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Abstract

In the integrative analyses of omics data, it is often of interest to extract data representation

from one data type that best reflect its relations with another data type. This task is tradition-

ally fulfilled by linear methods such as canonical correlation analysis (CCA) and partial least

squares (PLS). However, information contained in one data type pertaining to the other data

type may be complex and in nonlinear form. Deep learning provides a convenient alternative

to extract low-dimensional nonlinear data embedding. In addition, the deep learning setup

can naturally incorporate the effects of clinical confounding factors into the integrative analy-

sis. Here we report a deep learning setup, named Autoencoder-based Integrative Multi-

omics data Embedding (AIME), to extract data representation for omics data integrative

analysis. The method can adjust for confounder variables, achieve informative data embed-

ding, rank features in terms of their contributions, and find pairs of features from the two

data types that are related to each other through the data embedding. In simulation studies,

the method was highly effective in the extraction of major contributing features between

data types. Using two real microRNA-gene expression datasets, one with confounder vari-

ables and one without, we show that AIME excluded the influence of confounders, and

extracted biologically plausible novel information. The R package based on Keras and the

TensorFlow backend is available at https://github.com/tianwei-yu/AIME.

Author summary

Integrative analysis, i.e. jointly analyzing two or more data matrices, is becoming more

and more common in omics research. One type of integrative analysis measures the asso-

ciation between two groups of variables by finding low-dimensional spaces that maximize

certain measures of agreement between the data matrices. Representative methods in this

area include Canonical Correlation Analysis (CCA), Partial Least Squares (PLS), Multi-

Omics Factor Analysis (MOFA), integrative clustering (iCluster), Similarity Network

Fusion (SNF), joint Singular Value Decomposition (jSVD) etc. Here we present a new

method: Autoencoder-based Integrative Multi-omics data Embedding (AIME). The
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method jointly analyzes two data matrices. It finds data embedding from the input data

matrix that best preserves its relation with the output data matrix. It has several character-

istics: (1) It is based on neural network. Hence it can detect nonlinear associations

between the data matrices; (2) It can adjust for confounding variables such as age, gender,

ethnicity etc, to remove their effects in the low-dimensional space; (3) It estimates pairwise

relations between variables in the two data matrices. It is a useful addition to the tools for

integrative analysis.

This is a PLOS Computational Biology Methods paper.

1. Introduction

In more and more studies, multiple omics data are collected on the same set of subjects to obtain

a global view of the molecular signature of a disease. When analyzing such data, a common task

is to find data embedding in a lower dimensional space from one data type that best preserves

the information pertaining to another data type. Such data embedding can reveal mechanistic

relations between the data types, or serve as extracted predictors in predictive models.

To achieve data embedding while considering two data types, the most common methods

are dimension reduction approaches including Canonical Correlation Analysis (CCA), Partial

Least Squares (PLS) and their variants, which are based on (sparse) linear projections of the

data [1–3]. Given the complexity of omics data, nonlinear equivalents to such linear methods

were developed, such as kernel-based [4] and deep learning-based CCA [5]. Beside dimension

reduction, factorization and clustering techniques were also developed to analyze multiple

data types collected on the same set of samples. For example, iCluster and other multi-view

clustering algorithms seek the co-clustering of variables from different omics data types [6,7].

Multi-Omics Factor Analysis (MOFA) and MOFA2 find data embedding by jointly modelling

variation across data types [8,9]. Joint Singular Value Decomposition (jSVD), or Simultaneous

Component Analysis (SCA), was used to find a single set of unitary matrices to simultaneously

diagonalize multiple matrices [10]. Similarity Network Fusion (SNF) combines multi-omics

data through the fusion of sample similarity network [11].

In biomedical studies, it is often of interest to extract data representation while adjusting

for linear/non-linear effects of clinical confounding factors, such as age, gender, ethnicity,

batch effects etc. Current approaches do not adjust for confounders, which could lead to data

embedding and sample grouping that are heavily influenced by the confounding factors, weak-

ening the signal from true biological relations between the data types.

Autoencoder is a deep learning–based nonlinear embedding approach that is typically used

to achieve sparse data representation from a single dataset [12], reduce noise [13], impute

missing values [14], conduct pre-training for classification tasks [15], and make functional

inferences [16–19]. A supervised auto-encoder (SAE) is an auto-encoder with the additional

supervised loss component on the representation layer, which factors in a second data type,

with a goal of improving generalization performance [20]. Variants of autoencoders have been

used in combining multiple data matrices. In terms of integrative analysis, joint learning

schemes [21,22] are used to combine multi-omics data in both the input and reconstruction

layers in order to find their interactions for the prediction task. Combining joint learning with

probabilistic Gaussian Mixture Model was able to learn informative joint latent features to

construct the association between omics data and find cell heterogeneity [23].

PLOS COMPUTATIONAL BIOLOGY Autoencoder-based integrative multi-omics data embedding

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009826 January 26, 2022 2 / 26

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009826


In this study, our goal is geared towards data interpretation. We aim at achieving nonlinear

data embedding from one omics data type, in order to preserve the information pertaining to

another omics data type. Prediction or reconstruction is not a major concern. We modify the

autoencoder structure by using two data types in the input and reconstruction layers respec-

tively, and allowing contributions from clinical confounding factors by including them as aux-

iliary inputs at the representation layer. The approach is different than existing joint learning

methods [21–23] in that it doesn’t seek joint embedding which could be a mixture of the two

data types, in which their individual contributions are hard to separate, and it doesn’t involve

outcome variables. It is also different than Deep learning-based CCA [5], which tries to find

two separate embeddings from the two data types that are highly correlated, and doesn’t allow

the adjustment of confounders. Here our main interest is to find features in one data type that

influence the other data type.

The method is named Autoencoder-based Integrative Multi-omics data Embedding

(AIME). In simulations, we show the method can effectively extract influential features. When

sample size is large, the method can be more sensitive than CCA and PLS even when all rela-

tions are linear. In real data analysis, the method can exclude the superficial relations caused

by clinical confounding factors, and extract meaningful miRNAs that influence gene

expression.

2. Methods

2.1. The setup

Assume there are two types of high-throughput measurements on the same set of samples. Let

XN×p denote the first data type, where there are p features and N samples. Let YN×q denote the

second data type, where there are q features and N samples. Our interest is to extract a low-

dimensional nonlinear data embedding from the X matrix, EN×r, where r is small, such that the

E matrix contains as much information to nonlinearly reconstruct the Y matrix as possible.

We set up a neural network structure that is similar to autoencoder, as shown in Fig 1. Dif-

ferent from the typical autoencoder, the input layer and reconstruction layer use two different

omics data types. The input layer contains p variables corresponding to the columns of the X
matrix. The output layer contains q variables corresponding to the columns of the Y matrix. In

addition to the input data X, clinical confounders such as age, gender, ethnicity, batch etc, can

form another matrix CN×s, Their effects can be adjusted for by inserting the variables in C as

auxiliary variables at the bottleneck layer. This encourages the model to find nonlinear data

embedding of X that contribute to the reconstruction of Y, independent of the clinical

confounders.

In some sense this is a prediction structure with very high dimensional outcome. Such a

prediction task is unrealistic, and our goal is not prediction. With a very narrow bottleneck

layer in the middle, we essentially seek a nonlinear dimension reduction of the input data X,

which best preserves the information pertaining to the output data Y, while adjusting for con-

founding factors in matrix C. Following traditional statistical terminology in dimension reduc-

tion, we call the columns of the embedded data matrix E “components” in this manuscript.

2.2. Implementation

The program was implemented in R using the Keras neural networks API [24], to facilitate

users of R to conduct the analysis. The implementation requires both R and the TensorFlow

backend. With regard to the sizes of the layers of the network, the method allows three differ-

ent ways for the user to specify. (1) The user can directly specify the sizes of all the individual

layers; (2) the user can input a shrinkage factor, such that the size of each layer in the encoder
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is the product of the size of the previous layer and the shrinkage factor, and the size of each

decoder layer is the product of the next layer and the shrinkage factor; (3) the user can input

the desired number of input/out layers, and the shrinkage factor is calculated based on the

number of layers. Dropout rates can be specified to be uniform across all layers, or in a layer-

by-layer manner.

Given the number of layers and dropout rates, the data is split into training and testing sets.

The prediction error rate on the testing set is used to select the number of training epochs.

Once the number of epochs is determined, the full dataset is used to fit the model again.

2.3. Estimating feature importance

To find which feature from the input matrix X is more influential, we use a permutation

scheme. We fix the parameters in the trained model. In each iteration, one variable in the X
matrix is permuted, and new embedding is calculated based on the existing parameters. We

then compare the new embedded data with the embedded data from the unpermuted data.

The amount of location shift, measured by the sum of squared distances across all the embed-

ded data points, is taken as the importance of the permuted variable. Similarly, we estimate the

pairwise influence, i.e. the influence of one variable in the X matrix on one variable in the Y
matrix in the same permutation, by recording the amount of change of each Y variable, when

the X variables are permuted.

Fig 1. The setup of the model. XN×p is the input data. There are p variables and N samples. YN×q is the output data. There are

q variables and N samples. EN×r is the low-dimensional nonlinear data embedding, where r is small. Clinical confounders such

as age, gender, ethnicity, batch etc, form the matrix CN×s.

https://doi.org/10.1371/journal.pcbi.1009826.g001
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2.4. Selecting important input variables and input-output variable pairs

using a model-based approach

The importance scores of the input variables are all positive. Based on our empirical observa-

tions across multiple datasets, the score distribution of the irrelevant input variables can be

modeled very well by the gamma distribution. Thus we adopt a model-based approach that fol-

lows the general idea of local false discovery rate (fdr) [25]. In this approach, we consider the

observed importance scores to follow a mixture distribution with two components–the null

(unimportant variables) distribution that is a gamma distribution with unknown parameters,

and the non-null (important variables) distribution with unknown parametric form. We use

the following procedure to estimate the fdr of each input variable:

1. Use kernel density estimator to estimate the nonparametric distribution of the importance

scores. Find the mode of the distribution.

2. Select the lower portion of the importance scores that are below a certain percentile π0, and

assume most of these selected importance scores are from the null distribution. This is

because the null importance scores tend to be low. Using the scores below π0, estimate the

shape and scale parameters of the Gamma distribution.

3. Calculate the sum of squared difference below the mode, between the Gamma density

obtained in step (2) scaled by π0, and the kernel density obtained in step (1). This is the

indicator how well the Gamma density fits the null component of the distribution.

4. Vary π0 from 0.6 to 0.99, with a step size of 0.01. Find the π0 that yields the smallest differ-

ence in step (3).

5. Using the π0 found in step (4), and the corresponding Gamma density, denoted f0(), and

the kernel density found in step (1), denoted f(), find the local fdr value at any given loca-

tion by fdr zð Þ ¼ p0 f0ðzÞ=f ðzÞ:

6. Find the smallest z value such that fdr(z) is below a pre-determined threshold. Any impor-

tance score higher than this value is considered significant.

2.5. Tuning hyperparameters

In this study, we used the multivariate skewness and kurtosis of the embedded data to select

the number of layers and dropout rates. At each hyperparameter setting, the data embedding

(matrix E) is computed, and the average absolute pairwise correlation between the columns of

the E matrix is calculated. Among the settings for which the average correlation is below a

threshold (indicating the embedded dimensions are not duplicating information), the Mar-

dia’s multivariate skewness and kurtosis coefficients are calculated for the embedded data [26].

We rank each setting by the skewness and kurtosis of the embedded data, and then select the

setting that yield the highest average rank of skewness and kurtosis. This process selects

parameter settings that yield embedding that is not highly correlated, as well as with a distribu-

tion far from multivariate normal. This is because a random projection of the data into lower

dimensions tend to yield multivariate normal distribution. The criterion we use here is similar

to that of projection pursuit [27].

2.6. Simulation study

We use the following procedure to generate simulated data:
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1. Generate the X matrix with nx variables and N samples using multivariate normal distribu-

tion. The mean vector is 0. The diagonal elements of the variance-covariance matrix S is 1,

and all off-diagonal elements take value ρ, which is a value between 0 and 1. Inverse-normal

transform X, and subtract 0.5, such that the values in the X matrix are between -0.5 and 0.5.

2. Select the first k variables in the X matrix. Generate three linear combinations of the k vari-

ables zm ¼
Pk

j¼1
bmjxj; m ¼ 1; 2; 3, where the β0s are randomly sampled from a uniform

distribution on [−2, −1][[1,2].

3. Generate the first m×k variables in the Y matrix, by first generating a linear combination of

the z variables, rj = αj1z1+αj2z2+αj3z3, j = 1,. . .,mk, where the α0s are randomly sampled

from a uniform distribution on [−2, −1][[1,2]. Then the r variables are re-scaled to facili-

tate nonlinear transformation, by subtracting the mean and dividing by 3 times the stan-

dard deviation. This transformation ensures most of the r values are between -1 and 1. We

then take yj = fj(rj), j = 1,. . .,mk, where fj() is sampled from five different function: (1): f(r) =
r, (2): f(r) = |r|, (3): f(r) = sin((5×(r+0.5)×pi)), (4): f(r) = (2r)2, and (5) a step function that

takes value 1 when r is between the 25th and 75th percentiles, and 0 otherwise. The propor-

tion of y’s that receive the original r values without any transformation is controlled by a

hyperparameter. Gaussian random noise is added to each of the y variables, such that the

noise variance is 1/10 of that of the y variable.

4. The remaining ny−mk variables in the Y matrix are sampled from multivariate normal dis-

tribution of mean vector is 0, and variance-covariance matrix with diagonal value 1 and off-

diagonal value ρ. All the variables in the Y matrix are then re-scaled to have mean 0 and

standard deviation 1.

We then analyze the simulated data using six methods: AIME, CCA, PLS, MOFA2, jSVD,

and iCluster2. For simplicity, we fix the number of input layers and output layers of AIME at

3, and the dropout rate at 0.4. For each of the methods, we test two dimensionalities of the

embedded data– 3 and k, and report from the setting that yields better results. We compare the

variable importance ranking generated by each method, i.e. whether the first k variables in the

X matrix receive higher importance scores, using the area under the curve (AUC) of the preci-

sion-recall (PR) curve.

A number of scenarios, as specified by the combinations of nx, ny, k, m, N, ρ, and the pro-

portion of y’s that are linearly associated with X, i.e. receiving the original r values without any

nonlinear transformation. In each scenario, the simulation was repeated 10 times, and the

average PR-AUC value was taken.

2.7. Datasets and software implementations

Two datasets were used in the manuscript. The first was the Cancer Cell Line Encyclopedia

(CCLE) microRNA and gene expression dataset. The CCLE is a collection of ~1000 cancer cell

lines, on which multiple omics measurements were made in order to elucidate the mechanisms

of different cancers [28]. The data was downloaded from the CCLE website at https://sites.

broadinstitute.org/ccle/. The second dataset was the Cancer Genome Atlas (TCGA) breast

cancer (BRCA) microRNA and gene expression dataset [29]. The data was downloaded from

the GDC data portal https://portal.gdc.cancer.gov/.

AIME implementation is at https://github.com/tianwei-yu/AIME. The installation can be

simply done using devtools::install_github("tianwei-yu/AIME"). Some examples are included

in the Github description page. Some key parameters include: ‘ncomp’, the dimension of the

embedded data; ‘in.layers’ and ‘out.layers’, the number of layers for the encoder and decoder;
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‘max.dropout’, the maximum dropout rate; ‘flat.dropout’, whether a single dropout rate is used

across all layers, as opposed to outer layers use higher dropout; ‘max.epochs’, the maximum

number of epochs in the training; ‘importance.permutations’, how many permutations to con-

duct to find variable importance; ‘pairwise.importance’, TRUE/FALSE, whether to compute

pairwise importance between input and output variables. For the other parameters and details

in the default settings, please refer to the Github webpage and the help file.

The method is somewhat sensitive to the setting of some hyperparameters, namely the num-

ber of encoder/decoder layers and dropout rate. When the layers are too few, the embedded

data tend to be closer to multivariate Gaussian. When the layers are too many, the embedded

data tend to fall on combinations of line-segments. To aid hyperparameter tuning, we provide a

utility “aime.select()”, which runs through a number of hyperparameter combinations, and gen-

erates a PDF file with embeddings at each setting, as well as the skewness/kurtosis measure-

ments at each setting, for the user to conduct an informed hyperparameter selection.

In the simulations and data analyses, we compared with the methods CCA, PLS, iCluster2,

jSVD and MOFA2. For CCA and PLS, we used the implementation in the Bioconductor pack-

age mixOmics [30]. For MOFA2, we used the implementation downloaded from Bioconduc-

tor [8]. For iCluster2, we used the CRAN package iCluster [6,31]. For jSVD, we used the

CRAN package multiway [32].

3. Results and Discussion

3.1 Simulation results

The simulation results are shown in Fig 2. Because most of the simulated X variables do not

contribute to the relation with Y, we used the area under the precision-recall curve (PR-AUC)

to assess the methods’ capability to separate the truly contributing X variables from the rest.

We present part of the simulation results in Fig 2, and the full simulation results are in S1 Fig.

For AIME and jSVD, the embedded dimension k yielded better results, while for iCluster2,

MOFA2, PLS and CCA, the embedded dimension of 3 yielded better results.

When the relation between X and Y were purely non-linear (Fig 2A), among all the six

methods, only AIME could extract the contributing X variables. However, it required the sam-

ple size to be relatively large. For example, when 20 X variables contributed to the relation

between X and Y, and 400 Y variables (out of 1000) were impacted, AIME achieved reasonably

good PR-AUC when the sample size was 5,000 or higher and there is some moderate correla-

tion (ρ = 0.3) between the X variables. When higher number of Y variables were associated

with the X variables (800 out of 1000; Fig 2A, middle and right column), the power to select

the contributing X variables became higher. Interestingly, we observed that the power was

higher when there was a moderate level of correlations (0.3) among all the X variables (Fig 2A,

second row), as compared with the scenarios of no correlation (Fig 2A, first row). Overall, due

to the intrinsic difficulty in capturing nonlinear relations, usually higher sample size (�1000)

was required to achieve moderate or higher PR-AUC levels.

We next examined the situation where the relation between X and Y were mixed (Fig 2B).

When there was no correlation between the X variables (Fig 2B, first row), all six methods per-

formed similarly, with PLS, CCA and iCluster2 leading the performance when the sample size

was small. AIME, PLS, CCA and iCluster2 performed similarly when the sample size was mod-

erate (1000) or higher. When some pervasive correlations exist between the X variables (ρ =

0.3), AIME achieved similar level of performance as PLS and CCA at very low sample size of

200, indicating the capability of neural networks even in the situation of N<<p, i.e. sample

size much smaller than variable count. When the sample size was moderate (1000) or higher,

AIME actually led the pack in performance.
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When all the relations between X and Y were linear (S1 Fig, right column), the relative per-

formance of the methods were similar to that of the mixed situation (Fig 2B). Again we saw

AIME was comparable to PLS, CCA, iCluster2 and MOFA2 even at very small sample size,

Fig 2. Simulation results. PR-AUC was used to assess each method’s success in selecting the true contributing variables. (a) All relations

are nonlinear; (b) The relations are mixed between nonlinear and linear. X-axis: sample size; Y-axis: PR-AUC values. For full simulation

results, please see S1 Fig. The significance levels by Wilcoxon test against the CCA results were labeled on the plots: p�0.01 (�); p�0.001

(��).

https://doi.org/10.1371/journal.pcbi.1009826.g002
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and rose to an overall better performance when the sample size was moderate (1000) or higher,

especially in cases where correlations exist between the X variables (S1 Fig, right column).

Overall, AIME was the only method that could pick up nonlinear relations, and it was a strong

competitor when the signal was linear or mixed.

3.2 Cancer Cell Line Encyclopedia (CCLE) microRNA and gene expression

dataset

In this study, we analyzed the sequencing-based microRNA and gene expression data of

CCLE. After mapping cell lines between the two omics data types, the datasets contained 942

cell lines. The data matrices were transformed by log10(x+1) transformation. We filtered the

miRNA data using the criterion of Coefficient of Variation (CV) >0.1, which yielded 700 miR-

NAs. We filtered the gene expression data using the criteria of percent of zeros < 25%, and

CV> 0.5, which yielded 14997 genes.

After selection of hyperparameters, we used the setting of 3 input layers, 4 output layers,

and dropout rate of 0.3. We also ran CCA, PLS, iCluster2, SNF, jSVD and MOFA2 on the data-

set. The PLS results were qualitatively similar to the CCA results. Hence we present the results

from AIME, CCA, iCluster2, jSVD, SNF and MOFA2 here. As SNF doesn’t directly produce

data embedding, we resorted to applying PCA on the overall status matrix derived by SNF. For

both CCA, iCluster2, jSVD, SNF and MOFA2, we tried both the original data after log trans-

formation, as well as standardizing the data by removing mean and dividing by standard devi-

ation for each variable. The embedding results were similar. Here we present results from the

standardized data.

Fig 3 shows the data embedding obtained by AIME and CCA. Each point represents a cell

line. AIME (Fig 3, sub-plots in the upper-right triangle) separated several types of cancers

from the others, such as haematopoitic and lymphoid cancers (red), autonomic ganglia cancer

(black), pancreas cancer (orange), and skin cancer (dark cyan). In addition, some cancer types

were further separated into clusters. On the other hand, the data points were more mixed in

the CCA embedding (Fig 3, sub-plots in the lower-left triangle), and there was no finer cluster-

ing pattern within each color. The behavior of MOFA2, iCluster2, and jSVD were qualitatively

similar to that of CCA, with iCluster2 and jSVD showing more cancer type separation (S2, S3

and S4 Figs). SNF yielded a distinctively different pattern (S5 Fig), with some classes better

separated.

As pairwise plots may be misleading in terms of class separation, we further analyzed the

embedded data. We examined the k-nearest neighbors (k = 1~20) of each data point, and cal-

culated the average proportion of the neighbors being from the same cancer type. Given that

AIME model fitting is stochastic, we repeated the process 10 times, and plotted results from

the 10 repeats, which agree reasonably well (Fig 4). Overall, AIME attained the highest propor-

tion at all k values, followed by SNF and iCluster2.

As we noticed finer cluster structure within some cancer types in the AIME results, we fur-

ther examined the AIME embedding by taking the two largest cancer types, lung cancer and

haematopoietic and lymphoid cancer. We colored the data points by cancer sub-types, and

manually rotated the view within the first 3 dimensions of the AIME-embedded data (Fig 5).

We found that the AIME embedding separated some cancer subtypes reasonably well. Among

the lung cancer sub-types (blue text labels in Fig 5), small cell carcinoma was clearly separated

from the rest, and squamous cell carcinoma was partially separated. The other three subtypes:

adenocarcinoma, large cell carcinoma and non-small cell carcinoma were mixed together,

indicating their molecular similarity.
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There are many subtypes of haematopoietic and lymphoid cancer. Some were clearly sepa-

rable from the rest, including acute lymphoblastic T cell leukemia, acute lymphoblastic B cell

leukemia, and plasma cell myeloma (brown text labels in Fig 5). Some subtype pairs were

mixed together, but separated from other subtypes, such as Berkitt lymphoma and diffuse

large B cell lymphoma. Acute myeloid leukemia and blast phase chronic myeloid leukemia

were also mixed together, but partially separable from the rest.

Fig 3. Comparing AIME and CCA results using the CCLE microRNA and gene expression data. The

corresponding MOFA2 results are in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1009826.g003
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Overall, AIME was able to distinguish cancer types and sub-types much clearer in its

embedding, as compared to CCA, iCluster2, jSVD, SNF and MOFA2. We then examined the

most influential miRNAs found by AIME. We ran the same parameter setting 10 times, and

averaged the variable importance scores. The agreement between the 10 runs were very good,

the average pairwise correlation between the importance scores being 0.84. We set the fdr

threshold at 0.001, which yielded 35 miRNAs (S6 Fig).

For each of these 35 miRNAs, we used the same gamma distribution-based fdr procedure

to select the genes most influenced by it. Again the miRNA-gene influence score was aggre-

gated from 10 runs at the same hyperparameter setting. The 10 runs had very good agreement,

with an average correlation of 0.73 between the miRNA-gene influence scores. S6 Fig shows an

example local fdr fitting result. We note that some miRNAs showed a strong impact on a spe-

cific set of genes, while some others have a more non-specific impact, indicated by their high

overall impact score, yet very few genes were selected for the miRNA using the local fdr proce-

dure, as the local fdr procedure only select genes that “stand out” from the background. As a

compromise, when the local fdr procedure selected less than 10 genes for a specific miRNA,

we allowed its top 10 genes to enter the list.

The above procedure yielded a total of 2579 miRNA-gene relations at the miRNA-gene fdr

level of 10−4. Among them, 358 were validated by the multiMir package, which queries

Fig 4. Proportion of nearest neighbors of each data point to be from the same cancer class in the embedded data. The k-nearest neighbors (k = 1 to

20) were considered. For AIME, results from 10 repeats were presented.

https://doi.org/10.1371/journal.pcbi.1009826.g004
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multiple sources for experimentally and computationally validated miRNA targets [33]. The

proportion of the relations validated (13.9%) is 2.06-fold of the background (6.73%) among

the 35 miRNAs and all the genes under study, indicating an informative selection of miRNA-

gene pairs.

As there were two fdr thresholds involved in the selection, to ensure the robustness of the

results, we varied the fdr threshold for miRNA importance, as well as the fdr threshold

miRNA-gene pairs, and calculated the ratio between the validated proportion of selected

miRNA-gene pairs v.s. the background validation rate of the selected miRNAs. As shown in

S7 Fig, the ratio tended to be higher when both fdr thresholds were more stringent.

For illustration purposes, we further narrowed down to the top 10 miRNAs by using an fdr

threshold of 10−7. For these 10 miRNAs, a total of 437 miRNA-gene pairs were identified at

miRNA-gene fdr of 10−5, among which 110 (25.2%) were validated by multiMir, representing

a 3.28-fold increase over the baseline. The miRNA-gene graph is shown in Fig 6, with validated

miRNA-gene relations colored in blue. Among the two miRNAs with highest number of con-

nections, MIMAT0000264 (has-mir-206) is a known suppressor of breast cancer metastasis

[34]; MIMAT0000617 (hsa-miR-200c) is a known regulator of pancreatic cancer invasion and

proliferation [35].

For a further functional comparison between AIME, CCA, iCluster2 and MOFA2 results,

we used the top 35 miRNAs selected by AIME. Given the other methods do not generate p-

value or fdr for miRNAs, we selected the top 35 miRNAs using CCA, iCluster2, and MOFA2

respectively, by ranking the sum of squared loading of the miRNAs. There were reasonably

good overlap between the lists of miRNAs selected by the methods (Fig 7A). 11 miRNAs were

selected by all 4 methods. CCA and MOFA2, both of which are linear methods, showed better

agreements by sharing another 12 selected miRNAs. AIME selected 14 miRNAs that didn’t

overlap with the other 3 methods.

Fig 5. Detailed examination of the two dominant cancer types: “lung” and “haematopoietic and lymphoid tissue”. The points are

colored using the cancer subtypes. The dominant subtypes of each region are labeled on the plot. Blue circle and text: lung cancer

subtypes; brown circle and text: subtypes of cancer of haematopoietic and lymphoid tissue origin. When two subtypes are inseparable,

their subtypes labels are written together.

https://doi.org/10.1371/journal.pcbi.1009826.g005
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Using mirPath 3.0 [36], we compared the functional annotations of the 14 miRNAs selected

by AIME alone, versus the 11 miRNAs that were shared by all four methods (Table 1). P-values

by mirPath 3.0 were adjusted to FDR using the Benjamini-Hochberg method. Among the top

10 pathways associated with the 14 miRNAs selected by AIME, 3 were insignificant

(FDR>0.2) when analyzing the 11 miRNAs selected by all methods. They include a signaling

pathway closely related to cancer—PI3K-Akt signaling pathway, as well as a pathway that is

critical in cancer cell microenvironment—extracellular matrix (ECM) interactions. The results

indicated that AIME was able to identify some important aspects of the data that complement

other existing methods.

We next examined the top genes selected by the four methods. While AIME selected

miRNA-gene pairs, the other three methods do not yield such detailed results. For a fair com-

parison, for each gene, we aggregated the impact scores from all miRNAs, and selected the top

286 (fdr�0.05) genes using the gamma distribution-based local fdr procedure. Given the other

methods do not generate p-value or fdr for genes, we also selected the top 286 genes by CCA,

iCluster2 and MOFA2 respectively, by ranking the sum of squared loading of the genes. iClus-

ter2 and CCA had a moderate level of overlap, while AIME and MOFA2 had low overlap with

the other methods (Fig 7B).

Fig 6. Top 10 microRNAs (fdr�10−7) and their associated genes (fdr�10−5) in the CCLE data. Red nodes: microRNAs; blue nodes/edges: validated by

multiMir.

https://doi.org/10.1371/journal.pcbi.1009826.g006
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Fig 7. Venn Diagram of the top microRNAs, top genes, and functional analysis of the top genes. Notice the

functional analysis results of the microRNAs are in Table 1. (a) Venn diagram of the top 35 microRNAs selected by

AIME (fdr�0.01), and the top 35 microRNAs from CCA, iCluster2 and MOFA2. (b) Venn diagram of the top 286

genes selected by AIME (fdr�0.05), and the top 286 genes from CCA, iCluster2 and MOFA2. (c) The overrepresented

pathways (FDR�0.05) with 100~500 genes.

https://doi.org/10.1371/journal.pcbi.1009826.g007
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We then conducted gene set enrichment analysis using the fast GSEA (fgsea) package [37],

which uses the ranking information of all genes. We selected reactome pathways that contain

100~500 genes, with FDR�0.05 (Fig 7C). The majority of the pathways found by any of the

four methods were either signal transduction pathways or immune system pathways. There

were also a small number of metabolism/transport pathways. AIME yielded the most number

of significant pathways, including uniquely identifying G-protein-coupled receptor (GPCR)

pathways that play significant roles in cancer. We note that the pathways on the miRNA side

were mostly signally pathways, while the pathways on the gene side include more down-stream

processes. This agrees with the fact that miRNAs play a more regulatory role, and through sig-

nal transduction, they can impact a variety of downstream processes.

Overall, we found that AIME yielded results that complement existing methods. Given the

complexity of the data, each method may only extract part of the information. Combined with

the fact that AIME generated embedding that better separated cancer types and sub-types, we

believe that AIME detected patterns in the data that can add to what was extracted by existing

methods.

3.3 TCGA BRCA microRNA and gene expression dataset

We analyzed the TCGA breast cancer microRNA and gene expression datasets [29]. After log-

transforming both data matrices, we matched the common subjects in which both data were

measured. We then filtered the microRNA data by selecting microRNAs with a coefficient of

variation (CV) larger than 0.25, and filtered the gene expression data by selecting genes with

Table 1. Top 10 pathways of selected miRNAs from the CCLE data using mirPath 3.0#.

KEGG pathway FDR #miRNAs

AIME only (14 miRs; total 35 pathways with FDR�0.1)

ECM-receptor interaction� 3.70E-13 13

Fatty acid biosynthesis� 6.78E-10 5

Signaling pathways regulating pluripotency of stem cells 8.42E-10 13

Hippo signaling pathway 2.88E-06 12

Pathways in cancer 3.51E-06 14

Proteoglycans in cancer 9.40E-06 13

Glioma 1.16E-05 12

Focal adhesion 1.68E-05 14

TGF-beta signaling pathway 1.68E-05 12

PI3K-Akt signaling pathway� 2.43E-05 14

All 4 methods (11 miRs; total 25 pathways with FDR�0.1)

Proteoglycans in cancer 5.79E-05 11

MAPK signaling pathway 0.000217 11

ErbB signaling pathway 0.000521 11

Neurotrophin signaling pathway 0.005757 11

Rap1 signaling pathway 0.005757 11

TGF-beta signaling pathway 0.016259 10

Renal cell carcinoma 0.025283 10

Long-term depression 0.025283 10

Thyroid hormone signaling pathway 0.025283 11

Hippo signaling pathway 0.025621 10

� Insignificant at FDR�0.2 in the “all 4 methods” group

https://doi.org/10.1371/journal.pcbi.1009826.t001
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<20% zeros, and with a CV larger than 0.2. The resulting matrix dimensions were 451×242 for

the microRNA data, and 451×6086 for the gene expression data.

We then used the microRNA data as input, and the gene expression data as output. First we

ran the analysis without adjusting for any confounder. The method selected 4 layers for the

encoder and 5 layers for the decoder, and a dropout rate of 0.2. The resulting embedded data is

shown in Fig 8, upper-right triangle. We can see that clearly the embedded data were separated

based on the PAM50 (Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes,

which is based on a multi-gene signature for risk stratification [38]. As the ER (estrogen

Fig 8. AIME results using TCGA miRNA and gene expression data, with and without adjusting for confounders including age, T1

(tumor size) status, and estrogen receptor (ER) status. Points are colored based on PAM50 (Prosigna Breast Cancer Prognostic Gene

Signature Assay) subtypes. Upper-right sub-plots: without adjustment for confounders; lower-left sub-plots: with adjustment for

confounders.

https://doi.org/10.1371/journal.pcbi.1009826.g008
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receptor) status is highly correlated with the PAM50 score, the embedded data also separated

the subjects based on ER status very well (S8 Fig). Analyzing the dataset using MOFA2 (S9 and

S10 Figs), CCA (S11 and S12 Figs), jSVD (S13 and S14 Figs), iCluster2 (S15 and S16 Figs), and

SNF (S17 and S18 Figs) yielded similar separations. All methods achieved a separation with

the subtype “Luminal A” on one side, and “Basal-like” on the other end. The other two sub-

types were in the middle.

Again, as pairwise plots may be misleading, we further analyzed the embedded data. We

examined the k-nearest neighbors (k = 1~20) of each data point, and calculated the propor-

tions of the neighbors being from the same cancer type. We repeated the AIME analysis 10

times, and plotted results from the 10 repeats, which agree reasonably well (Fig 9). Overall,

AIME and SNF attained better results, with AIME separating the ER groups better, and SNF

separating the PAM50 groups better.

It is well-known that ER status is a major factor in breast cancer, and this cancer subtype

could dominate miRNA and gene expression patterns. It is unclear whether the embedded

point patterns were caused by the dominating ER factor, and whether the impact on expres-

sion by T1 status (tumor size) overlaps that of ER status. Among all the methods tested, only

AIME can answer these questions, be adding ER status and/or T1 status as confounders in the

model.

First, we adjusted for age+T1 and age+ER separately. Adjusting for age+T1 wasn’t able to

remove the point separation between PAM50 subtypes (S19 Fig) or ER status (S20 Fig), indi-

cating if the T1 status has some impact on the miRNA-gene relations, the signal is unrelated to

Fig 9. Proportion of nearest neighbors of each data point to be from the same class in the embedded data. The k-nearest neighbots (k = 1 to 20) were

considered. (a) Using ER status as class label; (b) using PAM50 group as class label. For AIME, results from 10 repeats were presented.

https://doi.org/10.1371/journal.pcbi.1009826.g009
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that of ER status. As expected, when adjusting for age+ER status, the separation by PAM50 or

ER disappeared (S21 and S22 Figs).

To maximally remove the impact of the known factors, we then adjusted for age, T1 (tumor

size) status, and ER status in the analysis. The purpose was to find any miRNA-gene relations

that were independent from age, T1, and ER status. The resulting embedded data clearly lost

the relation with PAM50 subtypes, with all four PAM50 subtypes mixed together (Fig 8, sub-

plots in the lower-left triangle). Similar effect was observed with ER status (S8 Fig, subplots in

the lower-left triangle).

In the adjusted analysis, the method selected 5 layers for the encoder, 4 layers for the

decoder, and a dropout rate of 0.2. We repeated the analysis 10 times at this setting, and aver-

aged the importance scores. At the fdr level of 0.1, sixteen miRNAs were significant based on

the gamma distribution-based fdr analysis. The same procedure as in the previous section was

used to select miRNA-gene pairs. At the miRNA-gene fdr level of 0.01, a total of 2646 miRNA-

gene relations were identified, among which 334 were validated by the multiMir package [33].

The proportion of the relations validated (12.6%) was 1.51-fold of the background (8.3%)

among the 16 miRNAs and all the genes under study, indicating an informative selection of

Fig 10. The top 5 microRNAs (fdr�0.01) and their major associated genes (fdr�0.001), after adjusting for age, T1 (tumor size) status, and estrogen

receptor (ER) status. Red nodes: microRNAs; blue nodes/edges: validated by multiMir.

https://doi.org/10.1371/journal.pcbi.1009826.g010
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miRNA-gene pairs. The fold change was not as substantial as in the CCLE data. However we

note that due to the data being from the same cancer, and the adjustment for ER and T1 status,

the signal was more subtle in the current analysis. To ensure the robustness of the results, we

varied the fdr threshold for miRNA importance, as well as the fdr threshold miRNA-gene

pairs, and calculated the ratio between the validated proportion of selected miRNA-gene pairs

v.s. the background validation rate of the selected miRNAs. As shown in S23 Fig, the ratio

tended to be higher when both fdr thresholds were more stringent.

For illustration purposes, we further narrowed down to the top 5 miRNAs by using an fdr

threshold of 0.01. For these 5 miRNAs, a total of 507 miRNA-gene pairs were identified at the

miRNA-gene fdr of 0.001, among which 61 (12.0%) were validated by multiMir, representing

a 1.73-fold increase over the baseline (6.96%). The miRNA-gene graph is shown in Fig 10.

Both of the two miRNAs with large number of connections, mir-33a and mir-150 are known

to be associated with many tumors.

For comparison, we also selected the top 16 miRNAs from three other analyses–AIME

without adjusting for confounders, iCluster2, and MOFA2. Based on the Venn diagram, there

was reasonable overlap between AIME_adjusted and AIME_unadjusted, while iCluster2 and

MOFA2 tended to select different miRNAs (Fig 11A). We then examined the functionality of

the top 16 contributing microRNAs by applying DIANA-miRPath v3.0 [36], followed by FDR

adjustments using the Benjamini-Hochberg method. Two pathways were selected by all meth-

ods–the FoxO and TGF-beta signaling pathways (Fig 11B, grey box). AIME_adjusted selected

more pathways than AIME_unadjusted. It uniquely selected important pathways including

estrogen signaling pathway and pancreatic cancer. Overall, each method reflected some aspects

Fig 11. Venn Diagram of the top microRNAs and their functional analysis. (a) Venn diagrams of the top 16 microRNAs selected by

AIME_adjusted (fdr�0.1), and the top 16 microRNAs from AIME_unadjusted, MOFA2, and iCluster2. (b) The overrepresented

pathways (FDR�0.01) using miRPath 3.0.

https://doi.org/10.1371/journal.pcbi.1009826.g011
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Fig 12. Venn Diagram of the top genes and functional analysis of the top genes. (a) Venn diagram of the top 270 genes selected by

AIME_adjusted (fdr�0.1), and the top 270 genes from AIME_unadjusted, MOFA2 and iCluster2. (b) The overrepresented pathways

(FDR�0.1) with 100~500 genes. Group 1: pathways selected by MOFA2, AIME_adjusted and AIME_unadjusted; group 2: pathways

selected by AIME_adjusted and AIME_unadjusted; group 3: pathways selected by AIME_adjusted and MOFA2.

https://doi.org/10.1371/journal.pcbi.1009826.g012
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of signaling related to breast cancer. Given the similarity in data embedding patterns, this

result is expected.

Following the same procedure described in the previous section, we selected the top 270

genes from AIME_adjusted results using the gamma distribution-based fdr approach, at fdr

level of 0.1. We also selected the top 270 genes from the other three approaches: AIME_unad-

justed, iCluster2, and MOFA2. Similar to the miRNA overlaps, there was reasonable overlap

between AIME_adjusted andAIME_unadjusted, while iCluster2 and MOFA2 tended to select

different genes than others (Fig 12A).

We then conducted gene set enrichment analysis using the fast GSEA (fgsea) package [37],

which uses the ranking information of all genes. We selected reactome pathways that contain

100–500 genes, with FDR�0.1 (Fig 12B). All methods selected the hemostasis pathway, which

includes platelets, coagulation, and fibrinolysis, and is known to mediate tumor cell transfor-

mation, proliferation, and survival [39]. A group of pathways that are involved in cell cycle and

immune system were selected by all methods except iCluster2 (Fig 12B, label 1). AIME_ad-

justed and AIME_unadjusted both selected G protein-coupled receptor pathways and extra

cellular matrix organization (Fig 12B, label 2), indicating their role in cancer regulation inde-

pendent of ER and T1 status. AIME_unadjusted and MOFA2 both selected RHO GTPase

pathways, which are critical in wound healing and cell migration, both of which are important

aspects of cancer (Fig 12B, label 3). Overall, AIME_adjusted selected the largest number of

pathways, most of which have clear association with cancer.

Among the four methods in this comparison, only AIME_adjusted was able to remove the

dominant effects of ER, and potentially other contributions by T1 status and age. Thus the

remaining embedding patterns and the corresponding miRNA contributions were indepen-

dent from ER, T1 and age. Given the fdr approach still identified significant miRNAs and

miRNA-gene pairs, the detected relations were likely to be real. Indeed they point to miRNAs

and biological functions that traditional methods didn’t find, validating the value of the new

approach.

3.4. Discussions

AIME can be seen as a nonlinear equivalent to CCA, with the added capability to adjust for

confounder variables. Besides being able to extract nonlinear relationships that traditional

methods cannot, when sample size is large enough, AIME is even more effective than tradi-

tional linear methods such as CCA, PLS, jSVD, iCluster2 and MOFA2 in extracting linear rela-

tionships. In real data applications, AIME was able to exclude the influence of unwanted

confounders and extract novel patterns. The results were easily interpretable. We believe

AIME is a valuable addition to the current methods of omics data integrative analyses.

The current setup of the AIME model only allows the analysis of two data types at a time.

To analyze multiple data types jointly requires major modifications to the structure of the neu-

ral network. One possible route is to put all data types in the input, reduce each data type to a

lower dimension nonlinearly, and use a loss function that encourages agreement between the

nonlinear embeddings. We will pursue this in future studies.

Supporting information

S1 Fig. Full simulation result. PR-AUC was used to assess each method’s success in selecting

the true contributing variables.

(TIF)
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S2 Fig. MOFA2 results of CCLE miRNA and gene expression data.

(TIF)

S3 Fig. jSVD results of CCLE miRNA and gene expression data.

(TIF)

S4 Fig. iCluster2 results of CCLE miRNA and gene expression data.

(TIF)

S5 Fig. SNF results of CCLE miRNA and gene expression data.

(TIF)

S6 Fig. Example plots from the local fdr procedure. (a) Fitting the miRNA importance score

of the CCLE data and determining the threshold. (b) Fitting the gene score for a single miRNA

and determining the threshold. Red curve: estimated null component density; blue bar:

selected threshold.

(TIF)

S7 Fig. CCLE data: proportion of validated miRNA-gene pairs, expressed as fold-change

over random pairs between any gene and the selected miRNAs at each miRNA threshold.

Color curves: different fdr cutoffs to select top miRNAs.

(TIF)

S8 Fig. AIME results using TCGA miRNA and gene expression data, with and without

adjusting for confounders including age, T1 (tumor size) status, and estrogen receptor

(ER) status. Points are colored based on ER status. Upper-right sub-plots: without adjustment

for confounders; lower-left sub-plots: with adjustment for confounders.

(TIF)

S9 Fig. MOFA2 results using TCGA miRNA and gene expression data. Points are colored

based on PAM50 (Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)

S10 Fig. MOFA2 results using TCGA miRNA and gene expression data. Points are colored

based on ER status.

(TIF)

S11 Fig. CCA results using TCGA miRNA and gene expression data. Points are colored

based on PAM50 (Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)

S12 Fig. CCA results using TCGA miRNA and gene expression data. Points are colored

based on ER status.

(TIF)

S13 Fig. jSVD results using TCGA miRNA and gene expression data. Points are colored

based on PAM50 (Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)

S14 Fig. jSVD results using TCGA miRNA and gene expression data. Points are colored

based on ER status.

(TIF)

S15 Fig. iCluster2 results using TCGA miRNA and gene expression data. Points are colored

based on PAM50 (Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)
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S16 Fig. iCluster2 results using TCGA miRNA and gene expression data. Points are colored

based on ER status.

(TIF)

S17 Fig. SNF results using TCGA miRNA and gene expression data. Points are colored

based on PAM50 (Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)

S18 Fig. SNF results using TCGA miRNA and gene expression data. Points are colored

based on ER status.

(TIF)

S15 Fig. AIME results using TCGA miRNA and gene expression data, adjusting for con-

founders including age and T1 (tumor size) status. Points are colored based on PAM50

(Prosigna Breast Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)

S20 Fig. AIME results using TCGA miRNA and gene expression data, adjusting for con-

founders including age and T1 (tumor size) status. Points are colored based on ER status.

(TIF)

S21 Fig. AIME results using TCGA miRNA and gene expression data, adjusting for con-

founders including age and ER status. Points are colored based on PAM50 (Prosigna Breast

Cancer Prognostic Gene Signature Assay) subtypes.

(TIF)

S22 Fig. AIME results using TCGA miRNA and gene expression data, adjusting for con-

founders including age and ER status. Points are colored based on ER status.

(TIF)

S23 Fig. BRCA data: proportion of validated miRNA-gene pairs, expressed as fold-change

over random pairs between any gene and the selected miRNAs at each miRNA threshold.

Color curves: different fdr cutoffs to select top miRNAs.

(TIF)
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