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Abstract

Asthma is classically described as either a T2 eosinophilic phenotype or a non-T2 neutrophilic 

phenotype. T2 asthma usually responds to classical bronchodilation therapy and corticosteroid 

treatment. Non-T2 neutrophilic asthma is often more severe. Patients with non-T2 asthma or 

late-onset T2 asthma show poor response to the currently available anti-inflammatory therapies. 

These therapeutic failures result in increased morbidity and cost associated with asthma and pose 

a major healthcare problem. Recent evidence suggests that some non-T2 asthma is associated with 

elevated Th17 cell immune responses. Th17 cells producing interleukin 17A and 17F are involved 

in the neutrophilic inflammation and airway remodeling processes in severe asthma and have been 

suggested to contribute to the development of subsets of corticosteroid-insensitive asthma. This 

review explores the pathological role of Th17 cells in corticosteroid insensitivity of severe asthma 

and potential targets to treat this endotype of asthma.
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Asthma is a common and chronic obstructive airway disease with a high healthcare burden. 

It is defined by clinical symptoms of recurrent wheezing, coughing, and shortness of 

breath varying with time and intensity, as well as variable expiratory airflow limitation1. 

Inflammation is viewed as the key factor in asthma, with anti-inflammatory corticosteroids 

as the mainstay of treatment. Severe asthma is defined as those patients who require high-

dose inhaled corticosteroids plus a second drug and/or systemic corticosteroids to maintain 
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control and whose symptoms worsen when treatment is decreased, or asthma where patients 

remain uncontrolled despite adherence to optimized maximal therapy2. Severe asthma is a 

costly public health burden, encompassing up to 10% of all asthma patients but contributing 

to most of the healthcare cost.

An asthma subset characterized by eosinophilic airway inflammation and abundant T helper 

2 (Th2) cells is defined as type 2 (T2) asthma which is further defined by a sputum 

eosinophil count of ≥ 2%, a blood eosinophil count of ≥150 cells/µL, a fractional exhaled 

nitric oxide ≥ 20 ppb, and/or clinically allergy-driven asthma3. However, these biomarker 

numbers are arbitrary cutoffs within continuously distributed values and T2 inflammation 

exists on a continuum in asthma. Allergic asthma is characterized by asthma symptoms 

that occur with exposure to an aeroallergen with confirmatory allergen specific IgE and 

a total IgE of at least 30 IU/mL. There is considerable overlap between allergic and 

T2 asthma. Patients with allergic asthma are much more likely to have high eosinophil 

counts, and asthma patients with high eosinophil counts, especially those that develop 

asthma during childhood, often have concomitant allergies4,5. T2 asthma usually responds to 

classical bronchodilation therapy and corticosteroid treatment6 and/or can be controlled with 

newly developed T2-targeted biologic therapies7–11. However, in some patients with severe 

asthma, especially late-onset T2 asthma, airway eosinophilic inflammation persists despite 

corticosteroid treatment (Figure 1)12,13. In addition, almost half of patients with severe 

asthma have non-eosinophilic airway inflammation or a lack of eosinophilic and neutrophilic 

airway inflammation. This group is defined as having non-T2 or T2-low asthma14–17. The 

non-T2 asthma is usually characterized by neutrophilic rather than eosinophilic airway 

inflammation and associated with a number of clinical features including obesity, later 

onset of disease, poor responsive to gcocorticoids and higher risks of exacerbation18–24. 

Paucigranulocytic asthma (PGA) is another subset of non-T2 asthma with persistent 

asthma symptoms but absence of both eosinophilic and neutrophilic airway inflammation25. 

This endotype may be due to changes in airway smooth muscle (ASM)16,26 or airway 

inflammation not reflected in the lumen or detected by sputum cytometry27. Non-T2 asthma 

has a poor response to the currently available anti-inflammatory therapies. It is a problem 

urgently needing a solution, particularly for patients with late-onset and more severe 

asthma12,28,29, which is characterized by a high rate of severe exacerbations that may require 

hospitalization and lead to further morbidities. Unfortunately, the disease mechanisms 

driving non-T2 asthma are poorly understood, and there is a lack of point of care 

biomarkers, both of which greatly hinders the development of new therapeutic strategies 

for this subset of asthma26,30. Bronchial Thermoplasty (BT) is an endoscopic procedure that 

uses temperature-controlled radiofrequency energy to impact airway remodeling31. BT is 

well tolerated and reduces asthma symptoms and improves the quality of life of patients32. 

Since BT ablates ASM mass and airway nerve fibers, both of which may reduce airway 

hyperresponsiveness (AHR)33–35, it is a potential effective treatment in patients with severe 

asthma, including some non-T2 asthma patients with ASM remodeling and AHR36. It 

should be noted that although BT was approved by the US Food and Drug Administration 

in 2010, the National Asthma Education and Prevention Program currently suggests that BT 

treatment is limited for selected patients in a clinical trial or registry37. More clinical trials 

are needed to determine the potential application of BT for non-T2 asthma.
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Recent evidence suggests that some, but not all non-T2 asthma is associated with elevated 

T helper 17 (Th17) cell immune responses and this tends to be more prominent in 

adult patients with severe and corticosteroid-insensitive asthma (Figure 1)14,16. Th17 cells 

producing the interleukin 17 (IL-17) family of cytokines are involved in the neutrophilic 

inflammation and airway remodeling processes in severe asthma38,39, and these cells 

have been suggested to contribute to the development of at least some subsets of 

corticosteroid-insensitive asthma40,41. Here, we review corticosteroid-insensitive severe 

asthma by focusing especially on the pathological role of Th17 cells in non-T2 asthma 

and potential targets to treat this endotype of asthma.

NEUTROPHILIA IN SEVERE ASTHMA

Neutrophilia in severe asthma was first described in bronchial biopsy studies that aimed 

to distinguish eosinophilic asthma from non-eosinophilic asthma42. The Severe Asthma 

Research Program has identified neutrophilic inflammation as an important hallmark of 

a distinct cluster of patients with moderate to severe asthma43. A more recent study 

using biopsy samples also demonstrated that bronchial neutrophilia was present in 54% 

of mild-to-severe asthma patients, and this percentage rose to 68% when only severe 

asthma patients were considered44. In addition, bronchial neutrophilia is frequently present 

in sudden-onset fatal asthma in the absence of eosinophils and is associated with lung 

function alterations of increased airflow limitation, airway closure/air trapping, and altered 

reversibility patterns44–46. Importantly, these patients respond poorly to corticosteroid 

treatment, indicating the need for new therapies for this type of asthma47.

Inflammatory phenotypes in asthma are best defined based on sputum cell counts. Thus, 

neutrophil percentages in sputum exceeding the numbers in healthy individuals were 

initially used to define ‘pathologic’ neutrophil percentages, leading to a cut-off of 61% 

to define ‘neutrophilic asthma’ 47,48. This cut-off was later adjusted to 76% because 

of higher ‘normal’ values in healthy individuals49,50. However, sputum neutrophilia 

does not always predict neutrophilic bronchial inflammation51. In addition, although 

neutrophilic inflammation predominates in this cluster, neutrophilia can also coexist with 

eosinophilia42,51,52, illustrating the complexity of severe asthma. Therefore, how to define 

neutrophilic asthma in relation to severe asthma remains an open question and there is 

a debate whether neutrophilic asthma represents a true endotype of disease53 because so 

many factors can influence the presence and function of neutrophils in airways. Thus, 

it may be more useful to think of neutrophils as a manifestation of an inflammatory 

process that is contributing to airway pathology in multiple ways. For example, Th17 

cells and innate lymphoid type 3 cells (ILC3) have been linked with neutrophilic airway 

inflammation (Figure 1). These cells secrete IL-17 cytokines (IL- 17A and IL- 17F) 

that stimulate the production and release of neutrophilic chemokines in airway epithelial 

cells and fibroblasts, leading to neutrophil recruitment to the airway54,55. Hence tissue 

neutrophilia may be a biomarker of elevated IL-17 activity. Several other factors may 

also contribute to neutrophilic inflammation56. Treatment with high dose inhaled or oral 

corticosteroids has been shown to contribute to the high number of airway neutrophils in 

asthmatics57,58. More neutrophilic airway inflammation was found in obese versus nonobese 

asthmatics21. Smoking worsens asthma symptoms and morbidity, and promotes neutrophilic 
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asthma59,60. In fact, smoking cessation decreased airway neutrophil number, alleviated 

clinical symptoms, and reduced total mortality in asthmatics61–63. The presence of airway 

bacteria has been suggested as contributing to airway neutrophilia64. There are significant 

differences in airway bacteria species in patients with neutrophilic versus eosinophilic 

asthma, which may alter the corticosteroid sensitivity in these patients65. Importantly, 

macrolide antibiotics that have antibacterial and anti-inflammatory effects are of some 

benefit for both T2 and non-T2 asthma66–68. A large randomized, double-blind, placebo-

controlled clinical study demonstrated that add-on azithromycin significantly reduced 

asthma exacerbations with an improvement in quality of life in patients with persistent 

uncontrolled asthma69,70. Further studies showed that azithromycin treatment reduces key 

sputum cytokines associated with non-T2 asthma such as IL-6 and IL-1β71.

How neutrophils may contribute to altered airway pathophysiology in asthma is largely 

based on circumstantial evidence56. For example, chemokines released by neutrophils attract 

monocytes/macrophages to the airway, thus altering airway inflammation72. Neutrophils 

can cause ASM hyperresponsiveness73 and exosomes secreted from neutrophils also 

regulate ASM remodeling74. It was found that neutrophils in asthma patients secrete 

a higher level of transforming growth factor β (TGF-β) and matrix metalloprotease-9 

(MMP-9) to promote airway remodeling, leading to poor lung function75–77. Increased 

neutrophil elastase in asthmatic patients can cause airway narrowing via induction of 

airway mucus gland hyperplasia, mucus secretion, and ASM cell proliferation78,79. In 

addition, increased neutrophils also reduced epithelial barrier function in the airways80. 

However, while targeting neutrophils inhibits airway inflammation and alleviates airway 

hyperresponsiveness in some animal models of asthma81–83, this strategy failed to show 

benefit in asthma patients84, leading to question the exact role of neutrophils in asthma85. 

Furthermore, neutrophils are heterogenous with proinflammatory and anti-inflammatory 

subsets86. For example, neutrophils in the airways of asthmatic patients consist of distinct 

subsets with different/increased activation states87,88. Thus, more precise characterization 

of neutrophil subsets and the delineating mechanisms for the phenotypic changes in the 

airways of asthmatics will be essential for the future development of neutrophil-targeting 

therapies. In addition, one also must take into account the importance of neutrophils in host 

defense mechanisms and the consequences that could develop as a result of their inhibition 

in the airways.

TH17 CELL DIFFERENTIATION

Th17 cells are a distinct CD4+ T helper cell subset that is characterized by the expression of 

the transcription factor retinoic acid–related orphan receptor-γt (RORγt)89. They are derived 

from naïve CD4+ T cells and play a key role in the pathogenesis of non-T2 neutrophilic 

asthma. Th17 cell differentiation relies on the coordination of several well-characterized 

cytokines and transcription factors, with TGF-β1, IL-6 and IL-23 as the most prominent 

drivers of Th17 cell differentiation. They induce specific transcription factors responsible 

for the expression of Th17 cell specific cytokines such as IL-17A and IL-17F. Multiple 

transcription factors have been shown to be important for the development of Th17 cells, 

including RORγt, signal transducer and activator of transcription 3 (STAT3), interferon 

regulatory factor 4 (IRF4), basic leucine zipper ATF-like transcription factor (BATF), and 
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runt-related transcription factor 1 (RUNX1). Of these, RORγt appears to be the master 

transcription factor that regulates the differentiation of Th17 cells90.

TGF-β is a regulatory cytokine that has multiple effects on T cell development, homeostasis, 

and tolerance91. Interestingly, TGF-β is required for the development of both Th17 

cells and regulatory T-cells (Tregs) by triggering the expression of their differentiating 

transcription factors, RORγt and forkhead box P3 (FOXP3), respectively92. In fact, both 

transcription factors are initially up-regulated after naïve CD4+ T cells encounter TGF-β93. 

Whether subsequent differentiation of the cells is skewed towards a Treg phenotype or 

a proinflammatory Th17 cell phenotype depends mainly on the cytokine milieu. TGF-β 
alone induces differentiation of FOXP3-dependent Treg cells94,95, whereas the presence of 

IL-6 inhibits Treg development and induces Th17 cell differentiation94. IL-6 also directly 

activates STAT3, whereas TGF-β both inhibits suppressor of cytokine signaling 3 (SOCS3), 

a negative regulator of STAT3 signaling, and activates SMAD2 to promote RORγt and 

IL-17A expression96–98. Additional cytokines can further drive Th17 cell differentiation. 

For example, IL-1β signaling was reported to enhance the phosphorylation of STAT3 by 

repressing SOCS3 to favor human Th17 cell differentiation99. Interestingly, FOXP3 is 

present in several isoforms due to alternative splicing. In the absence of a second signal 

from a proinflammatory cytokine, full length FOXP3 directly binds and inhibits RORγt 

function, thus driving Treg differentiation100, whereas FOXP3 isoforms lacking exon 7 

inhibit the function of full length FOXP3 in a dominant-negative manner101,102. A recent 

study showed that IL-1β can promote Th17 cell development through induction of FOXP3 

isoforms lacking exon 7102.

IL-23 is a proinflammatory cytokine that plays an important role in the regulation of 

numerous inflammatory diseases by integrating the innate and adaptive immune systems103. 

IL-23 is essential for the maintenance, expansion, and proper function of Th17 cells through 

a positive feedback loop104. During chronic inflammation, activated dendritic cells and 

macrophages produce IL-23 that promotes the development and differentiation of Th17 

cells105. Importantly, IL-23 is required for full function of Th17 cells in vivo. In the absence 

of IL-23, Th17 cells activated with TGF-β1 plus IL-6 exhibit impaired pathogenic function 

in vivo despite increased IL-17 production106. In addition, IL-23 also enhances Th2 cytokine 

production and eosinophilic airway inflammation107. Serum IL-23 is elevated in asthmatic 

patients and is associated with airflow obstruction108. Deletion of IL-23 gene or treatment 

with an anti-IL-23 antibody reduced airway inflammation and decreased airway resistance 

in mice109,110. However, in a recent phase 2a trial, the monoclonal anti-IL-23 antibody 

risankizumab reduced IL-23 target genes but had no clinical benefit in asthmatic patients111. 

Thus, further basic and clinical studies are needed to determine the pathological roles of 

IL-23 signaling pathways in asthma.

IL-17 CYTOKINES AND NEUTROPHILIA IN SEVERE ASTHMA

Th17 cells secrete Th17-associated cytokines IL-17A, IL-17F, IL-21, and IL-22. Among 

these cytokines, IL-21 acts in an autocrine manner to promote IL-17A production112 

whereas IL-22 enhances the proliferation and migration of human ASM cells113,114, leading 

to airway remodeling and hyperresponsiveness115. IL-17A and IL-17F are particularly 
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important in immune responses against bacterial and fungal infections116. They belong to 

the IL-17 family (including IL-17A, IL-17B, IL-17C, IL-17D, IL-17E [known as IL-25], and 

IL-17F), and they share common receptor subunits, IL-17 receptor A (IL-17RA), and IL-17 

receptor C (IL-17RC).116 IL-17A and IL-17F can form homodimers and heterodimers, 

and may have similar functions to induce neutrophil recruitment to the airway117,118. 

IL-17C, mainly released by epithelial cells119, enhances IL-17A and IL-17F release from 

Th17 cells120 whereas IL-25 promotes T2 inflammation through induction of IL-4, IL-5 

and IL-13121. Little is known about IL-17D. A recent study found that IL-17D exerts 

anti-inflammatory effects via regulation of ILC3 function122.

IL-17A and IL-17F are pro-inflammatory cytokines known to stimulate neutrophil 

maturation, migration, and function55,123. Overexpression of IL-17A in mice results in 

significant peripheral neutrophilia124. The number of cells positive for IL-17A was initially 

found to be increased significantly in sputum and bronchoalveolar lavage fluids of subjects 

with asthma in comparison with control subjects125. Subsequent studies demonstrated that 

IL-17A was elevated in bronchial tissues, peripheral blood mononuclear cells (PBMCs), and 

serum from asthmatic patients126–132. Importantly, IL-17A production in asthma patients 

positively correlates with AHR and clinical severity of asthma38,127,131–135. Similarly, 

IL-17F was also increased in asthma patients126,136, correlated with both airway neutrophils 

and more severe disease137,138. A loss-of-function IL-17F mutant antagonizes wildtype 

IL-17F and is inversely related to asthma risk.139,140

Another study found a correlative increase in IL-17A and IL-17F in bronchial biopsies in 

patients with increasing asthma severity39. In addition, expression of specific IL-17 receptor 

subunits, IL-17RA and IL-17RC118, were also increased in the bronchial tissues and PBMCs 

of asthmatic patients128,129. These findings indicate that IL-17A and IL-17F are likely 

important cytokines in the pathogenesis of neutrophilic asthma. It should be noted that in 

addition to Th17 cells, other cell types including ICL3, bone-marrow-derived neutrophils, B 

cells, IL-17-producing CD8+ T cells, natural killer T cells, mucosal-associated invariant T 

cells, etc. also release IL-17A and IL-17F in response to different cytokines (reviewed by 

Hynes and Hinks)123. It is not yet clear which are the main sources of IL-17A and IL-17F 

secretion and what are their contributions to the pathogenesis of neutrophilic asthma.

CONTRIBUTION OF TH17 CELLS AND IL-17 CYTOKINES TO 

CORTICOSTEROID INSENSITIVITY IN SEVERE ASTHMA

Glucocorticoids, a class of corticosteroids, are currently the most effective treatment for 

asthma. The anti-inflammatory effects of glucocorticoids are mediated by their intracellular 

receptors (GRα) while the GRβ variant acts as a dominant negative inhibitor of GRα141. 

Glucocorticoids bind to GRα in the cytoplasm and the glucocorticoid/GRα complex 

translocates into the nucleus to repress pro-inflammatory genes and transactivate anti-

inflammatory genes, thus inhibiting activation, infiltration, and survival of inflammatory 

and epithelial cells, as well as the pro-inflammatory function of ASM cells142–145. 

Corticosteroid insensitivity can be inherited or acquired. GRα mutations were associated 

with insensitivity or hypersensitivity to glucocorticoids146,147. Reduced GRα expression148, 
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defective GRα nuclear translocation149, increased phosphorylation of GRα with impaired 

activity150 and increased expression of the dominant negative GRβ151 also play roles in the 

induction of corticosteroid insensitivity.

Corticosteroid-based drugs can effectively manage T2 inflammation via inducing apoptosis 

of Th2 cells and eosinophils and inhibiting T2 cytokine production. Thus, patients with 

allergic asthma generally respond well to corticosteroids, with improved lung function and 

reduced exacerbations. However, up to 10% of asthmatics respond poorly to corticosteroid-

based therapies, called corticosteroid-insensitive, -refractory or -resistant asthma. Patients 

with corticosteroid-insensitive asthma account for a large percentage of the overall costs 

for asthma worldwide. Their asthma is less stable and more difficult to control, and 

they are subject to higher morbidity and mortality152–155. There are many reasons why 

asthma patients fail to benefit from corticosteroid-based therapies155, including lack of 

adherence to prescribed therapy156,157. PGA manifests with no sputum eosinophilia or 

neutrophilia25 and inhaled corticosteroids have limited effects in patients with PGA27,158. 

Airway neutrophils also play an important role in mediating severe and corticosteroid-

insensitive asthma159–161. In fact, corticosteroids promote the apoptosis of eosinophils but 

inhibits neutrophil apoptosis, which may explain why increased neutrophils are associated 

with inhaled corticosteroid-treated severe asthma162–164.

Mounting experimental and clinical evidence supports a role of Th17 and IL-17 cytokines 

in corticosteroid-insensitive asthma. McKinley et al.165 first linked Th17 cells with 

corticosteroid-insensitive allergic airway disease in an animal model characterized by 

elevated neutrophil chemokines and growth factors as well as neutrophilic inflammation 

in the lung. Importantly, Th17-driven allergic airway disease was not abrogated by the 

corticosteroid treatments that were effective in inhibiting Th2-driven airway disease. 

Treatment with the corticosteroid drug dexamethasone significantly inhibited T2 cytokines 

but not IL-17 production in vitro165. The transfer of primed ovalbumin-specific Th2 

cells into mice induces a corticosteroid-sensitive allergic asthma, whereas the transfer 

of ovalbumin-specific Th17 cells induces a severe corticosteroid-insensitive asthma165. 

Furthermore, after exposure to antigen, mice overexpressing the transcription factor RORγt 

exhibited predominantly neutrophilic airway inflammation with enhanced lung expression 

of IL-17 and IL-22. The neutrophilic airway inflammation in RORγt-overexpressing mice 

was effectively suppressed by anti-IL-17 antibody, but not by dexamethasone166. In fact, 

dexamethasone was reported to enhance Th17 cell differentiation in vitro167 and IL-17 can 

synergize with dexamethasone to induce neutrophil-promoting cytokine colony-stimulating 

factor 3 (CSF3) in both ASM cells and fibroblasts, leading to corticosteroid insensitivity168. 

Other mechanisms for Th17 cell-mediated corticosteroid insensitivity in severe asthma have 

been proposed, including up-regulation of the expression of GRβ in peripheral mononuclear 

cells151 and increased expression of mitogen-activated protein kinase 1 (MEK1) in CD4+ T 

cells that inhibits GRα activity169,170. Human studies also suggest the involvement of Th17 

cells and IL-17 cytokines in patients with severe corticosteroid-insensitive asthma38,128,129. 

These findings demonstrated that Th17 cells and IL-17 are sufficient to promote many of 

the hallmark characteristics of neutrophilic asthma in vivo and that these responses are 

corticosteroid-insensitive. It should be noted that IL-17 produced by ILC3 may play a role in 

corticosteroid insensitivity associated with the obesity phenotype of asthma171.
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Interestingly, dual positive Th2/Th17 cells were found in the blood, tissue, and 

bronchoalveolar lavage fluid of subjects with the most severe form of asthma and who 

manifest corticosteroid insensitivity169,172,173. In fact, there has been a shift from viewing 

asthma as T2 vs non-T2 as a binary situation. For example, some patients with severe 

asthma have a mixed neutrophilic and eosinophilic inflammation in their sputum174. 

These patients typically have the most severe asthma symptoms and poor response to 

inhaled corticosteroids43,175–177. Israel and Reddel have postulated that IL-6 and IL-17 

may stimulate Th2 and Th17 cell responses in the airway, thus promoting both T2 and 

non-T2 inflammation12. Upon stimulation with IL-21, IL-1β, IL-6, and anti-IFN-γ, native 

T cells differentiate into dual-positive Th2-Th17 cells, leading to more severe asthma 

subtypes178. Deletion of IL-17 and RORγt genes or treatment with an RORγt inhibitor 

blocked both Th2 and Th17 cell responses, leading to a reduction of neutrophilic and 

eosinophilic inflammation in mice with allergic asthma179. Interestingly, inhibition of Th2 

cell cytokines augments Th17-dependent neutrophilia, whereas blockade of IL-17 augments 

Th2-stimulated eosinophilia in experimental allergic asthma180, suggesting that Th2 and 

Th17 cell responses co-exist in airways and are reciprocally regulated. Hence combined 

blockade of both T2 and non-T2 inflammation might be able to achieve better therapeutic 

benefits in controlling severe corticosteroid-insensitive asthma.

THERAPEUTIC IMPLICATIONS OF TARGETING TH17 CELL RESPONSES IN 

CORTICOSTEROID-INSENSITIVE ASTHMA

Because corticosteroid-insensitive neutrophilic asthma is associated with excessive Th17 

responses, inhibiting Th17 signaling might offer effective therapeutic options for 

corticosteroid-insensitive asthma. Potential therapeutic approaches include directly targeting 

Th17-related cytokines, cytokine receptors, and intracellular signaling pathways, as well as 

inhibiting Th17-specific transcription factors (Figure 2 and Table 1).

Blocking IL-17A and IL-17RA:

Blocking IL-17A by its monoclonal antibody was demonstrated to improve lung function 

in several experimental murine asthma models. Kudo et al.181 found that IL-17A blocking 

antibodies can attenuate the contractile response of smooth muscle cells in the airways. 

Manni et al.182 demonstrated that IL-17A contributes to AHR in an experimental model 

of corticosteroid-insensitive Th2/Th17 asthma. Camargo et al.183 showed that treatment 

with IL-17A antibody alleviated pulmonary inflammation, remodeling, and oxidative stress 

in an experimental model of lipopolysaccharide (LPS)-exacerbated asthma. However, two 

clinical trials of humanized anti-IL-17A monoclonal antibodies, secukinumab (AIN457) 

and CJM112 failed to improve asthmatic symptoms in patients with severe asthma184,185. 

IL-17 binds to receptor complexes that have IL-17RA as the common subunit. Brodalumab, 

also known as AMG-827, is a humanized monoclonal antibody that binds to IL-17RA, 

thereby blocking the receptor and the downstream signal pathways of IL-17A, IL-17F and 

other IL-17 isoforms. The efficacy and safety of brodalumab was evaluated in patients on 

inhaled corticosteroids with inadequately controlled moderate to severe asthma186. Although 

a nominally positive response was seen in a subgroup with bronchodilator reversibility, no 

difference was observed in Asthma Control Questionnaire (ACQ) scores between subjects 
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treated with brodalumab compared to placebo in the overall study population. Since the 

patients in this clinical trial were not selected for non-T2 asthma and the trial design 

may have precluded detection of benefit for these agents in patients with heterogeneous 

phenotypes, it is possible that subgroups of patients, particularly those with high numbers 

of sputum neutrophils or with a high degree of lung function reversibility would respond 

more favorably186–188. It should be noted that the US Food and Drug Administration issued 

a black box warning after six patients treated with brodalumab across four clinical trials 

committed suicide, but no causal relationship was identified. Nonetheless, the relative lack 

of efficacy in the initial asthma clinical trial and a questionable safety issue has resulted 

in discontinuation of brodalumab studies for the treatment of asthma. Thus, further clinical 

studies are needed to determine the efficacy of targeting IL-17/IL-17RA signaling with other 

IL-17/IL-17RA drugs in more precisely defined patient subsets and/or endpoint selection. 

Furthermore, therapy with IL17A/IL17RA antibodies may have failed because other Th17-

associated cytokines such as IL-22 also contribute to severe asthma independently from 

IL-17. Thus, a broader upstream approach that targets Th17 cells might be more effective 

than anti-IL-17/IL-17 receptor therapies115. In addition, it was reported that anti-IL-17A 

augmented Th2 cell responses and eosinophilia in experimental allergic asthma180. Thus, it 

may require combination therapies blocking both Th17 and Th2 cell responses to effectively 

control severe asthma179,180.

Blocking IL-6 and IL6R:

IL-6 is an important cytokine for the induction of Th17 cell differentiation, as well as 

a downstream target of IL-17A. In the presence of TGF-β, IL-6 drives naive T cells to 

differentiate into Th17 cells92,189,190. Th17 cells release more IL-6 to further promote 

Th17 cell differentiation191. Studies also showed that IL-6 induced expression of IL-21 that 

amplified an autocrine loop to induce more IL-21 and IL-23 receptor in naïve CD4+ T cells. 

Both IL-21 and IL-23 can induce IL-17 expression192. Chu et al.193 observed that increased 

sputum IL-6 was associated with mixed eosinophilic-neutrophilic bronchitis and impaired 

lung function in patients. An anti-IL-6 antibody reduced neutrophilic and eosinophilic 

cytokines/chemokines and alleviated airway inflammation in mice193. In addition, IL-6 

production was increased in IL-17A-induced corticosteroid-insensitive airway inflammation 

in an animal study of allergic airway inflammation, and both airway neutrophilia and AHR 

were effectively attenuated by treatment with an anti-IL6R antibody166. A more recent 

study showed that blockade of IL-6 signaling attenuates toluene diisocyanate-induced Th2/

Th17 responses and ameliorates corticosteroid-insensitive asthma in mice194. IL-6 may also 

play a significant role in subtypes of obese non-T2 asthma. Peters et al.195 found that 

patients with plasma IL-6-high asthma had worse lung function and asthma control. Blood 

neutrophils were increased in the plasma IL-6-high group, suggesting a role for systemic 

IL-6-mediated neutrophilic inflammation in mediating an “outside-in mechanism of lung 

dysfunction.” Conventional asthma research generally focuses on pathogenic factors that 

arise inside the lung (“inside out”) such as increases in airway inflammation. Peters’ work 

suggests that lung dysfunction can occur from pathogenesis outside the lung (“outside 

in”), such as the low-grade systemic inflammation that occurs during obesity. Indeed, a 

severe asthma research program 3 (SARP3) study of severe asthmatic patients demonstrated 

that obesity was associated with elevated plasma IL-6 levels and that plasma IL-6 levels 
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predicted asthma exacerbation risk independently of T2 biomarkers196. Furthermore, single 

nucleotide polymorphism (SNP) rs4129267 in the IL6R gene has been associated with an 

increased risk of asthma197 whereas the SNP rs2228145 is linked with reduced lung function 

in severe asthma198. In addition to acting on Th17 cells and neutrophils, IL-6 can also 

bind to soluble IL6R and causes IL-6 trans-signaling (IL-6TS) on airway epithelial cells199 

and ASM cells200, leading to impaired epithelial barrier function, airway inflammation and 

remodeling. These studies prompt consideration of treatment approaches for severe asthma 

via inhibiting cytokines associated with systemic inflammation (e.g., IL-6). In a preliminary 

report, two patients with severe persistent, non-atopic asthma were treated with tocilizumab, 

a humanized anti-IL6R monoclonal antibody, and both patients exhibited decreased Th2 and 

Th17 cell responses and clinical improvement201. In the PrecISE clinical study sponsored 

by the U.S. National Heart, Lung, and Blood Institute to investigate several treatments 

for severe asthma, the efficacy of the anti-IL-6 monoclonal antibody clazakizumab will be 

examined202.

Blocking IL-1β and its receptor (IL1R1):

IL-1β plays an important role in the pathogenesis of asthma203. Increased levels of IL-1β 
were detected in the airways or the sputum of patients with asthma204,205 and was associated 

with increased neutrophil counts in elder patients with more severe asthma206. IL-1β 
signaling was reported to enhance the phosphorylation of STAT3 by repressing SOCS3 

to favor human Th17 cell differentiation99. In the presence of IL-2 and TGF-β, IL-1β can 

also induce transdifferentiation of ILC2s into IL-17-secreting cells207. IL-1β is generated 

by the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain-

containing protein 3 (NLRP3) inflammasome, mainly in monocytes and macrophages. 

Neutrophilic airway inflammation, disease severity, and corticosteroid insensitivity in 

human asthma all correlate with NLRP3 and IL-1β expression208. Treatment with anti–

IL-1β neutralizing antibody, caspase-1 inhibitor Ac-YVAD-cho, and NLRP3 inhibitor 

MCC950 each suppressed IL-1β responses and corticosteroid insensitivity in experimental 

murine models of neutrophilic asthma208. Furthermore, the expression level of IL1R1 

strongly correlates with increased neutrophils in sputum and airflow limitation of asthmatic 

patients209 and LPS-induced neutrophilic airway inflammation in healthy volunteers was 

attenuated by the IL1R1 antagonist anakinra210. In addition, IL-1β can modulate AHR 

in asthma via regulation of ASM contraction and relaxation211,212. IL-1β signaling is 

also involved in airway remodeling through hypersecretion of mucus in asthma213. These 

findings highlight the important role of IL-1β in the pathogenesis of asthma via both 

airway inflammation and remodeling. In a randomized double-blind placebo-controlled trial, 

IL-1β blocking antibody canakinumab significantly reduced the late asthmatic response in 

patients with mild asthma214. In addition, targeting IL-1β for airway inflammation in asthma 

by anakinra was to be tested in clinical trials, but was suspended due to the COVID-19 

pandemic215.

Blocking the transcription factor RORγt:

RORs are members of the nuclear receptors, a superfamily of structurally conserved, 

ligand-regulated transcription factors216. Two isoforms of RORγ, RORγ1 and RORγ2 (or 

RORγt), have been identified. RORγ1 is ubiquitously expressed, whereas RORγt is highly 
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expressed in specific sub-populations of immune cells217. RORγt is the key transcription 

factor required for Th17 cell differentiation and for production of Th17 cell cytokines by 

innate and adaptive immune cells. TMP778 and TMP920, two inverse agonists of RORγt, 

were shown to potently suppress Th17-cell generation and IL-17 secretion by differentiated 

Th17 cells in vitro218. TMP778 also inhibited human Th17 signature gene expression in 
vitro as well as murine Th17-cell differentiation in vivo219,220. In addition, mice with 

deletion of RORγt gene or treatment with the RORγt inhibitor ursolic acid had diminished 

Th17 and Th2 cell responses, leading to reduced neutrophil and eosinophil numbers in the 

airway179. Interestingly, RORγt-deficient T cells were defective in differentiating into Th2 

cells but express a higher level of B-cell lymphoma 6 (BCL6) than wild-type T cells under 

Th2 cell differentiation conditions. BCL6 knockdown restored Th2 cell differentiation in 

RORγt-deficient T cells. BCL6 is known to suppress the differentiation of naive T cells 

into Th2 cells221,222 via inhibition of GATA-3 expression223 and BCL6-deficient mice 

exhibited a marked increase in Th2 cell responses224. Thus, RORγt blockade diminishes 

Th2 cell responses, at least in part, via upregulation of BCL6 in T cells179. Whitehead et 
al.225 recently reported that the orally available selective RORγt inverse agonist VTP-938 

not only attenuates Th17 cell development and neutrophilic inflammation of the airway, 

but also diminishes AHR in an environmentally relevant house dust mite extract–mediated 

model of asthma. Interestingly, a recent animal study suggests that RORγt inhibitors can 

block both Th17-associated IL-17 and IL-22, which might be more effective than anti-IL-17 

alone to treat severe asthma115. Furthermore, JNJ-61803534, a potent and selective RORγt 

inhibitor, exhibited an acceptable biosafety profile in both preclinical and clinical trials226. 

However, genetic loss of RORγt contributes to chronic fungal infections in humans227 and 

RORγt blockade with multiple agents has led to thymic lymphomas in mice228. Thus, 

although blockade of RORγt with small molecule agents might provide a novel strategy 

in the management of Th17-dependent neutrophilic asthma, further studies are needed to 

evaluate the potential on-target toxicities associated with chronic usage of these agents 

before considering therapeutic use for severe asthma in human subjects.

Blocking RhoA/ROCK signaling pathways:

Increased activation of Rho-associated kinase (ROCK) was observed in asthmatic patients, 

and this has been suggested as a potential therapeutic target for asthma229,230. This signaling 

pathway is the key regulator of T-cell maturation, activation and differentiation231. Ablation 

of RhoA or treatment with Y16, a specific RhoA inhibitor impaired Th17 cell differentiation 

via downregulation of STAT3 and RORγt, and alleviated house dust mite-triggered allergic 

airway inflammation in mice232. ROCK, a serine/threonine kinase, is one of the main 

downstream signaling molecules of RhoA. There are two highly homologous isoforms: 

ROCK1 and ROCK2233. Zanin-Zhorov et al.234 reported that ROCK2 controls IL-17A 

secretion in human T-cells via the regulation of STAT3 and RORγt. KD025, a selective 

ROCK2 inhibitor, modulates inflammation by decreasing STAT3 activation and increasing 

the suppressive function of Tregs. Treatment of human T cells with KD025 induced a 

beneficial shift in the Th17/Treg balance234. It should be noted that the RhoA/ROCK 

signaling pathways also play important roles in ASM contraction, AHR, and airway 

remodeling235–237. Thus RhoA/ROCK antagonists with pleiotropic effects on numerous 
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inflammatory and airway cell signaling pathways could provide novel therapeutic benefit in 

corticosteroid-insensitive asthma.

CONCLUSION

Severe, corticosteroid-insensitive asthma is a significant clinical problem, adversely 

affecting quality of life, increasing healthcare costs, and lacking good therapeutic options. 

Both human and animal studies have demonstrated that excessive Th17 responses are 

likely a key factor in this type of corticosteroid-insensitive, neutrophilic asthma. Therefore, 

targeting Th17-associated cytokines may provide therapeutic approaches to reduce excessive 

Th17 signaling that could offer advantages over classic therapies, such as corticosteroids, 

for patients with severe asthma. However, Th17 cells are not homogenous, but rather 

consist of both non-pathogenic and pathogenic cell populations106,238–241. Therefore, the 

consequences of long-term inhibition of the Th17 pathway must be carefully evaluated 

to determine the risk versus benefit in blocking this pathway. Although a few trials have 

reported varying data targeting Th17 cell responses and Th17 related cytokines, there 

remain multiple challenges to identify, develop and implement the “ideal” Th17-targeted 

interventional strategy with respect to safety and the treatment of corticosteroid-insensitive 

neutrophilic asthma.
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Abbreviations used:

AHR airway hyperresponsiveness

AQC Asthma Quality Control

ASM airway smooth muscle

BATF basic leucine zipper ATF-like transcription factor

BCL6 B-cell lymphoma 6

BT bronchial thermoplasty

CSF3 colony-stimulating factor 3

FOXP3 forkhead box P3

GATA3 GATA binding protein 3

GC goblet cells

GM-CSF granulocyte-macrophage colony-stimulating factor

GR glucocorticoid receptor

IL1R1 Interleukin 1 receptor, type I
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IL6R interleukin 6 receptor

IL-6TS IL-6 trans-signaling

IL-17 interleukin 17

IL-17RA IL-17 receptor A

IL-17RC IL-17 receptor C

ILC2 innate lymphoid type 2 cells

ILC3 innate lymphoid type 3 cells

IRF4 interferon regulatory factor 4

MMP-9 matrix metalloprotease-9

NLRP3 the nucleotide-binding oligomerization domain, leucine-rich repeat, 

and pyrin domain-containing protein 3

PBMCs peripheral blood mononuclear cells

PGA paucigranulocytic asthma

ROCK Rho-associated kinase

RORγt retinoic acid–related orphan receptor-γt

RUNX1 runt-related transcription factor 1

SARP3 severe asthma research program 3

SNP single nucleotide polymorphism

SOCS3 suppressor of cytokine signaling 3

STAT3 signal transducer and activator of transcription 3

TGF-β transforming growth factor β

Th2 T helper 2 cells

Th17 T helper 17 cells

Tregs regulatory T-cells

T2 type 2

TSLP thymic stromal lymphopoietin
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FIG 1. 
T2 and non-T2 inflammation in corticosteroid-sensitive and -insensitive asthma. Airway 

epithelia stimuli result in the production of alarmins, thymic stromal lymphopoietin 

(TSLP), IL-33, and IL-25 that stimulate differentiation of innate lymphoid type 2 cells 

(ILC2). Dendritic cells (DC) induce the differentiation of Th2 cells. ILC2 and Th2 cells 

produce the T2 cytokines IL-4, IL-5, and IL-13 via GATA binding protein 3 (GATA3), 

contributing to the development of corticosteroid-sensitive asthma. Late-onset eosinophilic 

asthmatics can have persistent airway eosinophilia despite corticosteroid therapy (dashed 

line). Corticosteroid-insensitive asthma results from exposure to pathogens, irritants, and 

smoking triggering release of TGF-β, IL-6, IL-1β, and IL-23 that stimulate differentiation 

of Th17 cells via transcription factors RORγt and STAT3. Th17 cells produce cytokines 

IL-17A, IL-17F, IL-21, and IL-22 that stimulate the production of neutrophilic chemokines 

(e.g., IL-8 and GM-CSF). Innate lymphoid type 3 cells (ILC3) also produce IL-17 and play 

roles in obesity-associated, corticosteroid-insensitive asthma. GC, goblet cells; GM-CSF, 

granulocyte-macrophage colony-stimulating factor. Created with BioRender.com.
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FIG 2. 
Therapeutic agents targeting Th17 cell responses. TGF-β, IL-1β and IL-6 stimulate 

differentiation of naïve T cells into the Th17 lineage. Full differentiation of Th17 cells 

requires the cooperative action of RORγt and STAT3. Th17 cells produce the IL-17 family 

of cytokines including IL-17A and IL-17F, which stimulate the production and release of 

neutrophilic chemokines (e.g., IL-8 and GM-CSF) in airway epithelial cells and fibroblasts 

via its receptor IL-17RA and IL-1RC, leading to recruitment of neutrophils into the airways. 

GM-CSF, granulocyte-macrophage colony-stimulating factor; IL6R, IL-6 receptor; IL1R1, 

IL-1 receptor; IL-17RA, IL-17 receptor A; IL-17RC, IL-17 receptor C; RORγt, retinoic 

acid receptor-related orphan receptor-γt; ROCK2, Rho-associated kinase 2. Created with 

BioRender.com.
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TABLE 1.

Emerging therapies targeting Th17 cell responses in corticosteroid-insensitive asthma

Target Reagent Type of drug System Reference

IL-17A Anti-IL17A mAb Mice 183

Secukinumab/CJM112 mAb Human 184, 185

IL-17RA Brodalumab mAb Human 186

IL-6 MP5-20F3 mAb Mice 193

IL-6R Atlizumab mAb Mice 166

Tocilizumab mAb Human 201

Clazakizumab mAb Human 202

IL-1β Canakinumab mAb Human 214

IL-1R1 Anakinra Antagonist Human 210, 215

RORγt TMP778/920 Inverse agonists Cells 218–220

Ursolic acid Inhibitor Mice 179

VTP-938 Inverse agonist Mice 225

BIX119 Inhibitor Mice 115

JNJ-61803534 Inhibitor Mice and human 226

RhoA Y16 Inhibitor Mice 232

ROCK2 KD025 Inhibitor Mice 234
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