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Abstract

The overarching objective is to review how early exposure to adversity interacts with inflammation 

to alter brain maturation. Both adversity and inflammation are significant risk factors for 

psychopathology. Literature relevant to the effects of adversity in children and adolescents and 

brain development is reviewed. These studies are supported by research in animals exposed to 

species-relevant stressors during development. While it is known that exposure to adversity at any 

age increases inflammation, the effects of inflammation are exacerbated at developmental stages 

when the immature brain is uniquely sensitive to experiences. Microglia play a vital role in this 

process, as they scavenge cellular debris and prune synapses to optimize performance. In essence, 

microglia modify the synapse to match environmental demands, which is necessary for someone 

with a history of adversity. To achieve the main objective, clinical and preclinical research areas 

are pieced together to show how adversity uniquely sculpts the brain. Microglia interactions 

with the inhibitory neurotransmitter GABA (specifically, the subtype expressing parvalbumin) are 

discussed within contexts of development and adversity. A review of inflammation markers in 

individuals with a history of abuse is combined with preclinical studies to describe their effects 

on maturation. Inconsistencies within the literature are discussed, with a call for standardizing 

methodologies in the areas of the age of assessment of adversity effects, measures to quantify 

stress and inflammation, and more brain-based measures of biochemistry. Preclinical studies pave 

the way to interventions for anti-inflammation-based agents (COX-2 inhibitors, CB2 agonists, 

meditation/yoga) by identifying where, when, and how the developmental trajectory goes awry.
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Introduction

Exposure to early life adversity affects brain development differentially, depending on the 

type of adversity, the sex/gender of the individual, and the timing of exposure. When an 

individual is exposed to a real or potential threat, the body perceives that event as stressful. 

Such responses to stressors are found in all mammalian systems that are relevant to each 

species and activate the hypothalamic-pituitary-adrenal axis (HPA). Sources of stress that 

occur during childhood and adolescence and associated with psychopathology, including 

physical and sexual abuse or neglect that occurs before the age of 18 years, are considered 

for the current review. The studies included here on adversity exposure in humans use 
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standardized measures such as the Adverse Childhood Experiences Scale (ACES:1) or the 

Childhood Trauma Questionnaire (CTQ).2

For animal models, developmental stressors include separation from parents3 or peers4, or 

physical stress5, or limited bedding model6; we did not include the resident intruder for 

late adolescents.7 Comparisons of these various stressors reveal similarities and differences8 

that are discussed in more detail.9 Differences are found across the maternal separation 

paradigm, with paradigms varying in duration of separation, the timing of ages of separation, 

and the use of males and females within each litter.

No standard scale exists for animal studies to quantify adversity. The activation of the HPA 

axis is used as evidence of the stress, as measured by corticosterone (the animal analog of 

cortisol), corticotropin-releasing hormone (CRH), adrenal corticotropin hormone (ACTH). 

However, like in humans, these measures show tremendous variation and are subject to the 

time of collection. The nature of the stressors used in animals may or not reflect the same 

phenomenon in humans. Most paradigms alter maternal behavior (e.g., maternal separation 

or limited nesting); other stressors, like shock, are more physical than we would expect to 

model child sexual abuse; the resident intruder model is only effective in adolescents and 

adult animals.7 Despite these issues, modifying the mother’s behavior has been useful as a 

model and is used herein, unless described otherwise.

If sufficiently potent, exposure to these stressors increases the risk of psychopathology. 

Anxiety, depression, and post-traumatic stress disorder (PTSD) are expected outcomes 

of adversity, as are increased substance use disorders, schizophrenia, obesity, and heart 

disease.10 Animal studies find parallel behavioral outcomes of adversity exposure, including 

increased fear and anxiety11, depressive-like behavior4, and increased drug use, especially 

alcohol.12 Adversity exposure is a risk factor for these disorders whose negative effects can 

be mitigated with novel treatments to prevent serious outcomes.

The objective of the current review is to integrate knowledge about the effects of 

neuroinflammation, early life adversity (keywords: maltreatment, stress, abuse, deprivation), 

and brain development. Additional key terms used for the literature search include 

microglia, phagocytosis, inflammation, maturation, and brain. An emphasis was placed on 

how preclinical research can inform the neurophysiological mechanisms and how these 

mechanisms may be used to develop possible interventions of the human condition. The 

following two sections focus on brain maturation and explain how exposure to adversity and 

its effects on development depend on the timing of the stressor and the age of assessment. 

In the three sections after that, the interconnections between early life stress, microglia, 

and inflammation are discussed in relation to maturation and the potent effects of stress 

experienced during sensitive periods of development. Finally, the review surveys what is 

known about specific inflammation markers and developmental stress.

Sensitive periods are experience-expectant stages in development when events can influence 

and sculpt brain maturation. They are not experience-dependent, such as the necessity of 

light for the formation of the visual system during a critical period of development.13 The 

greatest impact of childhood or adolescent adversity on brain development occurs during 
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sensitive periods by producing regional effects on the brain that are associated with the 

timing of exposure.14,15 As discussed below, sensitive periods are related to changes in 

plasticity, including the overproduction and elimination of synapses/gray matter in a process 

that is highly conserved across species.15–17

Factors important in predicting clinical outcomes include the nature of experience, the 

brain regions underlying a given function (e.g., fear, emotion, reward), and the timing of 

exposure and assessment. Attention to these factors is critical if a comprehensive timeline 

of the course of the sequelae of adversity is to be ascertained. When possible, the age/stage 

when the adversity occurred is presented for the clinical studies. By raising awareness of 

the importance of tracking the stages, it is the author’s hope that we can arrive at more 

consensus findings of the effects of “adversity” on brain maturation.

The effects of early adversity on behavior and brain maturation

Depression occurs in ~ 67% of an early life stress population (reviewed by18,19) with an 

age of onset that is an average of nine years earlier than the non-early life stress exposed 

population.20,21 Early life adversity preferentially impacts brain circuits associated with 

threat detection, emotional regulation, reward anticipation, executive functioning, autonomic 

functions, and sleep/wake regulation.22,23 Elevated inflammation exacerbates the underlying 

brain regions associated with these behaviors.24

The age when the abuse occurs is associated with different developmental trajectories; 

children with abuse occurring before 6 years of age exhibit significant levels of depression 

and anxiety later in life compared to children with abuse occurring between 6–11 years 

of age, who were more at risk for externalizing disorders.25 This earlier abuse/depression 

track is associated with changes in emotional regulation pathways. Exposure to maltreatment 

during adolescence results in abnormal development of cortical structures that results in 

immediate manifestation of depression in humans26 and in animals following a significant 

social stressor.4,27 Additional research on older stressed animals is outside the scope of this 

review.

Physical, sexual abuse, and neglect have unique effects on brain development, suggesting 

that different mechanisms underlie the enduring consequences28,29 that are partially due 

to the brain regions that are activated. An early manifestation of early sexual abuse 

exposure includes fear processing, which typically appears in infancy. For example, the 

human amygdala, which is involved in fear processing, is reduced in volume following 

childhood sexual abuse.30 In rodent models of adversity (e.g., the limited bedding model), 

offspring show reduced fear expression before adolescence, mediated by changes in 

the amygdala.11 Behaviorally, both human and rodent species exhibit anxiety following 

exposure to adversity.9,31,32

The expression of more complex behavioral symptoms is delayed after the initiation of 

childhood abuse, likely due to the engagement (or lack thereof) of higher cortical areas 

involved in regulation.4,11,20 Adversity-associated depression involves regions regulating 

emotional responses33, including the anterior cingulate cortex, dorsolateral cortex, and 

orbital cortex.26 Increased risk for depression in the early abuse window occurs at the 
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same stage when elevated amygdala activity is observed in children with an early life stress 

history.34,35

The adolescent emergence of depression reflects a dysfunction in emotional regulatory 

circuits36 as they mature, with delayed effects as maturity unmasks earlier the consequences 

of abuse (childhood). Cortical connections to subcortical regions must play a role. For 

example, the younger vulnerability to depression coincides with the stage when the 

prefrontal cortex (PFC) innervates the amygdala11 and amygdala innervation into the PFC37, 

which increases in female rodents exposed to early stress.

Abuse-related changes in connectivity are also found in the hippocampus, where 

early childhood maltreatment reduces hippocampal volume in adolescence, but not 

earlier.38,39 Studies in animals exposed to early stress (maternal separation) show reduced 

overproduction of hippocampal synapses during adolescence.16 The hippocampus informs 

us about the context which is used by the prefrontal cortex to interpret our emotional 

responses.40 In children with a maltreatment history, connectivity between the hippocampus 

and prefrontal cortex and cortical activity to threat (as revealed by the angry faces MRI 

paradigm) is reduced.41 The sensitive period for environmental manipulations to affect the 

connectivity between the hippocampus and cortical structures is during early adolescence in 

animals.42 As a result, early abuse manifests when these hippocampal/cortical connections 

are becoming functional later in adolescence.

Processes of brain maturation at the synaptic level

The process of how exposure to early adversity alters the course of development at the 

anatomical/functional level is not well understood. Figure 1 illustrates the fundamental 

players in brain maturation (left side) and the impact of exposure to early adversity 

(right side). Typical synaptogenesis results in a balance between excitatory (E) information 

(mainly glutamate) and inhibitory (I) information (mainly GABA). This balance has been 

referred to as the E/I balance. During a sensitive period of development, the balance shifts 

to more excitatory activity (encoding the environment) and less inhibitory activity leading 

to increased brain responsiveness to the environment.43 Increases in the fast-spiking GABA 

neuron that expresses parvalbumin ends the sensitive period by increasing inhibition.44,45 

The timing of parvalbumin expression is unique for each brain region46 and reports 

differ across laboratories47–49, complicating the story. Nevertheless, parvalbumin rises in 

concert with brain-derived growth factor (and its receptor Tropomyosin receptor kinase B; 

[TrkB]), which facilitates synaptogenesis.44,45 Finally, a perineuronal net wraps around the 

parvalbumin neuron, limiting its plasticity by acting as a physical barrier.50

In keeping with a sensitive period framework, the overall impact of early adversity 

depends partly on the timing of exposure and the brain region examined. Differences 

across the timing of stress exposure and assessment can explain discrepant results across 

studies. Maternal separation reduces parvalbumin and TrkB levels in the prefrontal cortex 

in adolescence (35 days of age) in males51 and earlier in females.52 The stress-related 

reduction in parvalbumin occurs earlier than the control subject, and levels rise to control 

groups with age. The maturational timeline is also advanced after early stress and closes 

the amygdala and PFC sensitive periods earlier than controls as indicated by increased 
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parvalbumin expression.11,48 By adulthood, parvalbumin levels appear normal, with no 

quantitative difference between experimental and control subjects. Thus, if the timing of 

assessment is too late (adulthood), it would appear as if there was no effect.

Maternal separation in animals also increases the glutamate receptors GluN2A NMDA53, 

mGluR554, further shifting the E/I balance. Glutamatergic projections from the amygdala to 

the prefrontal cortex increase after exposure to maternal separation or the limited bedding 

rodent models.11,37 Finally, the perineuronal nets are more robust in animals exposed to 

early life stress55, but occur later than in controls.56 Together, low parvalbumin, increased 

glutamate, and delayed perineuronal net expression suggest that early life stress extends 

the sensitive period, allowing the neuron to remain vulnerable to “experiences” longer by 

starting earlier.

Clinically, the underlying mechanism of these changes is difficult to ascertain, but 

proxies exist. For example, magnetic resonance spectroscopy reveals that adolescents with 

anhedonia have lower levels of GABA in prefrontal cortical areas.57 Figure 1 shows 

how GABA, as measured with spectroscopy, reflects changes in parvalbumin in rats. 

Parvalbumin activity in humans is also reflected in cortical gamma activity, whereby 

the strength and coherence of the electroencephalogram reflect the E/I balance of the 

region58, but see.59 Gamma activity is lower in the superior temporal gyrus in a population 

with elevated Childhood Trauma Questionnaire (CTQ) scores.60 Similarly, exposure to 

adversity increases connectivity between the amygdala and cortical regions, presumably 

via glutamatergic projections–although the nature of these projections is not known in 

humans.61,62 These imaging studies used resting state and functional connectivity measures. 

Whether these changes are indeed glutamatergic could be ascertained with magnetic 

resonance spectroscopy.

Data from animals with maternal separation demonstrate either increased63 or decreased 

glutamate (relative to the stable neuro metabolite creatine) in the hippocampus.64 In a 

different study, GABA and glutamate + glutamine (Glu+Gln) levels in the prefrontal cortex 

were reduced (a trend).63 These animals were adults, leaving open the possibility that 

glutamate measured during adolescence is elevated. In the single study on the subject, 

hippocampal glutamate levels were inversely correlated with the degree of stress exposure 

indexed by ACES.65

Neuroinflammation

Inflammation, independent of early life stress, alters developmental processes in several 

ways. Studies that examine the effects of inflammation produced by an immune 

challenge, such as lipopolysaccharide (LPS), find reduced cell proliferation and migration; 

synaptogenesis, and pruning (reviewed in66). Changes in myelination and expression of 

other support cells are also observed.67,68 It is the tenet of this paper that inflammation 

resulting from stress during a sensitive period is a trifecta for exerting significant and 

enduring damage.
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As the story builds, the next objective of this review is to discuss the role of inflammation 

on the effects of early life adversity on synaptic plasticity. In general, stress challenges 

the body causing it to react by increasing the sympathetic nervous system and the HPA 

system. As part of the sympathetic nervous system response, norepinephrine phosphorylates 

mitogen-activated protein kinases (MAPKs) that in turn influence the immune system.69 

The HPA system releases glucocorticoids that stimulate both anti- and pro-inflammatory 

responses. Acute stressors increase the release of glucocorticoids to reduce inflammation.70 

Over time, chronic stress shifts the response to pro-inflammatory71, allowing the organism 

to respond to sustained threat.72 Indeed, glucocorticoid levels or glucocorticoid responses in 

humans73 and animals74 are suppressed in some, but not all, individuals following chronic 

stress.75 The inconsistent findings can be due to methodology of sample ascertainment, age 

of assessment, types or the age of abuse, or other underlying differences in subjects.76,77 

With prolonged immune activation, markers including C-reactive protein78 and interleukin-6 

can be measured readily (discussed in more detail below).

The interaction of stress that occurs during a sensitive period of development to effect 

inflammation produces a permanent change in neural circuitry. Inflammation associated 

with the stress79 affects neurons at all ages by reducing dendritic branching.80 However, 

these early descriptions show that dendrites resume their exuberance when the stress abates. 

In contrast, dendritic branching following exposure to early adversity does not return to 

normal. Loss of gray matter/synapses is exaggerated following stress at a specific stage 

or may not be detectable until age-appropriate pruning occurs.16 The structural/functional 

changes in the brain following early life stress exposure are more pronounced, however, 

if the stressor occurs during a sensitive period.15 Early life stress-induced inflammation 

interacts with synaptogenesis in two ways. First, inflammation activates microglia, which 

are one of several cells in the brain involved in inflammatory responses and the pruning 

of neurons. Microglia express glucocorticoid receptors81, which are highly expressed in the 

PFC and hippocampus at the ages coinciding with the sensitive periods discussed here.15,82 

Second, inflammation directly impacts GABA/parvalbumin neurons to shift the E/I balance 

(Figure 1), further exacerbating the effects of stress on regional development.

Inflammation is associated with exposure to early life adversity

Physicians have long recognized the link between psychological stress and healing in 

their patients.83–86 Multiple reviews establish a role for inflammatory processes in adverse 

outcomes66,87–91, and the relationship between inflammation and depression has been 

established for some time in adults.92 Inflammation is associated with depression in 

teens93,94, and mood dysregulation following vaccinations in children95 Individuals with 

a history of maltreatment or animals exposed to maternal separation have increased 

inflammation.48,96,97

The objective of the following section is to synthesize what is known about 

neuroinflammation and integrate this information with developmental processes. Currently, 

little of this vast knowledge is applied to developmental processes. The proposed framework 

explains why inflammation during a sensitive period may be vital to producing a permanent 

effect on circuitry versus the more temporary changes when inflammation occurs at other 

Andersen Page 6

Harv Rev Psychiatry. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



stages. Stress increases inflammation via microglia (the focus here), astrocytes98, and by 

causing the blood-brain barrier to leak, allow peripheral cytokines to enter the brain.99 

Changes in HPA axis activity, inflammation, and most importantly, circuit changes, will 

produce sustained vulnerability to depression and other emotion-regulating conditions in 

individuals with maltreatment. As a result, psychopathology associated with adversity, 

especially depression, is generally more severe, recurring, and more resistant to treat as 

reviewed by.100

The role of microglia and inflammation to facilitate pruning

There is still limited understanding of how inflammation permanently alters the immature 

brain following exposure to adversity. Recent investigations shine a light on microglia as 

critical cells of interest due to their dual role in inflammation and phagocytotic pruning 

that occurs during normal development.101–103 Contact between microglia and a synapse 

activates the cell under normal conditions and synchronizes their activity; such synchrony is 

absent when the cell is inflamed.104 Microglia have been called the “guards of homeostasis” 

and are activated when homeostasis is disrupted.105 When an environmental disruption such 

as adversity occurs, microglia and neurons undergo asynchronous development.

Microglia transition between two fundamental (and oversimplified) states: M1 during 

inflammation and M2 when the cell is involved in phagocytosis. Microglia produce 

cytokines such as TNF-α and IL-1β during the pro-inflammatory phase (M1). Microglia 

in the M2 phase are neuroprotective and produce the anti-inflammatory cytokines IL-10 

and TGF-β.106,107 A ramified morphology characterizes the resting (M2) phenotype that 

constantly scans its environment.106,108 The ramified morphology increases microglia/

neuron interactions and is observed following chronic stress or elevated glutamate 

activity.109–112 However, studies in neurodegenerative models show that ramification is 

reduced as the microglia cell is no longer able to perform its neuroprotective role.113

During development, microglia in the M2 state aid in the pruning of synapses102,114 and 

other markers (e.g., dopamine signaling101,115 to optimize neural circuits and signaling 

pathways to match the demands of the environment.102,116–118 The synchronized activity of 

the microglia/synapse pair support synaptogenesis. In other words, the microglia/neuron pair 

that fires together wires together. Exposure to adversity desynchronizes activity, resulting in 

abnormal development.

A meta-analysis of microglia number in animal models of stress not restricted to 

development (e.g., including adulthood) and seven different types of social stressors found 

an increase in microglia number using the marker ionised calcium-binding adaptor molecule 

1 (Iba-1).81 In the case of early maternal separation in animals, the cell count of microglia 

in prefrontal structures did not differ overall from control animals119, but did in cortical 

subregions.120 This observation, however, is misleading given that the state of the cell (M1 

or M2, which is based on morphology) is vital to microglia impact. By adolescence, not at 

a younger age, the number of processes on each microglial cell (M2) is elevated in females 

(but not males) following exposure to adversity and an immune challenge. Soma size is 

increased in both sexes after stress. This study118 highlights several important details that 

can influence the interpretation of the results: age of assessment, sex, and cell state. It 
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further suggests that additional metrics of microglia activity are needed to study the effects 

of inflammation on microglia/synapse interactions in development.

The signal for pruning is mediated in part by interactions between the Complement 

component 1q (C1q), part of the innate immune system, and complement 3 fractalkine 

(C3) and its receptor (C3R).102,121 C1q and C3 promote microglia engulfment of developing 

synapses during pruning marked by a “tag” containing the complement protein C3. The tag 

molecule binds to a C3 receptor, CD11b, that is expressed exclusively on microglia and 

is directly involved in synaptic elimination (pruning).102 CD11b orchestrates inflammatory 

and anti-inflammatory activity. Under typical developmental conditions, the innate immune 

signaling protects synapses from being pruned erroneously.122 A loss of C1q and C3 

prevents pruning, resulting in excess synapses in adulthood102,116,121; we would expect the 

opposite whereby increased C1q or C3R enhances pruning. Evidence is emerging suggesting 

that early life stress alters C1q and C3R.123

Phagocytic activity by microglia increases earlier in life (e.g., childhood in mice) in animals 

that underwent early maternal separations compared with controls.124 Given the role that 

the CD11b receptor plays in pruning125, it is not surprising that animals exposed to early 

life stress have elevated CD11b receptors (Andersen, unpublished observation). Increased 

CD11b provides a mechanism for explaining enhanced pruning in animals exposed to early 

life stress.

Another microglia marker, fractalkine (CX3CL1; CX3 chemokine ligand [L] 1), is 

associated with pruning during a sensitive period. Changes in CX3CR are necessary for 

glutamatergic synaptogenesis during development.126–128 CX3CL1 activation of microglia 

modulates the overproduction of inducible nitric oxide synthase (iNOS), IL-1β, TNFα, and 

IL-6. Decreased CX3CR1 (CX3 chemokine receptor [R] 1) signaling in young mice (early 

childhood) enhances long-term depression in the hippocampus, but reductions in CX3CR1 at 

adolescence have no effect.129

One way chemokines work is to modify glutamate. Reduced expression of the chemokine 

CXCR1 during a sensitive period is associated with less glutamatergic AMPA activity 

and delays the developmental switch in GluN2B to GluN2A NMDA receptors.105 Animal 

studies show that early stress increases GluN2A NMDA receptor expression, but GluN2B 

was not measured in this study.53 GluN2B was decreased in the adult hippocampus after 

maternal separation in rats.130 Early stress exposure is expected to reduce plasticity as the 

synapse matures, as suggested by the GluN2B: Glu N2A ratio.

Manipulating the CX3CR1 changes developmental plasticity and the effects of 

inflammation, but the result is not universal across all brain regions.131 Since every brain 

region has a unique period of plasticity, the possibility exists that the timing of assessment 

prevented the detection of CX3CR1 changes in various brain regions. The single study 

that examined CX3R after early stress exposure failed to find an effect within a single age 

group in one brain area.132 However, increased inflammation at four days of age in mice 

(due to LPS treatment) elevated microglia engulfment of synapses via a CX3CR1-mediated 

mechanism in the adolescent prefrontal cortex.133 Possible reasons for the lack of CX3CR1 
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change following early stress include differences in the timing of stress, LPS activates the 

HPA or immune systems more than maternal separation, or the timing of assessment was 

not appropriate for the sensitive period of the region. These pervasive issues in the field 

hamper our progress to detect important factors relevant to psychiatry. By aiming for a 

more systematic approach across laboratories that includes the use of key ages of a stressor 

that produces a maximal effect, duration of stress manipulation, and key ages to measure 

outcome, we will improve our ability to identify important changes. The paper by11 provides 

an example of such a foundational analysis.

In addition to microglia, astrocytes enable synaptic pruning by directly engulfing synapses 

and indirectly by increasing the release of different measures of the complement system and 

IL-33.134–136 For a more expanded review of the role of inflammatory markers involved in 

synaptogenesis in other conditions, such as Parkinson’s disease, Alzheimer’s disease, and 

schizophrenia, the reader is referred to a review by.105

Pathways of inflammation

The objective of the following section is to review the limited number of studies 

that examine the effects of inflammation that affect brain development following early 

adversity. Several inflammation markers that are associated with adversity, depression, or 

aging have been identified. Behaviorally, increased inflammation and stress are associated 

with depression, memory impairment, and cognitive dysfunction in humans66,137,138 and 

animals.48,51,139 Inflammation is also associated with neurodegeneration, as evidenced by 

structural brain changes in gray and white matter.

Figure 2 focuses on markers that have been examined clinically or preclinically or 

are of potential interest. The signal 1 initiating cascade includes pathogen-associated 

molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). DAMPs 

are responsible for the activation of the TLR pathway.140 The interleukins (IL) IL-6, IL-1b, 

IL-10, and tumor necrotic factor-alpha (TNFa) are studied frequently. C-reactive protein 

(CRP) is a systemic marker of inflammation and is considered a downstream product of the 

IL-6 cascade.141

Inflammation, adversity, and development

The following discussion focuses on the relationship between early adversity, inflammation, 

and how they relate to brain and behavior changes when data are available. Changes in 

systemic inflammatory markers in populations with a history of maltreatment are reviewed 

elsewhere.66,87–91 Keeping in mind that stress allows peripheral cytokines to enter the 

brain99, these references are important when considering biomarkers. The review here 

discusses clinical findings of inflammation on the brain and will be supported further with 

preclinical studies that are experimental and not correlational.142,143

Inflammation (IL-6)

IL-6 is one of the most well-known interleukins and can be measured readily in blood 

samples. Elevated levels of IL-6 are reported in children with a maltreatment history in 
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several studies. IL-6 decreases CX3CR1 levels144,145 resulting in reduced plasticity. For 

example, IL-6 dose-dependently inhibits synaptic plasticity in the hippocampus, whereas 

blocking IL-6 activity improves long-term memory.146,147

Maltreatment-related depression is often associated with inflammation. The level of 

childhood trauma as measured by the CTQ correlates positively with serum levels of IL-6 

for physical abuse and emotional abuse.148 IL-6 levels are inversely associated with the 

volume of the hippocampus and prefrontal cortex regions in humans.149

Studies in rats that underwent maternal separation show increased IL-6 levels in the 

hippocampus, but not the prefrontal cortex.120 Mechanistically, preclinical studies show that 

IL-6 identifies parvalbumin cells as “sick” and dying150. Animal studies reveal an inverse 

correlation between IL-6 in the plasma and parvalbumin in the prefrontal cortex.53 IL-6 

levels are increased in the prefrontal cortex and hippocampus of males, but not female 

rats exposed to maternal separation.151 Notably, the time course of parvalbumin loss in an 

animal model is delayed until adolescence in females and occurs earlier in males.49 These 

data suggest that increased IL-6 opens the sensitive period early, making the individual more 

plastic (vulnerable?) to their experiences.152

IL-1β

IL-1β is another cytokine that inhibits cell proliferation153 ,154,155, reduces CX3CR1 

levels in vivo144,145 and reduces LTP and calcium currents in culture. In addition, IL-1β 
induces the expression of cyclo-oxygenase-2 (COX2;156), the target of non-steroidal anti-

inflammatories. An interaction between the IL-1β genotype, the NR3C1 haplotype (a variant 

that encodes the glucocorticoid receptor), and adversity exposure is associated with thinning 

of the left subgenual anterior cingulate cortex in humans.157

IL-1β is often, but not always, associated with depression158 and impair memory-related 

behaviors in humans.144,145 Depressive symptoms in males, but not females, with a history 

of adversity, were higher if they had the single nucleotide polymorphism GG IL-1β 
polymorphism in the rs16944.159 IL-1β correlates with gray matter volumes in the left 

occipitotemporal area, left superior occipital gyrus, and left inferior parietal lobule in older 

adults (non-abused).160

Changes in IL-1β are also associated with increased GABA-A receptor expression in 

animals.155,161 The GABA-A receptor is the site of action for benzodiazepines. GABA-

A receptor activity is very dynamic the first month of life in the rat (corresponding to 

childhood in humans;162), and thus susceptible to changes in maternal care.163 Reduced 

GABA activity during peri-adolescence increases amygdala innervation into the prefrontal 

cortex in animals164–167 This observation is consistent with the lower GABA/glutamate 

balance found in affective disorders in humans168 and increased glutamate activity in 

individuals with a history of maltreatment.169

Studies in animals show that this GABA loss can be rescued by increasing GABA during 

the first two weeks of life.170 In depression-resilient humans, greater cortical activity and 

less amygdala activity facilitate adapting to stress quickly.62 Thus, intervening early in life 
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(see below) may mitigate the effects of maltreatment. In animal models of early adversity 

(e.g., the maternal separation model), IL-1β levels inversely correlate with performance on 

the win-shift maze task (a memory task;49) and are elevated in the hippocampus.171

Pro-inflammatory tumor necrosis factor-alpha (TNFα)

TNFα regulates glutamate and GABA receptor trafficking and neuronal connectivity.172–174 

Children with a history of trauma have elevated levels of TNFα.175 Decreases in gray 

matter in individuals with a history of childhood trauma negatively correlate with a 

composite measure of IL-6, CRP, and TNFα. Affected regions the bilateral posterior 

cingulate cortex/precunei, postcentral gyri, inferior/superior parietal lobules.176 Changes in 

these regions implicate social processing. These results are supported by a second study, 

finding TNFα significantly correlated with gray matter volumes of the left occipitotemporal 

area, left superior occipital gyrus, left inferior parietal lobule, and the medial prefrontal 

cortices160 Finally, the effects of inflammation can be mediated via social means. Increased 

inflammation in caregivers is associated with elevated children’s inflammation markers (a 

composite measure of IL-1B, Il-6, IL-8, TNFα, but not CRP) where both had adverse 

experiences.177 A significant interest in caregiver mediation is building in the field, in 

general.

While individuals with an abuse history showed deficits in both the inhibitory control when 

tested with a Go-No Go task and a behavioral rating scale, levels of TNFα were associated 

with deficits only at a trend level with the Go-No Go performance.158 The effects of 

treatment with inflixamib, which targets the TNFα receptors, is moderated by a history of 

physical abuse in bipolar patients.178 These data highlight the vital role that maltreatment 

and inflammation play in mediated psychopathology later in life.

Toll-like receptors

The TLR pathway is the subject of extensive research in other fields179, but emerging 

evidence suggests this pathway changes in response to early experiences. TLR activity 

increases nuclear factor kappa B (NF-κB)-mediated signaling to increase pro- IL-1β 
formation (Figure 1). Basic research from slice culture shows that the TLR pathway, namely 

TLR2 and TLR3, is activated by lipopolysaccharide, causing microglia to release IL-6 

and TNFa. Maternal separation increases TLR4 activity in the hypothalamus180 and the 

hippocampus.181 Voluntary, but not mandatory, exercise reduces TLR4 levels in these rats.

NF-kB

Lymphocytes can be collected from blood in humans and used to assay systemic, but not 

brain, immune function. Studies of NF-kB activity following exposure to early adversity 

show a pattern of gate keeping, where only high levels of NF-kB are associated with extreme 

stress in the form of PTSD. Cellular levels of NF-kB are elevated in women with child 

abuse-related PTSD.182 However, when not stimulated (or the trauma experienced does not 

lead to PTSD), peripheral levels of NF-kB in a population defined by Adverse Childhood 

Events (ACEs) were not altered relative to controls.183 NF-kB in lymphocytes need to 

be stimulated in resilient, healthy adolescents with a history of maltreatment to evoke an 

increase relative to controls.184 For example, a history of childhood physical neglect, but 
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not CTQ scores, are associated with NF-kB expression in response to the Trier Social 

Stress Test.185 These studies illustrate the importance of defining the population of interest 

(discussed below).

Animals separated from their mothers (a model of early life stress) also show elevated levels 

of NF-kB186 and greater NF-kB responsivity to challenge (i.e., to cocaine) than controls.187 

Together, these data suggest that NF-kB requires a minimum threshold of activity for 

activation following early adversity.

Inflammasome (NLRP3)

The inflammasome is a multi-protein, intracellular complex that detects outside pathogens 

as part of the innate immune system. While much is known about the inflammasomes 

and their role in depression, the inflammasome may represent a novel avenue of 

investigation to treat abuse. The inflammasome can detect danger signals, including stress 

and metabolic distress188 Microglia contain inflammasomes.189 The nucleotide-binding and 

oligomerization domain (Nod)-like receptor family pyrin domain-containing 3 (NLRP3) 

is one of many different proteins that makes up the inflammasome. The inflammasome 

is integral to the cascade of IL-1b synthesis.190 Maternal separation increases NLRP3 

expression in the prefrontal cortex, secondary to a 20% reduction in MARCH7 (an enzyme 

that regulates caspase activity). Inflammasome expression in the hippocampus is elevated 

in an animal model of social isolation and reversed by the inhibitor, MCC950.191 MCC950 

reduced cognitive impairment also.

Preventing the inflammatory cascade

COX-2 inhibitors

Cyclo-oxygenase-2 (COX-2), an inflammation marker, is elevated in individuals with 

depression and in early life stress animals with depressive behaviors.48,51,192,193 Treatment 

with a COX-2 inhibitor reduces depressive behavior, restores working memory impairment, 

and increases parvalbumin levels in early stress animals.48,51,53 At the same time, COX-2 

inhibition demonstrated positive effects as a depression intervention; the drug influences 

other mechanisms. Some COX-2 inhibitors (e.g., rofecoxib) have been deemed unsafe by 

Merck but remain supported by the Food and Drug Administration. In any event, new and 

safer targets are needed to alter depression following exposure to early life stress.

IL-10—Neuronal development and synaptic function are modulated by microglial 

interleukin-10 (IL-10), which binds to IL-10 receptors on neurons.194 IL-10 downregulates 

the expression of Th1 cytokines, major histocompatibility class II antigens, and co-

stimulatory molecules on macrophages.195 It also enhances B cell survival, proliferation, and 

antibody production. IL-10 can block NF-κB activity and regulates the JAK-STAT signaling 

pathway.196 Taken together, the effects of IL-10 are beneficial.

IL-10 abrogates the IL-1β -induced inhibition of glutamate release and LTP.196 In animal 

models of early adversity (e.g., the maternal separation model), IL-10 levels positively 

correlate with performance on the win-shift maze task.49 Microinjections of IL-10 into the 

ventricles also prevented memory impairment in maternally separated animals.53
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CB2 Receptors: Maltreatment during early childhood is a significant predictor of 

cannabis dependence197–199, even after adjustment for genetic vulnerability.200 Cannabis 

use by depressed individuals thus can be considered self-medication.201 CB2 receptors play 

a role in social behavior202 and modulate GABA activity.203 Studies in late adolescent 

rats show that CB2 agonist treatment reduces anxiety levels. The effect is partly due to a 

normalization of cortical glucocorticoid receptors in both males and females.204

The CB2 receptor is found on microglia.205–208 CB2 activity reduces inflammation by 

inhibiting the inflammasome protein NLRP3209 Activation of CB2 receptors increases 

IL-10210,211, which we have found prevents PV loss in MS animals.53 CB2 agonists 

activate the MAPK-ERK pathway via a Gβγ subunit and alter cell migration and increases 

neurogenesis.212–215

While a cannabis intervention has yet to be examined in an animal model of early 

maltreatment, we know that treatment with a CB1/2 agonist during a sensitive period 

can impair function. Treatment in early or mid-adolescence, but not in late adolescence 

or adulthood, alters GABA-A activity; frequency-dependent activity in the prefrontal 

cortex is disinhibited to juvenile-like levels in adults (arrested development).216 Increased 

CB2 receptor expression, on the other hand, produces an anti-depressant-like action.217 

Consistent with an intervention occurring before pruning begins, the existing literature 

on adolescent THC/CB1 exposure in animals suggests that a sensitive period occurs 

before adulthood, with most studies suggesting exposure before puberty onset in males 

as critical.216,218–220

Non-pharmacological interventions that reduce inflammation—A host of other 

approaches are under development to reduce inflammation/increase GABA levels as a means 

of treatment for a maltreated population. Yoga and meditation have been studied for years. 

Meditation can reduce brain aging221, and reductions of stress-induced changes in emotional 

regulation dysfunction222, and IL-6 are reported.223 A recent review of the appropriateness 

of mindfulness for maltreatment patients, including pros and cons, of mindfulness-based 

interventions, exists.224,225. Researchers find that yoga is helpful.226

Another approach is to manipulate the microbiome to reduce inflammation.227,228 Studies 

associating food intake with major depression exist, but studies including maltreatment, 

hopefully, are forthcoming. Finally, there is nothing better than human touch. Adoption 

studies in humans229 or manipulations in rats230 show that social interaction can have a 

positive impact.

Discussion

Early adversity mediates part of its effects on brain development by increased inflammation. 

One objective of the current review was to discuss the differential impact that the occurrence 

of adversity during a sensitive period has on maturation, and to highlight its importance for 

predicted effects and maximum vulnerability. The second objective was to introduce the role 

of microglia as a key mediator for both developmental changes and inflammation. Finally, 
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the third objective presents specific examples of neuroinflammatory agents, adversity, and 

neuroanatomical and behavioral change.

One important facet to discuss is the role of individual differences. Not all individuals 

exposed to early adversity show changes in brain development, increased inflammation, or 

psychopathology. Clinical studies that examine group differences may miss the effect of 

adversity by assuming otherwise. Data showing individual data points show this plainly. 

Such differentiation is not always possible, with MRI analyses requiring group analyses as 

an example. Markers that can help segregate groups to allow for a more refined analysis are 

key to both predictions of who will be adversely affected and those who are resilient. These 

markers are also the key to identify the middle group: those whose trajectory of development 

predicts adverse consequences, but intervention can redirect this course. Possible biomarkers 

are GABA/parvalbumin and inflammation in combination.

We also need to get the timing right, in a sex-dependent manner. When individual data 

points are published, it is easier to see why certain group differences are not significant. 

More importantly, individual data allow us to see those subjects that are more vulnerable231 

The animal data, with more experimental control than human studies, also show trends 

to two groups of outcomes after early exposure to adversity.11,51,119 What additional data 

might we need? Maybe some of the markers are found here.

Conclusions

Stress is known to increase inflammation. Depending on the state of development, 

microglia increase or decrease inflammation. If the region of interest is undergoing active 

synaptogenesis, the microglia are activated and over-prune the synapses. While details 

of this process are an active area of investigation, we know that elevated inflammation 

adversely affects the GABAergic parvalbumin cells. As they are lost, the excitatory/

inhibitory balance shifts, and the brain over-prunes. The rationale is that the brain matures 

in a way to match its environment. Here, the brain exposed to maltreatment has fewer 

synapses, is less plastic, and is less flexible in its behavioral repertoire.
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Figure 1. 
A simplified model of the interactions of microglia (blue), parvalbumin neurons, and 

pyramidal neurons (gray) across age. Typically, microglia aid in pruning but will switch 

to an activated form and increase inflammatory factors. Second, cytokines decrease 

parvalbumin (PV; red) neurons and shift the balance to more excitation. Third, eventually, 

the neurons are surrounded by perineuronal nets (blue), and plasticity is limited. (Bottom) 

Voxel placement on the right in adolescent male rats. MRS data of GABA/tCr versus PV 

levels from the same animals as assayed by Western immunoblot152. We can detect GABA 

levels with magnetic resonance spectroscopy (MRS) and compare them to PV levels later. 

Shown are controls animals (black dots), rats with a history of maternal separation (red 

dots). Levels of PV were quantified with Western Immunoblot, using our standard methods. 
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The spectrograph and the location of the voxel are on the right. Credit to Dr. Dionyssios 

Mintzopoulos for the MRS data.
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Figure 2. 
Two different types of signals activate the innate immune system. The first pathway, 

mediated by the toll receptors (TLRs), recognizes an initiating pro-inflammatory signal. The 

second is mediated by the inflammasome, which has a well-recognized role in depression. 

The key protein complex, (Nod)-like receptor family pyrin domain-containing 3 (NLRP3), 

is a target of novel therapeutics. This complex is modulated by the cannabinoid receptor 

2 (CB2), MARCH7 (axotropin). Signal 1 via the TLRs initiates the synthesis of NF-KB, 

which is involved in the synthesis of a Pro-IL-1b. The NLRP3 activates Caspase-1, which 

then results in a cleaved and active IL-1b. This simplified diagram suggests that there are 

two different points of access to regulate inflammation.
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