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Abstract

Purpose: To assess racial/ethnic and socioeconomic disparities in the difference between 

atherosclerotic vascular disease prevalence measured by a multi-task convolutional neural network 

(CNN) deep learning model using frontal chest radiographs (CXRs) and the prevalence reflected 

by administrative hierarchical condition categories (HCC) codes, in two cohorts of patients with 

coronavirus disease 2019 (COVID-19).

Methods: A CNN model, previously published, was trained to predict atherosclerotic disease 

from ambulatory frontal CXRs. The model was then validated on two cohorts of COVID-19 

patients: 814 ambulatory patients from a suburban location (presenting 3/14/20 to 10/24/20, the 

internal ambulatory cohort) and 485 hospitalized patients from an inner-city location (hospitalized 

3/14/2020 and 8/12/2020, the external hospitalized cohort). The CNN model predictions were 

validated against electronic health record (EHR) administrative codes in both cohorts and assessed 
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using the area under the receiver operating characteristic (ROC) curves (AUCs). The CXRs from 

the ambulatory cohort were also reviewed by two board-certified radiologists and compared to 

the CNN-predicted values for the same cohort to produce an ROC and AUC. The atherosclerosis 

diagnosis discrepancy, Δvasc, refers to the difference between the predicted value and presence 

or absence of the vascular disease ICD10 code, was calculated. Linear regression determined 

the association of Δvasc with the covariates of age, sex, race/ethnicity, language preference and 

social deprivation index (SDI). Logistic regression was used to look for an association between the 

presence of any HCC codes with Δvasc and other covariates.

Results: The CNN prediction for vascular disease from frontal CXRs in the ambulatory cohort 

had an AUC of 0.85 (95% confidence interval (CI) = 0.82–0.89) and in the hospitalized cohort 

had an AUC of 0.69 (95% CI = 0.64–0.75) against the EHR data. In the ambulatory cohort, the 

consensus radiologists’ reading had an AUC of 0.89 (95% CI = 0.86–0.92) relative to the CNN. 

Multivariate linear regression of Δvasc in the ambulatory cohort demonstrated a significant negative 

association with non-English language preference (β = −0.083, P < 0.05) and Black or Hispanic 

race/ethnicity (β = −0.048, P < 0.05) and a positive association with age (β = 0.005, P < 0.001) 

and sex (β = 0.044, P < 0.05). For the hospitalized cohort, age was also significant (β = 0.003, 

P < 0.01), as was SDI (β = 0.002, P < 0.05). The Δvasc variable (odds ratio (OR) = 0.34), Black 

or Hispanic race/ethnicity (OR= 1.58), non-English language preference (OR = 1.74) and site 

(OR = 0.22) were independent predictors of having one or more HCC codes (all P < 0.01) in the 

combined patient cohort.

Conclusions: A CNN model was predictive of aortic atherosclerosis in two cohorts (one 

ambulatory and one hospitalized) with COVID-19. The discrepancy between the CNN model 

and the administrative code, Δvasc, was associated with language preference in the ambulatory 

cohort; in the hospitalized cohort, this discrepancy was associated with SDI. The absence of 

administrative code(s) was associated with Δvasc in the combined cohorts, suggesting that Δvasc is 

an independent predictor of health disparities. This may suggest that biomarkers extracted from 

routine imaging studies and compared with EHR data could play a role in enhancing value-based 

healthcare for traditionally underserved or disadvantaged patients where barriers to care exist.

Summary Statement:

Value-based care can be impacted when evaluating imaging biomarkers and social determinants of 

health detected through deep learning algorithms.

Introduction

Comorbidities are strongly associated with increased severity of coronavirus disease 2019 

(COVID-19) infections, disproportionately affecting racial and ethnic minorities [1]. Many 

factors contribute to these disparities, including socioeconomics, geography, environment, 

and healthcare accessibility, all potentially resulting in underdiagnosis and undertreatment of 

disease [2]. Racial/ethnic minority populations tend to have a greater degree of underlying 

comorbidities, which can increase the risk of mortality from COVID-19 [2,3,4]. Non-White 

patients hospitalized with COVID-19 infection were more likely to have a higher severity 

of infection, on admission chest radiographs (CXRs), associated with limited English 
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proficiency [5]. Detecting and measuring health disparities remains difficult and complex 

[6] and requires new technologies and techniques in a multidisciplinary approach.

In tandem with an increasing recognition of structural health disparities within the US 

healthcare delivery system, transformative progress towards value-based healthcare (VBH) 

is occurring. VBH is a data-dependent operational construct that emphasizes improved 

outcomes and decreased costs by managing chronic comorbidities, with reimbursements 

proportional to disease burden [7]. The Centers for Medicare and Medicaid Services 

maintain specific ICD-10 codes, hierarchical condition categories (HCCs), which have 

predictive power for future hospital costs [8]. HCCs contain groupings of multiple 

ICD-10 codes, generated through encounters with healthcare providers and recorded in 

administrative data. These data elements are often more reproducible and amenable to 

analysis than manual review of electronic health records (EHRs). These administrative data 

also predict mortality in patients with COVID-19 [9]. Using a convolutional neural network 

(CNN) to connect HCCs to CXRs can convert the images into useful biomarkers of patients’ 

chronic disease burden [10].

Deep learning (DL) has been extensively documented to propagate healthcare disparities 

and biases, mostly through the use of biased training data, limiting its generalizability [11]. 

Conversely, it is possible to use DL algorithms to detect such disparities. We chose thoracic 

atherosclerosis, most commonly identified by calcification of the aortic knob, as our primary 

feature. Although the visual detection of thoracic atherosclerosis is trivial, the systemic 

nature of atherosclerosis and its association with multiple disease processes (cardiac, renal, 

peripheral arterial, cerebrovascular disease, and diabetes) make it relevant as a potential 

biomarker. Using a CNN-based DL classifier [10] on CXRs of COVID-19 patients, we 

can predict the presence of vascular disease. This prediction can then be compared to 

administrative data to determine the discrepancy between the classifier’s prediction and the 

presence or absence of the administrative code for vascular disease.

We hypothesize that this discrepancy is associated with factors that change the interaction 

of patients with the healthcare system, which may alter administrative practices and 

ultimately coding. Regression can be used to find any association of demographic, racial 

and socioeconomic factors with the discrepancy between the prediction and administrative 

data.

Methods

Study Population

This retrospective study was approved by the institutional review board and was granted 

waivers of informed consent at the institutions where the two cohorts were based.

There are two cohorts in this study. The first validation cohort (internal ambulatory 

COVID+, N = 814) was seen between 3/14/2020 and 10/24/20 and had a positive real-time 

reverse transcription polymerase chain reaction (RT-PCR) COVID-19 test in the ambulatory 

or immediate care setting at DuPage Medical Group, a large multispecialty group in the 

suburbs of Chicago. To evaluate non-acute findings related to chronic medical conditions, 
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the search for frontal CXRs was expanded from 4/26/2018 to 10/23/2020 in this ambulatory 

COVID+ cohort, as the development of thoracic atherosclerotic vascular disease is a lengthy 

process.

The second cohort (external hospitalized COVID+, N = 485) was seen at a large urban 

tertiary academic hospital in Chicago, University of Illinois Hospital, between 3/14/2020 

and 8/12/2020 and received a frontal CXR in the emergency department and a positive 

RT-PCR COVID-19 test.

Image Acquisition and Analysis

CXRs for the ambulatory COVID+ cohort were obtained conventionally with digital 

posteroanterior radiography (no portable radiographs). CXRs for the hospitalized COVID+ 

cohort were all portable. All CXRs were extracted from a picture archiving and 

communication system utilizing a scripted method (SikuliX, 2.0.2) and saved as de-

identified 8-bit grayscale portable network graphics (PNG) files (ambulatory cohort) or 

24-bit joint photographic experts group (JPEG) files (hospitalized cohort).

DL CXR Classifier

A CNN-based DL classifier was used to produce an estimate of the likelihood of vascular 

disease (administrative code HCC-108). This tool has been described previously [10] and 

was developed on patients like the ambulatory cohort, over a retrospective period of 10 

years. All the CXRs were analyzed by this tool using a high-resolution PNG or JPEG file. 

The result is an estimate of the likelihood of the presence of a code in HCC-108 category 

(atherosclerotic vascular disease) ranging from 0 to 1. Occlusion-based attribution maps, in 

which areas of the image are occluded to quantify how the model’s prediction changes for 

the class [12], were generated as a sanity check (Captum 0.3.1).

Clinical Data

Clinical variables included sex, age, self-reported race/ethnicity, language preference, body 

mass index (BMI) and history of vascular disease as determined by ICD-10 codes from the 

EHR and administrative data. For patients who did not self-report, race/ethnicity data were 

imputed using geolocation and surname from US census data [13]. Self-reported races were 

categorized as Black or Hispanic and all others for the purposes of modeling.

Social Deprivation Index (SDI)

To control for geographic health inequities, we imputed the publicly available SDI by 

referencing the associated zip code tabulation areas [14]. The SDI is based on the American 

Community Survey and is used “to quantify levels of disadvantage across small areas, 

evaluate their associations with health outcomes, and address health inequities” [15]. SDI 

is a metric that combines demographic data of poverty, high school dropouts, renting, 

overcrowding, lack of car ownership, and unemployment into a granular zip-code-level 

ranking. SDI, together with other measures, can be used to identify areas that may need 

additional healthcare resources.
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Consensus Interpretation

Expert interpretations of CXRs were provided by two board-certified radiologists (A.P. and 

N.S.) with 11 years and 10 years of post-training experience, respectively, for the presence 

or absence of thoracic aortic atherosclerosis in the ambulatory cohort. Both radiologists were 

blinded to the results of the DL classifier or any clinical characteristics. Cohen’s kappa 

coefficient was calculated to measure inter-rater reliability of the two radiologists, and cases 

of disagreement were reconciled by consensus. The CXRs from the hospitalized cohort were 

not interpreted by the radiologists due to Health Insurance Portability and Accountability 

Act limitations.

Statistical Analysis

Demographic characteristics, clinical findings and CXR DL outcomes were compared 

between the internal ambulatory and external hospitalized cohorts using two-sided χ2 tests 

and t-tests. Models for each cohort were generated to evaluate the classifier’s predictions 

of vascular disease against the ground truth (administrative data), using a receiver operator 

curve (ROC) in which the area under the curve (AUC) was calculated. The classifier’s 

predictions of vascular disease for the ambulatory cohort were further evaluated against the 

radiologists’ reading. Confidence intervals (CIs) and comparison of ROCs were produced 

using DeLong’s method [16].

The numerical difference between the presence or absence of the administrative code for 

vascular disease (HCC-108) and the classifier’s predictions of vascular disease was defined 

as Δvasc and ranged between −1 and +1. Multivariate linear regression was performed to 

examine the association of age, sex, race/ethnicity, language preference, and SDI. Linear 

model beta coefficients (β), R squared (R2) values and P values were generated. We further 

evaluated the associations of Δvasc, age, sex, race/ethnicity, language preference, and SDI 

with the likelihood of having none vs. one or more HCC codes using logistic regression 

and generated odds ratios (ORs) and CIs for these associations. P < 0.05 was deemed 

statistically significant, and analysis was conducted in R version 4 (R Foundation for 

Statistical Computing, Vienna, Austria).

Results

Patient Characteristics

A total of 1,299 patients were included in this study, 814 from the internal ambulatory 

COVID+ cohort and 485 from the external hospitalized COVID+ cohort (Fig. 1, Table 1). 

Participants in the hospitalized cohort compared to the ambulatory cohort were more likely 

to be older (51 vs. 63 years old, P < 0.001), Black (8% vs. 48%, P < 0.001) or Hispanic 

(8% vs. 48%, P < 0.001), and to have a non-English language preference (8% vs. 25%, 

P < 0.001) and a higher mean SDI (31 vs. 88, P < 0.001) (Fig. 2). Race was imputed 

for 42 (5%) patients in the ambulatory cohort and 6 patients (0.01%) in the hospitalized 

cohort. The hospitalized cohort had a higher prevalence of vascular disease compared to 

the ambulatory cohort (21% vs. 8%). The DL classifier predicted both higher age and a 

higher index of vascular disease in the hospitalized cohort compared to the ambulatory 

cohort, findings that were both consistent with the EHR data. A model evaluating the 
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classifier’s predictions for vascular disease as compared to the EHR-based administrative 

data (HCC-108) showed an AUC of 0.851 (95% CI = 0.816–0.887) in the ambulatory 

cohort and 0.694 (95% CI = 0.641–0.748) in the hospitalized cohort with a P < 0.001, 

using DeLong’s method. The relationship between the classifier’s predictions for vascular 

disease and the radiologists’ consensus interpretation had a ROC AUC of 0.89 (95% CI 

= 0.86–0.92), with the radiologists having a Cohen’s kappa of 0.92, demonstrating strong 

agreement.

Figure 3 shows representative frontal CXRs from the ambulatory (Fig. 3, A) and 

hospitalized (Fig. 3, B) cohorts, demonstrating how the DL model analyzed the radiographs 

and generated the likelihoods of vascular disease.

Modeling of Δvasc

As shown in Table 2, linear regression modeling of Δvasc in the ambulatory cohort 

demonstrated significant associations with age, sex, Black or Hispanic race/ethnicity, and 

non-English language preference, but no significant association with SDI. In the hospitalized 

cohort, the significant associations were with SDI and age.

The likelihood of having none vs. one or more HCC codes was associated with Δvasc (OR 

= 0.336, 95% CI = 0.209–0.538, P < 0.001), age (OR = 1.059, 95% CI = 1.049–1.069, P < 

0.001), Black or Hispanic race/ethnicity (OR = 1.576, 95% CI = 1.124–2.210, P < 0.01), and 

non-English language preference (OR = 1.738, 95% CI = 1.170–2.583, P < 0.01) (Table 3).

Discussion

In this study we adapted a previously published CNN DL model to identify the presence 

of thoracic atherosclerotic disease from frontal CXRs and then combined these results with 

EHR administrative data from two cohorts with linear models. We found the CNN DL 

classifier to be predictive of vascular disease, validated in two disparate COVID-19 cohorts. 

The prediction of vascular disease was associated with multiple demographic findings of 

age, sex, self-reported race/ethnicity, language preference, and zip-code-based SDI, which 

is a proxy for poverty and social disparities strongly associated with reduced health and 

healthcare access. It is often difficult to understand exactly what an image-based CNN is 

using to make a prediction. Occlusion mapping can be used to visualize the portion of the 

image that is most important for the likelihood of the diagnosis. The occlusion mapping 

in our cohort demonstrates positive attribution to the cardiovascular structures for vascular 

disease (Fig. 3).

Our data demonstrated a discrepancy between the CXR classifier and the EHR-based 

administrative code for vascular disease. There were significant associations with race/

ethnicity, SDI, and language preference, which varied in our two socioeconomically and 

ethnically diverse cohorts. This discrepancy was associated with higher SDI values in a 

cohort with a higher mean SDI, but not in a more affluent, lower-risk cohort with a much 

lower mean SDI. This may mean that social deprivation must reach a certain level threshold 

before it affects coding discrepancy.
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We found that the likelihood of having any administrative (HCC) code was associated 

with vascular diagnosis discrepancy (Δvasc), age, Black or Hispanic race/ethnicity and non-

English language preference (Table 3). Although there are many unmeasured variables, this 

suggests that it is possible that the discrepancies in administrative codes are associated with 

socioeconomic and ethnic factors.

As we transition to a more value-based model for healthcare delivery and reimbursement, 

it will be increasingly important to extract the maximum possible administrative codes 

from available data, as cost-effective care and institutional profitability are tightly linked 

in VBH [17]. Extracting data from a radiograph and feeding through a trained model to 

identify ‘at risk’ patients who might benefit from extra clinical, ancillary, and administrative 

attention may help to meet VBH management metrics and improve overall patient care and 

institutional reimbursement. We offer this work as a proof of concept, with specific model 

improvements left as future work for interested investigators.

Traditionally, comorbidities have been obtained through patient history and medical records, 

but there are known racial disparities in provider-patient informing of incidental medical 

findings [14]. In addition, there are known linguistic barriers, such as speaking only 

a non-English language, which have been magnified during the COVID-19 pandemic 

[18]. Although aortic atherosclerosis is exceedingly common with advanced age [19], the 

discrepancy in its reporting may indicate more important health disparities. DL algorithms 

are deterministic, meaning that they will produce the same result for the same image, while 

radiologists have stochastic elements in their results, which is why we used Cohen’s kappa 

to evaluate inter-observer variability in the radiologists’ interpretations. Cohen’s kappa 

between the two radiologists was very strong at 0.92 but was not 1.0.

If underserved patients most at risk for poor health outcomes are similarly most at risk for 

failure in provider-patient informing and missing information due to language limitations, 

can a radiological study fill the gap? We believe so. Automated notification of treating 

physicians by EHR, text message, or email could be implemented to alert them that a 

patient, based on the imaging findings, might have undocumented pathologies that warrant 

further investigation.

It is interesting that the larger the discrepancy factor Δvasc, the more likely there were no 

codes present (Table 3). This might be completely normal and expected for young adults 

in their 20s, but our cohorts had mean ages in the 50s. We live in a global, hyper-mobile 

world where people of many different ethnicities, national origins, and economic means may 

present for care. For example, a 55-year-old non-English-speaking refugee might present 

de novo for the first time in a US medical care setting with numerous barriers in access 

to care. The Δvasc, and its association with a lack of HCC coding documentation, may 

indicate a potential “tip of the iceberg” situation, with more extensive undocumented and 

likely undertreated pathology lurking under an initial presentation, such as COVID-19 in this 

setting.

This is relevant not only for the rare John Doe patient but also in cases of demographic 

information missing from the chart by error, patient inability to provide history or inability 
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to obtain data from prior institutions. Imaging biomarkers extracted from CXRs offer 

unique opportunities to identify undocumented, underdiagnosed, or undiagnosed illnesses 

in high-risk patients, because they are relatively common and inexpensive tests, frequently 

performed either around or at admission [20, 21]. Moreover, imaging biomarkers can alert 

the medical staff of underlying medical conditions not previously diagnosed, this helps the 

clinician having a comprehensive approach for conditions not previously known by regular 

methods (chart review, history taking, etc.). CXRs are almost always done on presentation 

consistent with COVID-19 in the emergency department or immediate care clinics. In 

addition, such imaging biomarkers may unmask health disparities not readily apparent from 

other data sources. Our DL model allowed us to make a prediction regarding the probability 

of thoracic vascular disease as a comorbidity and was correlated with administrative EHR 

diagnoses. HCC codes are also predictive of repeat admission [22].

Our study was limited by several factors. First, we did not perform a manual chart review 

on our cohorts to assess for additional clinical documentation of associated comorbidities, 

like vascular disease. Absent/missing diagnoses may have been lost upon transfer from one 

health system to another, omitted by provider error, or contained within unstructured EHR 

data, like clinical notes. Though a limitation, this is one of the factors that we reviewed by 

looking at the difference between DL estimated disease and administrative data. Lastly, 

the implementation of DL models remains a technical challenge for many institutions 

and practices, with relatively few data collection standards or standards of algorithmic 

development and a lack of widespread adoption. Although we showed the predictive power 

of the DL classifier when using the hospitalized portable CXRs, the CNN was not trained on 

portable films.

In conclusion, DL techniques have a well-deserved reputation for propagating biases in 

medicine. Still, here we show how it can help mitigate these biases—in particular, detecting 

thoracic vascular disease that may be a biomarker for at-risk patients with poor SDI scores, 

of non-White ethnicity, or with a non-English language preference. Clearly, a multitude of 

barriers can exist. Critically, this approach performs independently of any additional clinical 

data, permitting use where patient history and exam information is unknown or difficult to 

obtain.
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CNN convolutional neural network

COVID-19 coronavirus disease 2019

CXR chest radiograph

DL deep learning

EHR electronic health record

HCC hierarchical condition category

JPEG joint photographic experts group

OR odds ratio

PNG portable network graphics

ROC receiver operating characteristic

RT-PCR real-time reverse transcription polymerase chain reaction

SDI social deprivation index

VBH value-based healthcare
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TAKE-HOME POINTS

1. A deep learning chest radiograph classifier was predictive of thoracic 

atherosclerotic vascular disease in patients with coronavirus disease 2019 

(COVID-19) as compared to presence of the administrative code for vascular 

disease in electronic health records.

2. The discrepancy between the classifier predictions and coded vascular disease 

demonstrated significant associations with race/ethnicity, social deprivation 

index (SDI) and language preference. These discrepancies were associated 

with an at-risk cohort with higher mean SDI, but not a more affluent 

cohort with lower mean SDI. This may mean that social deprivation must 

surpass a threshold before it has an impact. Furthermore, absence of coded 

vascular disease, even when controlling for age, sex, site, race/ethnicity, and 

language, was itself suggested as a potential marker for underdiagnosis or 

underdocumentation.
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Figure 1: 
Flowchart of patient inclusion per cohort. Patients with no or negative real-time reverse 

transcription polymerase chain reaction (RT-PCR) test results, patients who did not undergo 

chest radiography, and patients with no social deprivation index (SDI) information were 

excluded. A total of 1,299 patients were eligible for this study. Abbreviations: COVID-19 = 

coronavirus disease 2019, SDI = social deprivation index.
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Figure 2: 
Histogram distribution of the social deprivation index (SDI) across two sites (Site 1, 

hospitalized cohort; site 2, ambulatory cohort) showing a bimodal distribution and wide 

separation of the two cohorts should be readily apparent.
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Figure 3: 
Occlusion maps with the input chest radiograph on the left and output positive attribution 

map on the right. The darker green areas, when occluded from the image, positively 

impact the model’s prediction more significantly, representing a higher number on the scale. 

Occlusion maps for the prediction of vascular disease in a 63-year-old White male patient 

(A) without an associated electronic health record diagnosis code from the ambulatory 

cohort and an 86-year-old Black male patient (B) also without a diagnosis of vascular 

disease from the hospitalized cohort. Positive attributions primarily relate to the aorta, with 

calcified atherosclerotic visible at the aortic knob.
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Table 1:

Demographics, Clinical Findings and CNN CXR Characteristics per Cohort

Characteristics
a Ambulatory (N = 814) Hospitalized (N = 485) P value

Age, mean (SD) 50.8 (16.2) 56.3 (16.4) <0.001

Sex 0.554

 Male 389 (47.8%) 240 (49.5%)

 Female 425 (52.2%) 245 (50.5%)

Race/ethnicity <0.001

 White 562 (69%) 27 (5.6%)

 Black 65 (8%) 234 (48.2%)

 Hispanic 124 (15.2%) 220 (45.4%)

 Asian 63 (7.7%) 4 (0.8%)

Language preference <0.001

 English 745 (91.5%) 360 (74.2%)

 Non-English 69 (8.5%) 125 (25.8%)

SDI, mean (SD) 31.1 (25.7) 88.5 (17.8) <0.001

BMI, mean (SD) 30.8 (7.08) * 32.2 (10.1) 0.089

Vascular disease diagnosis (EHR HCC-108) 72 (8.8%) 105 (21.6%) <0.001

Patients without any HCC codes 455 (56%) 88 (18%)

DL model predictions using frontal CXR

 Predicted age, mean (SD) 54.2 (13.6) 60.7 (10.4) <0.001

 Vascular disease (HCC-108) probability output, mean (SD)
b 0.254 (0.231) 0.413 (0.212) <0.001

a
Data are given as number (percentage) for each group, unless otherwise specified.

b
Normalized probability from 0 to 1 of vascular disease output by the DL classifier.

*
14 participants did not have a recorded BMI in the ambulatory cohort.

Abbreviations: BMI = body mass index, CNN = convolutional neural network, CXR = chest radiograph, DL = deep learning, EHR = electronic 
health record, SD = standard deviation, SDI = social deprivation index.
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Table 2:

Modeling the Difference Between the CNN-Predicted and Administrative Prevalence of Vascular Disease, 

Δvasc

Characteristic Ambulatory Hospitalized

Coefficient P value Coefficient P value

Age 0.005 <0.001 0.003 <0.01

Sex 0.044 <0.05 NA NS

Black or Hispanic race/ethnicity −0.048 <0.05 NA NS

Non-English language preference −0.083 <0.05 NA NS

SDI NA NS 0.002 <0.05

Adjusted R2 .11 .022

P value <0.001 0.0201

Abbreviations: CNN = convolutional neural network, NS = non-significant, NA= not applicable. SDI = social deprivation index.
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Table 3:

Associations between none and one or more HCC codes for the combined cohort of ambulatory and 

hospitalized patients, using binomial logistic regression. Data are presented as odds ratios (OR) with 95% 

CI in parentheses.

Characteristic Odds ratio (95% confidence interval) P value

Age 1.059 (1.049–1.069) <0.001

Ambulatory Site (Ref. Hospitalized Site) 0.215 (0.149–0.312) <0.001

Black or Hispanic Race/ethnicity (Ref. White or Asian) 1.576 (1.124–2.210) 0.008

Non-English Language preference (Ref. English Language) 1.738 (1.169–2.584) 0.006

Δvasc 0.336 (0.209–0.538) <0.001

Abbreviations: HCC = hierarchical condition category.
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