Skip to main content
. Author manuscript; available in PMC: 2022 Jul 5.
Published in final edited form as: Nat Chem. 2022 Jan 5;14(1):94–99. doi: 10.1038/s41557-021-00834-8

Table 1 |.

Optimization studies of decarboxylative sulfonamidation.

graphic file with name nihms-1751283-t0002.jpg
entry solvent ligand 2 (%) 3 (%)
1 THF, Et2O, EtOAc, toluene, CH2Cl2, DMF - < 2
2 CH2Cl2 PPh3, DABCO, pyridine dtbbpy (0.20 equiv) < 5 < 5
3 CH2Cl2 dtbbpy (2.0 equiv.) 6 4
4 CH2Cl2 MeCN (2.0 equiv.) 18 5
5 CH2Cl2 MeCN (5.0 equiv.) 25 43
6 CH2Cl2 EtCN (5.0 equiv.) 40 0
7 CH2Cl2 PhCN (5.0 equiv.) 26 0
8 CH2Cl2 CyCN (5.0 equiv.) 34 0
9 CH2Cl2 i-PrCN (5.0 equiv.) 58 0
10 CH2Cl2 i-PrCN (5.5 equiv.) 59 2
11 CH2Cl2 i-PrCN (5.5 equiv.) 66(73a) 0
12b CH2Cl2 i-PrCN (5.5 equiv.) 0 0
13c CH2Cl2 i-PrCN (5.5 equiv.) 58 6

0.10 mmol screening conditions: Cu(OTf)2 (2.5 equiv.), Na3PO4 (3.0 equiv.), 1a (1.0 equiv.), 1b (3.0 equiv.), ligand, and solvent (0.10 M) are added to a 1-dram reaction vial equipped with a stir bar in a glovebox. The vial is stirred at rt with irradiation by a 34 W blue LED. In situ yield determined by GC or 1H NMR with 1-methylnaphthalene as an internal standard.

a

Isolated yield on 0.20 mmol scale.

b

Reaction conducted without light.

c

Reaction set up under air using unpurified solvent.