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Abstract

We evaluate the efficacy of environmental DNA (eDNA) techniques to locate wild popula-

tions and estimate the population size of the endangered big-headed turtle (Platysternon

megacephalum) in Hong Kong. The results from this study are important for identifying prior-

ity sites for protection and further research. Additionally, we assess the impact of two envi-

ronmental variables (temperature and pH) on eDNA quantity. We surveyed 34 streams for

three years, sampling four times each year. Four new populations were first identified with

eDNA analysis, and then verified by field surveys. Our multi-year survey highlights that

eDNA detection can be inconsistent over time, even in streams with known populations.

There was no significant relationship between eDNA quantity and the environmental vari-

ables tested. Lastly, our results suggest that eDNA methods remain promising to estimate

population size, since number of positive detections were positively correlated with popula-

tion size in streams with known populations. We conclude that eDNA methods are powerful,

but care must be taken when interpreting field results as they are affected by species ecol-

ogy and environmental conditions.

Introduction

The big-headed turtle (Platysternon megacephalum) is distributed across East and Southeast

Asia (China, Thailand, Vietnam, Cambodia, Laos, and Myanmar) [1]. Populations of P. mega-
cephalum across its range have declined drastically due to severe hunting pressure [2–5]. This

decline was highlighted in two studies conducted in South China, where they found only 16

individuals in over 4000 trapping days [6, 7]. This species is currently listed on CITES Appen-

dix I [8] and classified as “Critically Endangered” on the IUCN Red List of Threatened Species

[9] with recommendations [10].

While P. megacephalum has largely been extirpated across its geographical range, a remnant

population exists in Hong Kong, providing a unique opportunity for research and conserva-

tion. However, work on P. megacephalum is hindered by incomplete knowledge of where wild

individuals persist due to its secretiveness and rarity. Environmental DNA (eDNA) refers to

DNA deposited in the environment (such as water, soil, and air) originating from the target

species, and eDNA-based techniques provide a tool to assess the presence of a target species
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without observing it [11]. Methods have been developed to detect the eDNA of a wide range of

taxa [12–17]. Researchers have also tested the prospect of using eDNA approaches to estimate

abundance, with some studies successful [16, 18–20] and others unsuccessful [21–24]. Recent

achievements include locating a new population of the endangered Yamoto salamander

(Hynobius vandenburghi) [25], differentiating populations of the harbour porpoise (Phocoena
phocoena) [26], and potential use in population genetics studies [27, 28]. In this study, we test

whether eDNA techniques can be applied to help locate, study, and conserve P.

megacephalum.

In this study, we use a validated eDNA assay [29] to clarify the distribution of P. megacepha-
lum across Hong Kong. Since P. megacephalum is a highly aquatic species with rare terrestrial

movement [4], eDNA-based stream surveys are expected to assist in locating the species. The

aims of our study are to evaluate the (1) usefulness of eDNA techniques in detecting lotic turtle

populations, (2) impact of two environmental variables (temperature and pH) on eDNA quan-

tity, and (3) effectiveness of eDNA data in abundance estimation. We conclude by discussing

the potential factors that influence eDNA detection (eDNA degradation, production, trans-

port, and dilution). For P. megacephalum in Hong Kong, the results from this study are impor-

tant for identifying priority sites for protection and further research.

Materials and methods

Study site

The study was conducted in the Hong Kong Special Administrative Region, China (22˚09’–

22˚37’N, 113˚50’–114˚30’E). Hong Kong has a subtropical climate characterized by cool, dry

winters (“dry season”, November to February) and hot, humid summers (“wet season”, May to

September) separated by mild autumns and springs [30]. A total of 34 streams with suitable

habitat for P. megacephalum (rocky streams with fast flowing, clear water in secondary forest)

were selected for eDNA water sampling. Streams were divided into three categories: (1)

known populations based on long-term trapping surveys (KP; 8 streams), (2) historical records

of presence with the latest report more than 10 years ago (HR; 9 streams), and (3) suitable hab-

itat but unknown status (UN; 17 streams). Exact survey locations are not disclosed to protect

populations of P. megacephalum, as this species is listed as Endangered (EN) on the IUCN Red

List [9] and Appendix I of CITES [8], and subject to poaching [2–5].

Sample collection and processing

We collected water samples over an approximately three-year period (November 2016–August

2019). For each year, we collected samples twice for each wet season (in May and August) and

dry season (in November and February). A total of 12 water samples were collected from each

stream (4 samples/year × 3 years = 12 samples). One liter of water was collected from the water

column [13, 31–33] using a sterile 50-mL conical tube. At the same time, water temperature

and pH were measured using a waterproof temperature/pH meter (Eutech pHTestr 30). Water

samples were collected in sterile Whirl-Pak1 sample bags (Nasco #B01027; WI, USA) and fil-

tered using 0.45 μm pore size, cellulose nitrate filters (Nalgene analytical test filter funnel

#145–2045; Thermo Fisher Scientific Inc; Waltham, MA, USA) either on site or in the labora-

tory within six hours. Filters were removed from the funnel using sterile forceps, with gloved

hands, and stored in 95% ethanol at -20˚C until DNA extraction was performed.

Prior to each lab work step, we sterilized laboratory benches and equipment with a 10%

bleach solution for at least 5 minutes. The filters were divided into two pieces to provide two

opportunities for DNA extraction. DNA was extracted using a DNeasy Blood & Tissue Kit and

QiaShredder (Qiagen GmbH; Hilden, Germany) following a validated protocol [34]. DNA was

PLOS ONE eDNA surveys of big-headed turtles

PLOS ONE | https://doi.org/10.1371/journal.pone.0262015 February 7, 2022 2 / 16

Council of Hong Kong (Early Career Scheme

#23100216), from The Government of Hong Kong

Special Administrative Region; received by J.J.F.

(URL: https://www.ugc.edu.hk/eng/rgc/) 2.

Environment and Conservation Fund (#ECF2017-

04), from The Government of Hong Kong Special

Administrative Region; received by Y.H.S. (URL:

https://www.ecf.gov.hk/en/home/index.html) 3.

Ocean Park Conservation Foundation Conservation

Fund (#RP01.1718), from Ocean Park

Conservation Fundation Hong Kong; received by Y.

H.S. (URL: https://www.opcf.org.hk/en/) 4.

Croucher Foundation Chinese Visitorship

(#870026), from Croucher Foundation; received by

J.J.F. (URL: https://croucher.org.hk/funding/

enabling-the-exchange-of-ideas-between-hong-

kong-scientists-and-their-counterparts-in-

mainland-china-and-overseas/croucher-chinese-

visitorships) The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0262015
https://www.ugc.edu.hk/eng/rgc/
https://www.ecf.gov.hk/en/home/index.html
https://www.opcf.org.hk/en/
https://croucher.org.hk/funding/enabling-the-exchange-of-ideas-between-hong-kong-scientists-and-their-counterparts-in-mainland-china-and-overseas/croucher-chinese-visitorships
https://croucher.org.hk/funding/enabling-the-exchange-of-ideas-between-hong-kong-scientists-and-their-counterparts-in-mainland-china-and-overseas/croucher-chinese-visitorships
https://croucher.org.hk/funding/enabling-the-exchange-of-ideas-between-hong-kong-scientists-and-their-counterparts-in-mainland-china-and-overseas/croucher-chinese-visitorships
https://croucher.org.hk/funding/enabling-the-exchange-of-ideas-between-hong-kong-scientists-and-their-counterparts-in-mainland-china-and-overseas/croucher-chinese-visitorships
https://croucher.org.hk/funding/enabling-the-exchange-of-ideas-between-hong-kong-scientists-and-their-counterparts-in-mainland-china-and-overseas/croucher-chinese-visitorships


eluted using 100 μL of TE buffer and stored at -20˚C. The DNA concentration of each sample

was measured using a Qubit 3 Fluorometer with the dsDNA HS Assay Kit (InvitrogenTM;

Thermo Fisher Scientific Inc; Waltham, MA, USA). Samples were used in subsequent quanti-

tative PCR (qPCR) analyses if DNA quantification recovered a positive value greater than the

detection limit of the fluorometer (> 0.2 ng/μL). If DNA was not detected during quantifica-

tion, DNA was extracted again from the second half of the filter, and amplified independently

in qPCR without combining with the first extraction. Negative controls were included for all

laboratory work to identify any contamination throughout sample processing (one for each set

of twenty-three samples of DNA extractions, one for each set of twenty-three samples for

DNA quantification, and two or three for qPCR in a 96-well plate).

Quantitative PCR

qPCR reactions were performed on a StepOnePlus Real-Time PCR System (Applied Biosys-

tems; Thermo Fisher Scientific Inc; Waltham, MA, USA). We followed the qPCR conditions

of a P. megacephalum specific assay targeting the ND4 region [29], of which the analytical sen-

sitivity at 10 copies/μL was 0.95, indicating reliable detection of eDNA down to 10 copies/μL.

A validation checklist of the selected qPCR assay following [35] can be found in S1 Table. We

summarize the protocol herein. Each qPCR reaction included 1 μL eDNA template, 5 μL Taq-

Man1 Environmental Master Mix (Thermo Fisher Scientific Inc; Waltham, MA, USA), 900

nM of each primer, 250 nM of probe, and enough autoclaved Milli-Q1 water to make a final

volume of 10 μL. The TaqMan1 Exogenous Internal Positive Control (IPC) (1 μL IPC-Mix

and 0.2 μL IPC-DNA following manufacturer’s protocol) was included to test for inhibition

within each qPCR reaction. Negative controls (two or three for each 96-well plate) were

included in all tests. Thermal cycler conditions were as follows: 50˚C for 2 min, then 95˚C for

10 min, followed by 40 cycles of 95˚C for 15 s and the 60˚C for 1 min. To quantify absolute

concentration of eDNA, we employed a four-level standard curve (1,000,000 copies/μL,

100,000 copies/μL, 10,000 copies/μL, and 100 copies/μL), using a synthetic gene containing

primer and probe binding sites (Tech Dragon Limited; Hong Kong). Serial dilution of the syn-

thetic gene was done one week prior to qPCR to minimize contamination. qPCR fluorescence

signal, threshold value and Cq value were calculated using the StepOneTM software v.2.3

(Applied Biosystems; Thermo Fisher Scientific Inc; Waltham, MA, USA).

For each water sample, we ran multiple qPCR reactions to determine the presence/absence

of P. megacephalum eDNA [36]. Here, we define a few terms to distinguish between the results

of a single qPCR reaction and the sample as a whole (two to five individual qPCR reactions).

For a single qPCR reaction, we use the term “amplified” and similar terms (e.g., amplification)

when qPCR amplification was observed above the default threshold value, and the qPCR curve

exhibited a typical sigmoidal shape. For the sample as a whole, it was categorized as either posi-

tive detection, negative detection, or uncertain to indicate the presence of P. megacephalum,

based on the combined result of all qPCR replicates performed on the sample (details below).

Fig 1 is a diagram of the assay workflow, separated in two phases. For the first phase, each

DNA template was tested in duplicate. A sample was considered to have positive detection of

P. megacephalum if both replicates amplified, and negative detection when both replicates did

not amplify. A sample with 1/2 amplified replicates was tested again in the second phase. In

the second phase, an additional three replicates were run for each sample. If two or three of

these new replicates amplified, the sample was considered to have positive detection of P.

megacephalum. If none of the three replicates showed amplification, the sample was consid-

ered to have negative detection of P. megacephalum. Lastly, if one of these new replicates

amplified, the sample was considered as uncertain.
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Turtle surveys

These field survey data serve as a way to crosscheck the eDNA-based survey results. Trapping

at KP sites is part of a long-term population monitoring program started in 2009. Since then,

trapping surveys have been conducted one to two times a year in each stream, using baited

hoop traps following protocol in [37]. For all HR and UN streams, we conducted at least one

Fig 1. A diagram of the two-phase workflow to determine qPCR results.

https://doi.org/10.1371/journal.pone.0262015.g001
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field survey at each site, using trapping and/or active searching. When trapping, we set at least

10 traps along the stream where we took water samples for eDNA analysis. For active search-

ing, we walked along the stream looking for P. megacephalum using headlamps at night. Per-

mits to possess and deploy traps and temporarily retain freshwater turtles were approved by

the Agriculture, Fisheries and Conservation Department, HKSAR [(86) in AF GR CON 09/51

Pt. 7)].

Exploration of eDNA data

We explored three aspects of the eDNA data using correlation analysis: (1) usefulness of

eDNA techniques in detecting lotic turtle populations, (2) impact of two environmental vari-

ables (temperature and pH) on eDNA quantity, and (3) effectiveness of eDNA data in abun-

dance estimation. Shapiro-Wilk tests were used to test the normality of data for eDNA

quantity, number of eDNA amplified samples, mean capture rate, and environmental vari-

ables. The only normally distributed (p< 0.05) variable was the number of eDNA amplified

samples. We selected Kendall’s correlation analysis to evaluate the relationship between

parameters. Statistical analyses and graphical representations were performed using R version

4.0.3 [38] and RStudio version 1.2.5042 [39]. For all correlation analyses, we subsampled the

dataset to include samples with qPCR efficiency 90–110% [40], eDNA concentration above the

limit of quantification (100 copies/μL), and KP streams. KP streams were selected because the

presence of P. megacephalum is known and detection of eDNA is expected to be more consis-

tent at these sites. Additionally, we compared results of two datasets: (1) positive detection and

uncertain samples, and (2) positive detection samples only.

First, we assessed the usefulness of using eDNA to detect lotic turtle populations, by com-

paring the number of samples with positive detection (maximum 12 samples/site) to capture

rate (total number of turtles caught/total number of traps set). We used capture rate as an esti-

mate of population size. For this analysis, we restricted the capture rate data to the trapping/

visual surveys done during the study period. Next, we explored how environmental variables

affect eDNA quantity by analyzing the relationship between temperature or pH and eDNA

quantity. We used two site-based eDNA quantity datasets: stream KP5 only (the one stream

with near-continuous eDNA detection) and all KP streams (n = 8). Lastly, we assessed the

effectiveness of eDNA data for abundance estimation, by comparing eDNA quantity to capture

rate. To minimize the impact of comparing asynchronous data from eDNA and trapping sur-

veys, we only included data when a trapping and eDNA survey were conducted within a

month of each other. Based on this criterion, data from 35 trapping/eDNA surveys were

included in the analysis. As with the environmental variable analysis, eDNA quantity is based

on two datasets—stream KP5 only and all KP streams.

Results

Quantitative PCR

A total of 408 water samples (34 locations × 3 years × 4 samples/year) were collected during

the study. DNA was detected in all DNA extractions from the first half of the filter. Details and

qPCR results for all replicates are found in S2 Table (qPCR efficiency: 96.99% ± 5.19; R2:

0.957 ± 0.03). No eDNA samples exhibited inhibition, and none of the negative controls exhib-

ited qPCR fluorescence signal. All amplified water samples were above the limit of detection

(10 copies/μL) as validated in [29], while all negative water samples yielded no qPCR fluores-

cence signal. Based on our qPCR testing approach (Fig 1), there was amplification of P. mega-
cephalum eDNA in 37 samples: 24 samples were classified as positive detection and 13 samples

were classified as uncertain. These 37 samples with amplification were from six KP, three HR,
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and five UN streams (Fig 2). Fig 2 is a heat map illustrating the temporal change of eDNA con-

centration over the study period from streams with eDNA amplification. The remaining 371

samples were classified as negative detection. A summary of amplified samples across the three

categories of streams can be found in Table 1.

Most of the samples with amplification (76%; 28 samples) were from KP streams. Of the

eight total KP streams, only one (KP5) showed consistent eDNA amplification across the

three-year period (11 out of 12 samples). Two KP streams had negative detection for all 12

samples during the study period. For the remaining five KP streams, there was occasional

eDNA amplification (two to five samples with amplification), with samples with amplification

being more frequent after May 2018.

Three of the samples with amplification (~8%) came from three HR streams. No amplifica-

tion was detected in any of the 12 eDNA samples from the six remaining HR streams. The six

Fig 2. Heat map illustrating the concentration of eDNA detected in water samples from November 2016 to August 2019. Each depth of color indicates a

percentile of concentration level (interval = 0.2). A darker color represents a higher concentration level for positive detection (in green) and uncertain detection

(in purple). Grey represents samples with no amplification, and categorized as negative detection.

https://doi.org/10.1371/journal.pone.0262015.g002
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remaining samples with amplification (~16%) came from five UN streams. No amplification

was detected from any of the 12 eDNA samples from the remaining 12 UN streams. Among

the HR and UN streams with amplification, most had only one sample with amplification

throughout the three-year study period.

Turtle surveys

Table 2 summarizes the data from trapping surveys of KP streams during the study period,

while capture rate corresponding to each eDNA sampling season can be found in S3 Table.

There were two KP streams (KP3, KP8) that were categorized as negative detection in all sam-

ples throughout the study period. These two streams had the two lowest mean trapping rates

(KP3 = 0.00, KP8 = 0.03) of the KP streams, likely indicating relatively small populations.

Active searching and trapping outside of the eDNA study period verified the presence of P.

megacephalum in both of these streams. Of the HR and UN streams with amplified P. megace-
phalum eDNA (three HR, five UN), the presence of P. megacephalum was either unconfirmed

(HR8, HR9, UN15, UN17), or confirmed by trapping (UN10, UN11) or active searching

(HR1, UN9). For the remaining 18 streams with negative eDNA detection (six HR streams, 12

UN streams), no turtles were caught or seen.

Exploration of eDNA data

The results were the same for both datasets (positive and uncertain samples, positive only).

Here we detail the statistical results from the dataset of positive and uncertain samples. First,

for assessing the usefulness of eDNA methods to detect lotic turtle populations, we found a sig-

nificant, positive correlation (rs = 0.718, p = 0.02) between the number of samples with ampli-

fied eDNA and mean capture rate (Table 2). In other words, sites with a higher number of

positive detections had a higher mean capture rate and likely larger, more stable populations.

Next, for assessing the impact of two environmental variables (temperature and pH) on eDNA

quantity, no significant relationship was found for both site-based eDNA quantity datasets

Table 1. A summary of amplified samples across the three stream categories: Known Population (KP), Historical

Record (HR), Unknown (UN).

KP HR UN Total

Positive 20 1 3 24

Negative 69 105 198 372

Uncertain 7 2 3 12

Total 96 108 204 408

https://doi.org/10.1371/journal.pone.0262015.t001

Table 2. Summary of trapping surveys throughout the eDNA sampling period at streams with known populations

(KP). There were positive sightings of Platysternon megacephalum using active searching at all streams.

Stream Number of surveys Mean capture rate

KP1 9 0.14

KP2 3 0.18

KP3 5 0.00

KP4 1 0.10

KP5 8 0.56

KP6 3 0.27

KP7 7 0.67

KP8 1 0.03

https://doi.org/10.1371/journal.pone.0262015.t002
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(KP5 only: rs = -0.056, p = 0.814 and rs = -0.294, p = 0.212, and all KP streams: rs = 0.043,

p = 0.619 and rs = -0.277, p = 0.116 for temperature and pH respectively]. Lastly, for assessing

the viability of abundance estimation using eDNA quantity, there was no significant relation-

ship for the dataset of KP5 only (rs = -0.036, p = 0.90), and for the dataset of all KP streams (rs
= 0.267, p = 0.056).

Discussion

We demonstrate the usefulness of eDNA-based surveys to locate wild turtles in lotic systems

by using a previously developed qPCR assay for P. megacephalum [29]. We targeted three

types of streams: (1) known populations based on long-term trapping surveys (KP), (2) histori-

cal records of presence (HR), and (3) suitable habitat but unknown status (UN). For the KP

streams, the detection results varied; of the 12 samples from a single stream (4 samples/

year × 3 years), eDNA detection between streams ranged from nearly continuous (11 of 12

samples) to no detection (no positive samples), with no clear variation based on time of year.

Focusing on these streams with known populations, the number of eDNA detections was posi-

tively correlated with mean capture rate, suggesting that sites with larger populations have

higher probability of eDNA detection.

In eight streams without known populations, eDNA of P. megacephalum was occasionally

detected (one to two positive samples). Three of these streams had historical records (HR

streams), while the other five streams have no previously confirmed turtle populations (UN

streams). We carried out follow-up surveys (trapping and/or active searching) at these streams,

and turtles were found in four streams (HR1, UN9, UN10, and UN11). We raise several possi-

ble explanations of these results, of which we cannot currently distinguish between. It should

also be noted that with positive results from several streams, different explanations may be

needed for each situation.

First, these occasional positive results could be false positives. Template concentration was

found to affect primer specificity [41], although this factor had no significant effect in another

study [42]. More specifically, a high concentration of non-target template may cause non-spe-

cific qPCR amplification [41]. Since DNA concentration for our samples was generally low

(average eDNA concentration of amplified samples collected in our study is 2.70 ng/μL), we

do not expect such false positives to be a major factor in our study. The remaining potential

explanations assume that the results are true positives—the qPCR assay is species-specific, and

the samples contain eDNA of P. megacephalum. We discuss these potential explanations below

in the sections about eDNA degradation, production, transport, and dilution.

Estimation of population size has been raised as a potential use of eDNA-based surveys.

Since we had eDNA quantity and capture rate data from the same streams, we had an opportu-

nity to assess the viability of estimating population size based on eDNA results. There was a

significant, positive correlation between eDNA quantity and capture rate from streams with

known populations, but no such relationship when focusing on the one stream with continu-

ous eDNA detection (KP5). These results suggest that eDNA methods remain promising to

aid in estimating population size or biomass, but need to be refined based on differences in the

habitat and species ecology. Although the quantity of eDNA should increase with more indi-

viduals, eDNA detected with qPCR assays may not be proportional to the number of individu-

als due to eDNA degradation, production, transport [43], and dilution. These processes are

influenced by environmental factors and cause eDNA quantity to vary, making abundance

estimation difficult. We discuss these four processes in detail, as well as the issue of false nega-

tives and limitations to our study.
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eDNA degradation

Researchers have attempted to clarify how environmental factors affect eDNA degradation in

water. Two major variables studied are temperature and pH. Multiple studies indicated that

higher water temperature increases eDNA degradation rate [43–47], while other studies did

not find any significant relationship [16, 48, 49]. One caveat is that temperature may also

increase eDNA concentration, which we discuss in the eDNA production section below. pH

may also facilitate eDNA degradation [43, 46]. We tested for a relationship in the single stream

with relatively consistent eDNA detection (KP5), and no significant relationship was found.

Our result is similar to the results of another study [48] that found eDNA did not vary signifi-

cantly with pH and water temperature (and dissolved oxygen and turbidity), when using

eDNA methods to study the lake trout (Salvelinus namaycush). Although we tried to control

for the effects of other variables by focusing on a single stream, temporal variation in eDNA

production and transport may have influenced our results. To advance our knowledge of envi-

ronmental factors on eDNA degradation, we suggest controlled laboratory experiments, fol-

lowed by mesocosm-type experiments in the field.

eDNA production

eDNA production can be influenced by environmental factors and life stage of the organism.

An increase in water temperature can increase eDNA production, due to an increase in an ani-

mal’s metabolism [49, 50]. This phenomenon is also expected in poikilothermic turtles, but

has yet to be studied. A counterpoint to this is the “shedding hypothesis” [51], which suggested

turtles would shed less eDNA compared to other animals, as they are covered with keratinized

integument.

The life stage of an organism has also been documented to affect eDNA production [52–

54]. A significant increase in eDNA quantity during the breeding season of the target species

was documented in [23]. The breeding season of P. megacephalum is from May to July, with

hatchlings emerging in October [55]. At the same time, the increase of eDNA in the breeding

season may be less significant to species that live in low-density, as the effect would be easily

masked by multiple environmental factors that influence eDNA quantity. Unfortunately, our

sampling was not frequent enough to detect changes during the breeding season. We encour-

age researchers to address such questions for their specific study organism, in the hope that

combined datasets can give us a general view of eDNA production.

eDNA transport

The transport of eDNA in an environmental system needs to be taken into consideration,

especially for lotic systems. Unlike lentic systems where eDNA distribution is highly localized

in space and time [56], a lotic system with a fast flowing stream can cause eDNA distribution

to vary in an unknown way. A controlled experiment of a lotic system showed that eDNA is

transported unevenly, and eDNA retention and resuspension involves the benthic substrate

[57]. As benthic sediment and hydrology differ between streams, each study site will vary in

the way eDNA is transported [57]. Additionally, eDNA in lotic systems has been demonstrated

to travel long distances, with no significant decrease of DNA concentration for over 1.7 km

[58] and even up to 9.1 km [59]. Transportation of eDNA raises the potential of the target spe-

cies being located upstream of where the water sample was collected. In our study, eDNA was

detected in four streams with unconfirmed presence of P. megacephalum, and we believe the

assay may be detecting eDNA from turtles located further upstream in areas inaccessible for

trapping and active searching.
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eDNA dilution

Dilution caused by high stream flow affects eDNA concentration through multiple mecha-

nisms, potentially with opposite outcomes. eDNA dilution may reduce detection probability

[60]. In the wet season, eDNA is expected to be diluted via higher water volume and faster

water flow, hence reducing eDNA detection probability or causing false negatives [60, 61]. On

the other hand, fast water flow may lead to false positives by resuspending historical eDNA

bound to soil (discussed in detail below). In our study, the number and concentration of

amplified eDNA samples were statistically indistinguishable across wet and dry seasons.

Researchers may consider using mixed-effects models to investigate effects of multiple factors

on eDNA concentration [60].

Historical eDNA

Historical eDNA leaching from sediment originating from past populations is a potential

eDNA source. eDNA in soil may last for decades to centuries [62]. For eDNA persistence in

water, studies have shown high variability; eDNA of the target species could not be detected

within an hour upon removal of individuals [45], while other studies showed persistence for

24 hours [63], 48 hours [56, 64, 65], and even 45 days [66]. For soil, eDNA persistence highly

depends on the nature and origin of the sediment [67]. In our study, eDNA was amplified

from two HR streams with no confirmation of turtles being present. Based on our knowledge

of these streams (turtles historically present) and survey results (only 1/12 positive water sam-

ples, no turtles found), the persistence of historical DNA is a possible explanation for these

results. Our result shows that false positives should be considered when interpreting eDNA

data, especially in scenarios with sporadic detection.

False negatives

False negatives are a concern when interpreting results of eDNA studies, especially for low-

density taxa. The volume and number of replicates of water sampled have been pointed out to

be important factors affecting detection rate of target species [68–71]. A larger sampling vol-

ume (45–1000 L) is expected to boost eDNA detection rate [68, 72–74]. However, there is a

trade-off between water volume and factors such as filtration efficiency and risk of PCR inhibi-

tion. The use of relatively small sampling volumes is common in eDNA studies, with sampling

volumes of<1 L [75, 76] to 1–2 L [13, 31–33, 77]. Mächler et al. [69] suggested the optimal

sampling volume depends on the species-habitat combination, therefore, pilot studies are

required for each study system. Studies comparing sample volume and detection rate found

number of species detected saturated at 68 L in tropical streams and rivers [68] and 1 L in nat-

ural, small rivers [71].

The sampling environment in our study (small, narrow streams) is similar to that of Sakata

et al. [71]. The consistent detection of P. megacephalum eDNA in our study suggests that 1 L

of water is sufficient to give present/absence data in narrow streams. However, we cannot rule

out the possibility of false negatives due to insufficient water volume. We emphasize the

importance of conducting pilot field experiments for each study system to determine the mini-

mum volume of water sample required to detect a population of target species.

Limitations of the study

eDNA quantification in qPCR can be estimated by building a standard curve from samples

with known concentration. Optimal qPCR efficiency (90–110%) and R2 (> 0.990) are two

indicators of qPCR with robust results [39]. Despite using the same protocol, reagents and
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equipment of a previously developed assay (average efficiency: 94.15%, R2: 0.97; [29]), four

amplified eDNA samples in this study had lower values (efficiency: 82.8–87.6%). This suggests

eDNA quantification was affected in some samples. We were unable to pinpoint the cause of

these results. Future researchers should be aware and ensure high efficiency and R2 when per-

forming qPCR to increase reliability of data. Adjustment of laboratory protocol (primer

design, reaction volume and reagent concentration) may be required when amplifying envi-

ronmental water samples.

Conclusion

In this study, we field tested and validated a species-specific eDNA assay to detect and monitor

the endangered P. megacephalum: sites with known turtle populations had positive eDNA

detection, while new turtle populations were discovered in some streams. These results will be

used to guide conservation of P. megacephalum; in Hong Kong, these data will be shared with

the relevant governmental departments and NGOs to direct conservation efforts to sites with

populations, while in other countries within the range of P. megacephalum, we will explore

extending the use of this eDNA assay to locate wild populations.

We also highlight the potential difficulties interpreting eDNA results from natural environ-

ments. Even in streams with known turtle populations, eDNA detection can be inconsistent,

raising the importance of understanding the study system—ecology of the organism, environ-

mental conditions of the collection sites, and their influence on eDNA detection. As environ-

mental factors and their interactions vary among sites, we believe each study site is unique in

terms of eDNA distribution, degradation, production, transportation, and dilution. To faith-

fully interpret eDNA results, one must understand eDNA behaviour spatially and temporary

in the natural environment. We caution against applying generalizations of eDNA properties

across sites, and recommend performing pilot studies to design a site-specific eDNA sampling

and data analysis strategy. eDNA methods are powerful tools that have tremendous potential

to aid in species detection, monitoring, and conservation. However, like many scientific

approaches, using eDNA methods blindly or without appropriate preliminary testing will

result in erroneous results and interpretation. We believe that with advances in and refinement

of methods, eDNA-based surveys will make positive contributions to the conservation of tur-

tles and other organisms.
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48. Lacoursière-Roussel A, Côté G, Leclerc V, Bernatchez L, Cadotte M. Quantifying relative fish abun-

dance with eDNA: a promising tool for fisheries management. J Appl Ecol. 2016; 53(4): 1148–1157.

https://doi.org/10.1111/1365-2664.12598

49. Robson HLA, Noble TH, Saunders RJ, Robson SKA, Burrows DW, Jerry DR. Fine-tuning for the tropics:

application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol. Ecol.

Resour. 2016; 16(4): 922–932. https://doi.org/10.1111/1755-0998.12505 PMID: 26849294

50. Lacoursière-Roussel A, Rosabal M, Bernatchez L. Estimating fish abundance and biomass from eDNA

concentrations: variability among capture methods and environmental conditions. Mol. Ecol. Resour.

2016; 16(6): 1401–1414. https://doi.org/10.1111/1755-0998.12522 PMID: 26946353

51. Adams C, Hoekstra L, Muell M, Janzen F. A Brief Review of Non-Avian Reptile Environmental DNA

(eDNA), with a Case Study of Painted Turtle (Chrysemys picta) eDNA Under Field Conditions. Diversity.

2019; 11(4): 50. https://doi.org/10.3390/d11040050

52. Jo T, Murakami H, Yamamota S, Masuda R, Minamoto T. Effect of water temperature and fish biomass

on environmental DNA shedding, degradation, and size distribution. Ecology and Evolution. 2019; 9:

1135–1146. https://doi.org/10.1002/ece3.4802 PMID: 30805147

53. Klymus KE, Richter CA, Chapman DC, Paukert C. Quantification of eDNA shedding rates from invasive

bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biological con-

servation. 2015; 183: 77–84. https://doi.org/10.1016/j.biocon.2014.11.020

54. Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T. The Release Rate of Environmental

DNA from Juvenile and Adult Fish. PLoS ONE. 2014; 9(12): e0114639. https://doi.org/10.1371/journal.

pone.0114639 PMID: 25479160

55. Sung Y, Hau BCH, Karraker NE. Reproduction of endangered Big-headed Turtle, Platysternon mega-

cephalum (Reptilia: Testudines: Platysternidae). Acta herpetologica. 2014; 9(2): 243. https://doi.org/

10.13128/Acta_Herpetol-14184

PLOS ONE eDNA surveys of big-headed turtles

PLOS ONE | https://doi.org/10.1371/journal.pone.0262015 February 7, 2022 14 / 16

https://doi.org/10.1002/edn3.189
https://doi.org/10.1105/tpc.108.061143
http://www.ncbi.nlm.nih.gov/pubmed/18664613
https://doi.org/10.1111/cobi.12102
http://www.ncbi.nlm.nih.gov/pubmed/23869813
https://www.R-project.org/
http://www.rstudio.com/
http://www.rstudio.com/
https://doi.org/10.1373/clinchem.2008.112797
http://www.ncbi.nlm.nih.gov/pubmed/19246619
https://doi.org/10.1016/j.bdq.2017.10.001
http://www.ncbi.nlm.nih.gov/pubmed/29255685
https://doi.org/10.1002/ecs2.3193
https://doi.org/10.1016/j.scitotenv.2018.02.295
http://www.ncbi.nlm.nih.gov/pubmed/29602110
https://doi.org/10.1371/journal.pone.0191720
http://www.ncbi.nlm.nih.gov/pubmed/29357382
https://doi.org/10.1111/1755-0998.12159
https://doi.org/10.1111/1755-0998.12159
http://www.ncbi.nlm.nih.gov/pubmed/24034561
https://doi.org/10.1016/j.biocon.2014.11.038
https://doi.org/10.1016/j.biocon.2014.11.038
https://doi.org/10.1007/s12562-020-01409-1
https://doi.org/10.1007/s12562-020-01409-1
https://doi.org/10.1111/1365-2664.12598
https://doi.org/10.1111/1755-0998.12505
http://www.ncbi.nlm.nih.gov/pubmed/26849294
https://doi.org/10.1111/1755-0998.12522
http://www.ncbi.nlm.nih.gov/pubmed/26946353
https://doi.org/10.3390/d11040050
https://doi.org/10.1002/ece3.4802
http://www.ncbi.nlm.nih.gov/pubmed/30805147
https://doi.org/10.1016/j.biocon.2014.11.020
https://doi.org/10.1371/journal.pone.0114639
https://doi.org/10.1371/journal.pone.0114639
http://www.ncbi.nlm.nih.gov/pubmed/25479160
https://doi.org/10.13128/Acta%5FHerpetol-14184
https://doi.org/10.13128/Acta%5FHerpetol-14184
https://doi.org/10.1371/journal.pone.0262015


56. Li J, Lawson Handley LJ, Harper LR, Brys RR, Watson HV, Di Muri C, et al. Limited dispersion and

quick degradation of environmental DNA in fish ponds inferred by metabarcoding. Environmental DNA.

2019; 1: 238. https://doi.org/10.1002/edn3.24

57. Shogren AJ, Tank JL, Andruszkiewicz E, Olds B, Mahon AR, Jerde CL, et al. Controls on eDNA move-

ment in streams: Transport, Retention, and Resuspension. Sci Rep. 2017;7. https://doi.org/10.1038/

s41598-017-00035-9 PMID: 28127057

58. Wacker S, Fossøy F, Larsen BM, Brandsegg H, Sivertsgård R, Karlsson S. Downstream transport and

seasonal variation in freshwater pearl mussel (Margaritifera margaritifera) eDNA concentration. Envi-

ronmental DNA. 2019; 1: 64–73. https://doi.org/10.1002/edn3.10

59. Deiner K, Altermatt F. Transport Distance of Invertebrate Environmental DNA in a Natural River. PLoS

ONE. 2014; 9(2): e88786. https://doi.org/10.1371/journal.pone.0088786 PMID: 24523940

60. Curtis AN, Tiemann JS, Douglass SA, Davis MA, Larson ER. High stream flows dilute environmental

DNA (eDNA) concentrations and reduce detectability. Diversity and Distributions. 2020; 00: 1–14.

https://doi.org/10.1111/ddi.13196

61. Jane SF, Wilcox TM, McKelvey KS, Young MK, Schwartz MK, Lowe WH, et al. Distance, flow and PCR

inhibition: eDNA dynamics in two headwater streams. Mol. Ecol. Resour. 2014; 15: 216–227. https://

doi.org/10.1111/1755-0998.12285 PMID: 24890199

62. Turner CR, Uy KL, Everhart RC. Fish environmental DNA is more concentrated in aquatic sediments

than surface water. Biol. Conserv. 2015; 183: 93–102. https://doi.org/10.1016/j.biocon.2014.11.017

63. Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E. Detection of a Diverse

Marine Fish Fauna Using Environmental DNA from Seawater Samples. PLoS ONE. 2012; 7(8):

e41732. https://doi.org/10.1371/journal.pone.0041732 PMID: 22952584

64. Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM. Environmental Condi-

tions Influence eDNA Persistence in Aquatic Systems. Environ. Sci. Technol. 2014; 48: 1819–1827.

https://doi.org/10.1021/es404734p PMID: 24422450

65. Collins RA, Wangensteen OS, O’gorman EJ, Mariani S, Sims DW, Genner MJ. Persistence of environ-

mental DNA in marine systems. Commun. Biol. 2018; 1. https://doi.org/10.1038/s42003-017-0002-6

PMID: 29809203

66. Harrison JB, Sunday JM, Rogers SM. Predicting the fate of eDNA in the environment and implications

for studying biodiversity. Proc. Royal Soc. B. 2019; 286: 20191409. https://doi.org/10.1098/rspb.2019.

1409 PMID: 31744434

67. Pietramellara G, Ascher J, Borgogni F, Ceccherini M, Guerri G, Nannipieri P. Extracellular DNA in soil

and sediment: fate and ecological relevance. Biol. Fertil. Soils. 2009; 45: 219–235. https://doi.org/10.

1007/s00374-008-0345-8

68. Cantera I, Cilleros K, Valentini A, Cerdan A, Dejean T, Iribar A, et al. Optimizing environmental DNA

sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 2019; 9: 3085. https://doi.

org/10.1038/s41598-019-39399-5 PMID: 30816174
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