressed

on dopamine D1 and D2 receptors, expressing GABAergic medium

spiny neurons in the NAc shell (Zhang et al., 2020). The discrepant

results in the self-administration paradigm may indicate species differ-

ences between rats and mice. Indeed, another rat study reported that

exenatide reduced responding for cues previously associated with

heroin injections in a reinstatement procedure of operant behaviour

(Douton et al., 2021). Treatment with the selective DPP-4 inhibitor

linagliptin was also reported to reduce morphine-conditioned place

preference and facilitate extinction of the morphine preference in rats

(Łupina et al., 2020).

One randomized, double-blinded clinical trial (ClinicalTrials.gov

identifier NCT04199728) is currently investigating the effects of the

GLP-1 receptor agonist liraglutide, 3.0 mg daily for 30 days, on crav-

ing in patients diagnosed with OUD (Table 2).

4.4 | Nicotine: Basic and clinical research

Two rodent nicotine studies have been reported. The first study

reported attenuation of nicotine-induced locomotor hyperactivity and

sensitization, nicotine-conditioned place preference and nicotine-

induced accumbal dopamine release (measured by microdialysis)

after acute systemic exenatide administration (Egecioglu, Engel, &

Jerlhag, 2013b). The second study found that systemic exenatide or

the DPP-4 inhibitor sitagliptin decreased intravenous nicotine self-

administration in mice and that GLP-1 receptor knockout mice, that is,

mice lacking GLP-1 receptors, self-administered more nicotine than

the wild-type controls (Tuesta et al., 2017). The study further reports

that exenatide injected into the interpeduncular nucleus decreased

nicotine self-administration and prevented nicotine from modulating

intracranial self-stimulation threshold in rats (Tuesta et al., 2017).

Chemogenetic activation of GLP-1 neurons in NTS similarly decreased

nicotine intake. This is consistent with a central site of action for

GLP-1 regulation of motivational properties of nicotine. The authors

(Tuesta et al., 2017) suggest that endogenous GLP-1 released from

the NTS decreases nicotine intake by activating the medial habenula

interpeduncular nucleus circuit.

According to ClinicalTrials.gov, three human clinical trials are

investigating the potential effects of a GLP-1 receptor agonist against

tobacco use disorder (Table 2), and one randomized clinical pilot trial

has investigated the effects of exenatide, 2.0 mg once weekly, in com-

bination with transdermal nicotine replacement therapy on smoking

cessation. They have reported that exenatide increased smoking

abstinence and reduced craving (Yammine et al., 2021). Two other

clinical trials investigating subcutaneous liraglutide, 3.0 mg daily

(ClinicalTrials.gov identifier NCT03712098), and subcutaneous dul-

aglutide, 1.5 mg once weekly (ClinicalTrials.gov identifier

NCT03204396), are still recruiting. In addition to the randomized clini-

cal trials, one fMRI study is investigating whether intravenous

exenatide reduces cue reactivity when patients are presented with

visual stimuli of alcohol and tobacco (ClinicalTrials.gov identifier

NCT02690987).

4.5 | Influence of GLP-1 receptor agonists on
dopamine regulation

Dopamine plays a prominent role in the immediate reinforcing/

rewarding effects of drugs, and dysregulation of the dopamine system

is thought to contribute (as a predisposing factor and/or a conse-

quence of chronic substance use) to the addicted state (Volkow,

Michaelides, et al., 2019). Dopaminergic neurons emerging from the

VTA project to the NAc, amygdala, hippocampus and prefrontal cor-

tex, and dopamine neurons emerging from substantia nigra

(SN) project to the dorsal striatum (Volkow et al., 2017). Disinhibition/

stimulation of dopaminergic VTA neurons is known to play a critical

role in the reinforcing effects of alcohol, nicotine and opioids (Volkow

et al., 2017). Cocaine inhibits dopamine reuptake by blocking the

dopamine transporter (DAT), increasing or prolonging synaptic dopa-

mine levels (Volkow et al., 2002). Other central stimulants can

increase synaptic dopamine levels by several modes of action, for

example, blockade of dopamine reuptake, ‘reverse’ DAT function and

dopamine release (Lee et al., 2018). Radiotracer imaging studies in

patients with AUD (Volkow et al., 1996), cocaine users (Volkow

et al., 1993) and methamphetamine users (Volkow et al., 2001) have

reported of decreased postsynaptic dopamine receptor availability,

which is suggested as one of the explanations for lower dopamine

function in this group of patients (Nutt et al., 2015). Another mecha-

nism explaining the abnormal radiotracer imaging results could be a

blunted dopamine response, compensating for other neurotransmitter

deficits, that is, glutamate or GABA (Volkow et al., 2011). Several pre-

clinical studies have tried to elucidate how GLP-1 systems modulate

dopamine signalling. Microdialysis or fast-scan cyclic voltammetry

studies have repeatedly reported that GLP-1 receptor agonists acutely

decrease accumbal dopamine efflux induced by substances of abuse.

However, information from chronic dosing studies is lacking. Systemi-

cally injected liraglutide (Vallöf et al., 2016) and exenatide (Egecioglu,

Steensland, et al., 2013) attenuate alcohol-induced accumbal dopa-

mine release, and exenatide injection into the NTS also attenuates this

response as well (Vallöf, Vestlund, et al., 2019). Exenatide can similarly

suppress cocaine-induced increases in accumbal and lateral septal

dopamine levels (Fortin & Roitman, 2017; Reddy et al., 2016;

Sørensen et al., 2015) and amphetamine- and nicotine-induced

accumbal dopamine levels in rats (Egecioglu, Engel, & Jerlhag, 2013a,

2013b). GLP-1 receptor agonists do not seem to suppress baseline

accumbal dopamine, as opposed to the modulation of stimulated

levels, and modulation may differ between NAc shell and core regions

(Egecioglu, Engel, & Jerlhag, 2013a; Fortin & Roitman, 2017).
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Dulaglutide treatment for 9 weeks decreased dopamine tissue levels

in the amygdala and striatum of rats, relative to vehicle (Vallöf

et al., 2020).

The mechanisms by which GLP-1 receptor stimulation modulates

dopamine function are less clear. Experiments in mice indicate that

stimulation of GLP-1 receptors in the VTA weakens the synaptic

strength of VTA–NAc projections (Wang et al., 2015), but relatively

few VTA neurons express GLP-1 receptors (Cork et al., 2015; Harasta

et al., 2015). Experiments in rats indicate that GLP-1 receptor stimula-

tion in the VTA could increase dopaminergic neuron activity via a pre-

synaptic mechanism of action (Mietlicki-Baase et al., 2013). One study

focused on the lateral septum in mice, an area previously associated

with reward (Harasta et al., 2015; Luo et al., 2011; Olds &

Milner, 1954), and reported that GLP-1 receptor stimulation might

dampen addiction-related effects by increasing the expression of DAT

on the neuronal cell surface, thereby reducing free dopamine levels in

the synapses (Reddy et al., 2016). These findings are supported by

another study in rats investigating the effect of GLP-1 receptor acti-

vation on DAT up-regulation in striatal brain slices as well as in vivo

by use of striatal microdialysis (Jensen et al., 2020). However, other

studies reported unaffected DAT after exenatide treatment in rats

(Fortin & Roitman, 2017), or mice (Jensen et al., 2020), or by genetic

ablation of GLP-1 receptors, that is, knockout mice (Jensen

et al., 2020).

To the best of our knowledge, only a single human study has

investigated the acute effects of GLP-1 receptor activation on DAT

availability as the primary endpoint. Ten healthy volunteers with no

previous history of drug or alcohol abuse received intravenous infu-

sions of the GLP-1 receptor agonist exenatide, while being in a SPECT

scanner. The results showed no acute changes in DAT availability

(Jensen et al., 2020). This is in line with findings from another clinical

trial, investigating the effects of exenatide once weekly in patients

with Parkinson's disease, where an effect on off-medication motor

scores was reported, but no significant effect on DAT availability after

48 weeks of treatment (Athauda et al., 2017). Thus, it has been pro-

posed that the GLP-1 receptor agonist-induced up-regulation of DAT

availability might be species dependent, with no DAT–GLP-1 interac-

tion in humans (Jensen et al., 2020).

5 | POSSIBLE MECHANISMS OF ACTION

Despite the preclinical research discussed above and a small number

of clinical trials, it is still unclear how GLP-1 receptor stimulation mod-

ulates the effects of drugs of abuse and alcohol. At a behavioural

level, the focus of most research has been on the rewarding/

reinforcing effects. Currently, the FDA-approved medications to treat

AUD, that is, disulfiram, naltrexone and acamprosate, reduce drinking

through three different mechanisms of action: (i) unpleasant effects

when consuming alcohol, (ii) reduced rewarding/reinforcing effects of

alcohol and (iii) reduced negative state when abstinent. In the

published reports, it has largely been assumed that GLP-1 receptor

agonists reduce alcohol intake by decreased rewarding/reinforcing

effects of alcohol, and the possibility that GLP-1 receptor stimulation

might decrease alcohol intake through additional mechanisms has not

been published. Similarly, studies on cocaine and amphetamine have

focused on rewarding/reinforcing effects. An alternative mechanism

(not mutually exclusive with reward modulation) is suggested by a

study on nicotine, namely, that GLP-1 receptor stimulation may pro-

mote satiety and avoidance of aversive effects of the drug, in this case

nicotine, via a habenula-dependent mechanism (Tuesta et al., 2017).

Another study suggested that cocaine produces a GLP-1-dependent

negative feedback loop through activation of stress circuits including

corticosterone, limiting cocaine intake (Schmidt et al., 2016), which

could also be interpreted as a form of GLP-1-potentiated cocaine

‘satiety’. Mechanisms involving some form of satiation would be con-

sistent with the known effects of GLP-1 system stimulation on the

regulation of nutrient intake. However, several studies have reported

that GLP-1 receptor stimulation can suppress drug-conditioned

behaviours, in both classical conditioning (CPP procedures) and oper-

ant conditioning (drug seeking using reinstatement procedures), that

is, tests during which the drug is unavailable (Douton et al., 2021;

Egecioglu, Steensland, et al., 2013; Egecioglu, Engel, & Jerlhag, 2013a,

2013b; Graham et al., 2013; Harasta et al., 2015; Hernandez

et al., 2018, 2019, 2020; Shirazi et al., 2013; Sirohi et al., 2016; Vallöf

et al., 2016; Vallöf, Kalafateli, et al., 2019; Vallöf, Vestlund, et al.,

2019). This would suggest that GLP-1 receptor stimulation also modu-

lates mechanisms underlying drug and alcohol ‘seeking’ or ‘wanting’,
and not only intake and satiation.

5.1 | GLP-1 and the stress system

One of the possible mechanisms proposed to suppress cocaine self-

administration involves modulation of stress systems (Schmidt

et al., 2016). The CRF neurons of the hypothalamus express GLP-1

receptors, and GLP-1 receptor stimulation has been shown to

enhance CRF signalling (Kinzig et al., 2003; Larsen et al., 1997; Liu

et al., 2017). This was also examined in the lateral septum, and in con-

trast to the findings in hypothalamus, blockade of the GLP-1 receptors

with a GLP-1 antagonist did not reduce stress-induced corticosterone

release (Terrill et al., 2018). GLP-1 receptor knockout mice also

exhibited increased corticosterone responses to stress (MacLusky

et al., 2000), suggesting a more complex relationship between GLP-1

and the stress systems. A large literature suggests that activation of

stress systems contributes to the addictive effects of various drugs of

abuse, in the withdrawal and ‘negative affect’ stages of addiction

(Koob, 2008; Koob & Volkow, 2016). Thus, chronic use of alcohol,

central stimulants, nicotine and opioids have all been shown to

increase CRF levels, and CRF antagonists reduce drug seeking

(Mantsch et al., 2016; Park et al., 2015). GLP-1 receptor agonists

prevented ‘relapse’ to binge-like alcohol drinking after deprivation

and attenuated alcohol withdrawal-induced anxiety-like behaviour

(Sharma et al., 2015b; Thomsen, Dencker, et al., 2017; Vallöf

et al., 2016). Taken together, although stress system activation may

curb cocaine-taking behaviour by acting similarly to cocaine
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(Schmidt et al., 2016), GLP-1 receptor-mediated activation of CRF

signalling more generally might be expected to facilitate relapse to

drug or alcohol intake.

5.2 | Ingestive regulatory effects

Because the GLP-1 systems regulate food and fluid intake, and GLP-1

receptor agonists can decrease food consumption at doses compara-

ble with those that decrease alcohol intake, non-specific effects may

contribute to the observed decrease in alcohol drinking (Dickson

et al., 2012; Tang-Christensen et al., 1996). These effects may relate

to nausea or general malaise, to the regulation of nutrient intake and

consummatory behaviours, or both. However, the fact that exenatide

also reduced intravenous self-administration of alcohol (Sørensen

et al., 2016) and GLP-1 receptor agonists reduced rewarding effects

of alcohol injections as measured by place conditioning (Egecioglu,

Steensland, et al., 2013; Shirazi et al., 2013; Vallöf et al., 2016) indi-

cates that GLP-1 receptor stimulation modulates the rewarding and

reinforcing effects of alcohol independently of its effects on oral con-

summatory behaviour. Rodents lack the ability of vomiting when nau-

seated, but nausea and malaise can be measured indirectly by pica,

which is the consumption of the non-nutritive substance, kaolin clay

(Kanoski et al., 2012). Twelve days of treatment with exenatide has

been reported to increase pica, but the pica response following treat-

ment with liraglutide was more transient (Kanoski et al., 2012). How-

ever, GLP-1 receptor activation with exenatide in the VTA, NAc core

and NAc shell (Alhadeff et al., 2012) and in the NTS (Richard

et al., 2015) have been reported not to produce a pica response. In

non-human primates treated with the GLP-1 receptor agonists

exenatide or liraglutide, no signs of nausea, that is, vomiting and/or

reduced food intake, were registered (Thomsen et al., 2018). In

humans, a recent systematic analysis of reported gastrointestinal side

effects during treatment with GLP-1 receptor agonists, including

32 clinical trials and 10,367 patients, reports that the level of nausea

and vomiting depends on several factors: (i) the higher the dose, the

higher the frequency of nausea, (ii) other medication and (iii) long-

acting GLP-1 receptor agonists compared with more short-acting

GLP-1 receptor agonists, were associated with less nausea (Bettge

et al., 2017). Although it is possible that some of the effect of GLP-1

receptor stimulation on alcohol drinking relates to consummatory

behaviour and/or caloric intake from alcohol, this does not necessarily

make the approach less useful in clinical practice. AUD sufferers are a

heterogeneous group encompassing patients with malnutrition and

low body weight, and patients with co-morbid metabolic syndrome

(Jeynes & Gibson, 2017; Vancampfort et al., 2016). Clinical observa-

tions from patients treated with GLP-1 receptor agonists for Type

2 diabetes suggest that GLP-1 receptor agonists may reduce body

weight more in subjects with higher baseline body mass index

(Niswender et al., 2013), so, in future clinical trials, it may be useful to

evaluate the effects of GLP-1 receptor agonists on alcohol intake in

more specific subgroups of AUD patients, for example, in AUD

patients with co-morbid obesity.

5.3 | Central versus peripheral effects

At a neurocircuit level, some effort has been devoted to identify neu-

ron populations or brain regions that mediate decreases in alcohol

intake in rats and mice. Evidence from genetically engineered mice

lacking GLP-1 receptors in specific tissues, infusion of GLP-1 receptor

agonists directly into the brain, and optogenetic or chemogenetic

stimulation of neuron populations all indicate that central rather than

peripheral mechanisms underlie the ability of GLP-1 receptor agonists

to reduce intake of drugs and alcohol (Abtahi et al., 2018; Colvin

et al., 2020; Dixon et al., 2020; Harasta et al., 2015; Hernandez

et al., 2018, 2019, 2020; Schmidt et al., 2016; Shirazi et al., 2013;

Sirohi et al., 2016; Tuesta et al., 2017; Vallöf, Kalafateli, et al., 2019;

Vallöf, Vestlund, et al., 2019). It is also reported that GLP-1-producing

NTS neurons project directly to the VTA and NAc (core and shell)

(Alhadeff et al., 2012) and that GLP-1 receptor activation of the NTS

alters expression of dopamine-related genes in the VTA (Richard

et al., 2015) However, the growing number of brain regions that have

shown a positive effect upon GLP-1 agonist infusion does not imme-

diately suggest a clear and defined circuit-level mechanism. Instead,

GLP-1 receptors seem to modulate brain circuits involved in reward

and addiction at multiple levels. Effects in the classic mesolimbic

reward pathway such as the VTA and NAc, which express GLP-1

receptors at moderate levels, are perhaps not surprising. A straightfor-

ward explanation for effects in the NTS could be that stimulation of

GLP-1 autoreceptors in the NTS would be expected to reduce release

of GLP-1 to other brain regions, removing a tonic inhibitory modula-

tion on reward/consummatory functions. Such an inhibitory effect of

endogenous GLP-1 is consistent with the reduction reported of

GLP-1 receptor antagonists on drug and alcohol intake (Shirazi

et al., 2013). At a synaptic or molecular level, basic electrophysiology

studies and studies using food suggest that both presynaptic and

postsynaptic mechanisms are likely to be involved in the effects of

GLP-1 receptor agonists on reward pathways (Liu & Pang, 2016;

Mietlicki-Baase et al., 2014, 2013; Wang et al., 2015) even though

there are few such mechanistic studies for drugs of abuse and alcohol.

5.4 | GLP-1 receptor heterogeneity

It has also become clear that GLP-1 receptors in the brain are hetero-

geneous and can exert both inhibitory effects, as in the CA3 of hippo-

campus and lateral septum, and stimulatory effects, as in the CA1 of

hippocampus and hypothalamic nuclei, at the cellular level (Liu &

Pang, 2016). Thus, it may be appropriate to think of different func-

tional subtypes of GLP-1 receptors, likely brought about by GLP-1

receptor ligands showing different signalling bias for different second

messenger pathways, whose expression may vary by tissue (Fletcher

et al., 2016; Zhang et al., 2015). Indeed, different GLP-1 receptor ago-

nists display tissue-specific pharmacology (Pabreja et al., 2014). Based

on rodent studies, GLP-1 receptor agonists also vary with respect to

brain availability and how discrete or extensive brain regions show

GLP-1 receptor binding after systemic GLP-1 receptor agonist
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administration (Gabery et al., 2020; Salinas et al., 2018; Secher

et al., 2014). GLP-1 receptors show desensitization and internalization

after chronic GLP-1 receptor agonist treatment, which vary between

different agonists and between different tissues or cell type (Fletcher

et al., 2016; Roed et al., 2014). All those differences might explain

differential adaptations (tolerance or no tolerance) depending on the

agonist and dosing regimen.

5.5 | Gender differences

Almost all preclinical studies reported included only male animals.

However, a recent investigation used female rats and reported that

exenatide microinfused into the NAc shell region, decreased alcohol

intake in a two-bottle choice system (Abtahi et al., 2018). Water

intake was decreased, and alcohol preference, although not reported,

may not have been decreased based on the relative effect sizes for

water and alcohol intake. Because only female animals were tested, it

is difficult to conclude any possible sex differences (Abtahi et al.,

2018). Dulaglutide treatment was tested in both male and female rats

and was found to reduce alcohol intake more in male rats than in

female rats (Vallöf et al., 2020). Another study used both male and

female mice to investigate the effects of GLP-1 receptor agonists on

nicotine self-administration, but analyses of the sex variable were not

reported, and data were only shown as sexes combined (Tuesta

et al., 2017). Sex differences in the effects of GLP-1 receptor agonists

have been reported for other endpoints, such as modulation of

feeding behaviours in rats (L�opez-Ferreras et al., 2018; Richard

et al., 2016). In humans, the genetic association of the GLP-1 receptor

allele with risk of AUD was most robust in men (Suchankova

et al., 2015), suggesting a sex difference in sensitivity to GLP-1 recep-

tor modulation of alcohol effects. Higher GLP-1 response after an oral

glucose test in healthy women than in men has been reported. How-

ever, this difference was abolished when glucose tolerance was wors-

ening (Faerch et al., 2015). A smaller study, including 14 healthy

volunteers, reported that GLP-1 infusion changed taste preference in

women significantly compared with men (Bareti�c et al., 2019).

Another study reported higher GLP-1 plasma levels in premenopausal

women compared with postmenopausal women, but this might be

due to different microbiota compositions (Santos-Marcos et al., 2018).

Clearly, it will be important to include both male and female subjects

in future studies.

F IGURE 2 Effects of glucagon-like peptide 1 (GLP-1) receptor stimulation in various substance reward-related behaviours in preclinical
models. CPP, conditioned place preference; LS, lateral septum; NAc, nucleus accumbens; NTS, nucleus tractus solitarius; VTA, ventral
tegmental area
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6 | SUMMARY AND FUTURE PERSPECTIVE

The global burden of SUD, tobacco use disorder and AUD is increasing.

Not only the individual suffering from these disorders is affected but

also the families and society at large. Many patients are co-using sev-

eral substances, drastically increasing the risks associated with each

substance alone. Pharmacological treatment options are sparse (AUD,

OUD and tobacco use disorder), if not non-existing (CUD and central

stimulant use disorder). However, emerging evidence from basic

research has pointed to GLP-1 receptors as a possible target for devel-

oping new pharmacological treatment options. In addition to the GLP-1

produced in the small intestines after food intake, GLP-1 is also pro-

duced in the NTS of the brain and is released as a neurotransmitter in

several brain regions. GLP-1 receptors are expressed in regions previ-

ously identified as important players in the neurobiology of addiction,

and importantly, GLP-1 receptor agonists seem to cross the blood–

brain barrier. Overall, preclinical research has identified potent reduc-

tions in substance use and attenuation of drug-seeking behaviour with

several different GLP-1 receptor agonists, especially regarding alcohol

(alcohol, see Figure 1; nicotine, stimulants, opioids and cocaine, see

Figure 2). A human genetic association study has reported on a GLP-1

receptor variant associated with increased alcohol self-administration

and changes in brain response in reward-related areas, as revealed by

fMRI brain imaging. It is also suggested that individuals suffering from

obesity and individuals suffering from addiction have overlapping brain

dysregulations, and the anti-obesity effects of GLP-1 receptor agonists

support the potential usefulness of GLP-1 receptor agonists for the

treatment of SUD and AUD. The possibility that rewarding effects

(of alcohol at least) may relate to consummatory behaviour does not

necessarily make the approach less useful in clinical practice. The pre-

cise mechanisms of GLP-1 receptor agonists' actions on addiction-

related endpoints have yet to be established, but the effects seem to

be mediated centrally, at least in part through modification of dopamine

signalling. No clear and well-defined circuit-level mechanism has been

identified yet, instead GLP-1 seems to modulate brain circuits at multi-

ple levels, and the relevant mechanisms of action may well be species

dependent. It is important to note that the present data pointing

towards a beneficial effect of GLP-1 receptor agonists have not yet

been translated into humans, except for (i) a pilot trial indicating posi-

tive effects of the GLP-1 receptor agonist exenatide, on nicotine absti-

nence and craving, and (ii) a minor study reporting no effect of acute

low dose exenatide on cocaine self-administration. Although a few

human studies have been initiated, further data have not yet been pub-

lished (see Table 2).

Newer systematic reviews and meta-analyses including long-term

randomized clinical trials in patients with Type 2 diabetes have found

no association between GLP-1 receptor agonist treatment and pan-

creatitis or pancreatic cancer, which is critically important if treatment

with GLP-1 receptor agonists should be contemplated in this vulnera-

ble group of high-risk patients with AUD or SUD. With the approval

of an oral GLP-1 receptor agonist, better adherence to treatment

might be hoped for in the future, but only new clinical trials will show

if treatment with oral GLP-1 receptor agonists is as effective as that

with injected treatments. Many questions still need to be answered: Is

there a gender difference in treatment response, as most preclinical

trials have been performed on male animals only; is there a genetic

variability in GLP-1 receptors, production or degradation that contrib-

utes measurably to AUD or SUD pathogenesis, widely or in subpopu-

lations; which agonist(s) are best suited to target AUD and SUD, also

in consideration of potential side effects, the latter may not be a ‘one
size fits all’ both regarding the various addictive substances and

regarding individual patient characteristics. Summing up, the stage is

set for further basic research and for large-scale clinical trials to go

ahead and bring to fruition the promising results from preliminary clin-

ical studies and basic research.

6.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY (http://www.guidetopharmacology.org) and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander, Christopoulos, et al., 2019; Alexander, Fabbro, et al., 2019;

Alexander, Kelly, et al., 2019).
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