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Abstract

Why has computational psychiatry yet to influence routine clinical practice? One reason may 

be that it has neglected context and temporal dynamics in the models of certain mental health 

problems. We develop three heuristics for estimating whether time and context are important to a 

mental health problem: Is it characterized by a core neurobiological mechanism? Does it follow 

a straightforward natural trajectory? And is intentional mental content peripheral to the problem? 

For many problems the answers are no, suggesting that modeling time and context is critical. 

We review computational psychiatry advances toward this end, including modeling state variation, 

using domain-specific stimuli, and interpreting differences in context. We discuss complementary 

network and complex systems approaches. Novel methods and unification with adjacent fields 

may inspire a new generation of computational psychiatry.
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1. INTRODUCTION

Computational psychiatry is a burgeoning research field that applies methods, formalisms, 

and theories from the computational cognitive neurosciences to mental health. The last 

decade has seen an explosion of research in both theory-based (formal accounts of 

mental health) and data-driven (predictive modeling using many variables) approaches. 

Attesting to the field’s promise, several studies have found that predictions of diagnostic 

categories or symptoms could be improved by including latent parameters estimated through 

computational models fit to brain or behavioral data (reviewed in Huys et al. 2021, 

Maia & Frank 2011, Wang & Krystal 2014). Here we focus on emerging challenges as 

computational psychiatry matures (Browning et al. 2020, Williams 2016): How can the field 

help us understand how mental health problems differ from one another? What modeling 
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strategies are needed for different kinds of problems? And what methods will be helpful 

for modeling temporal dynamics and the social and environmental contexts in which mental 

health problems emerge?

The allure of computational psychiatry is that it is organized around theories such as 

reinforcement learning, dynamical systems, neural networks, Bayesian decision making, and 

sequential sampling. These theories span many fields, including mathematics, computer 

science, and computational cognitive neuroscience. Thus, unlike many psychological 

theories with shallow roots in basic science (Haslbeck et al. 2021), computational 

psychiatry theories build from deep terrain, ranging from mathematical theories to biological 

sciences. Computational psychiatry offers principled techniques to link processes across 

levels of analysis (see Eronen 2019). In particular, it provides distinct vantage points 

on neurocomputational functions, from rational analysis of the problem being solved to 

algorithmic details of specific solutions to plausible biological implementations (Huys et al. 

2016, Maia & Frank 2011, Wang & Krystal 2014).

Despite its promise, computational psychiatry has yet had little influence on clinical practice 

(Rutledge et al. 2019). A running joke in the field is that the number of reviews hyping the 

field’s promise has outpaced its empirical results. With the benefit of retrospect, however, 

it was perhaps unrealistic to predict dramatic and near-immediate progress on a topic as 

complex as mental health. Early disappointment may have come from overoptimism rather 

than fundamental limitations of the field. Computational psychiatry also has had difficulty 

recognizing how different mental health problems are from one another. As such, it may 

have been slow to adopt sufficiently distinct modeling strategies for problems that drastically 

differ. We propose that, to accelerate progress, the next generation of computational 

psychiatry research will need to incorporate modeling strategies suited to even the most 

complex problems (see also Gillan & Rutledge 2021, Moutoussis et al. 2017).

Neurocomputational process:

an input-output transformation and the neural machinery that effects it

A key challenge in early computational psychiatry has been the field’s reliance on diagnostic 

systems that are widely acknowledged to be flawed, such as the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5; Am. Psychiatr. Assoc. 2013). Many phenotypes 

are poor—they lack reliability and validity and are highly heterogeneous—and as such 

they permit limited conclusions about mechanisms (i.e., “garbage in, garbage out”). Yet, 

much early computational psychiatry research (including our own) recruited healthy controls 

and compared them to individuals with one mental health disorder (or severity cutoff ) 

as conceived by the DSM. Diagnostic systems delineate static and categorically distinct 

mental health problems, yet many problems are best thought of as mixtures of dynamically 

interacting and dimensionally varying processes (Borsboom 2008, Gillan et al. 2017, Kotov 

et al. 2017, Kozak & Cuthbert 2016, Nelson et al. 2017). Dimensional and transdiagnostic 

approaches have thus been increasingly utilized in computational psychiatry (Gillan & Seow 

2020, Gillan et al. 2017, Gueguen et al. 2021, Wiecki et al. 2015). In psychopathology 

research broadly intended, three prominent alternatives to sharp diagnostic delineation 
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have been recently developed. First, the Research Domain Criteria (RDoC) assumes 

that mental health symptoms arise from mixtures of individual differences in cognitive 

and emotional processes (Kozak & Cuthbert 2016). Second, the Hierarchical Taxonomy 

of Psychopathology (HiTOP) uses factor analytic methods to investigate symptom co-

occurrence patterns across a broad, transdiagnostic space of mental health problems (Kotov 

et al. 2017). Third, the network approach to psychopathology views mental health problems 

as dynamic systems of elements that interact within and across diagnostic boundaries 

(Borsboom 2008, Fried & Cramer 2017).

Although these three approaches differ in many respects, they concur that it is unwise to 

attempt to cleanly distinguish individuals with one mental health problem from individuals 

with another mental health problem at a single point in time. This critique comes down 

to the perils of essentialist thinking about mental health problems. Essentialist thinking 

focuses attention away from the superficial features of a phenomenon and toward an internal 

mechanism or property assumed to give rise to it (Gelman 2004). This is unproblematic 

if mental health problems are indeed characterized by a “single, well-defined etiological 

agent” (Kendler et al. 2011, p. 1144) that is both necessary and sufficient to distinguish 

individuals with and without the problem (as if it were an infectious disease). If this 

were the case, grouping 500 patients diagnosed with major depressive disorder (MDD) 

into the same category and investigating their biological markers compared to those of a 

healthy control group would be a sound scientific method. However, many mental health 

problems appear to be best understood as complex systems—i.e., interactions between 

neurocomputational processes and socioenvironmental contexts unfolding over time (Boyd 

1991, Fried & Cramer 2017, Kendler et al. 2011). These may differ greatly among the 

500 MDD patients just described (Cai et al. 2020). The utility of essentialist thinking thus 

depends on the nature of the problem (Brick et al. 2021, McNally 2021).

For simplicity, we will hereafter refer to disorders as varying along a spectrum of 

essentiality, from high to low. Critically, this term is only meant as a shorthand for the utility 

of essentialist thinking (i.e., the psychological process; Gelman 2004) about a problem. It is 

not a claim that some or all mental health problems have essences, for instance. In Section 

2, we suggest three heuristics for estimating the essentiality of a mental health problem. 

We argue that many mental health problems may have modest or fairly low essentiality. 

Essentialist thinking is not helpful for such problems because interdependent, temporally 

extended interactions partly constitute them (McNally 2021), and essentialist thinking 

obfuscates the importance of these interactions. In Section 3 we review developments in 

computational psychiatry and adjacent fields that move us toward capturing the dynamic 

interactions of even medium- and low-essentiality problems by modeling time and context. 

Note that throughout we focus on examples rather than offering a comprehensive review due 

to citation limitations.
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2. THREE HEURISTICS FOR ESTIMATING THE ESSENTIALITY OF A 

MENTAL HEALTH PROBLEM

This section develops three heuristics for estimating the essentiality of mental health 

problems. Figure 1 shows estimates of essentiality for some well-known mental disorders. 

Note that an estimate is just an estimate; it is subject to change as more is learned. Moreover, 

each heuristic alone provides only limited information about a disorder’s essentiality; the 

heuristics should be combined to triangulate on an estimate. Figure 2 depicts the three 

heuristics.

A challenge in estimating essentiality is that poor phenotyping can make a problem 

appear to have lower essentiality than it truly does (e.g., due to lack of understanding 

or misclassification). A well-established aim of computational psychiatry, closely aligned 

with initiatives such as the RDoC, is to improve phenotypic precision (Redish & Gordon 

2016). Computational psychiatry offers powerful tools to build bridges between phenotypes 

defined by the current diagnostic systems and an emerging neurocomputational ontology 

(Poldrack & Yarkoni 2016). Ultimately, this may allow the current system of symptom-

level descriptions to be partly reformulated as mixtures of neurocomputational processes 

(e.g., Drysdale et al. 2017) that have been refined through a combination of measurement 

innovation and theory (e.g., by employing computational modeling strategies and process-

pure tasks that can reveal the differences underlying superficially similar symptoms and 

behaviors).

Yet, even if we could perfectly phenotype problems at any one point in time, we argue 

that there would still be a spectrum of essentiality. This is because the variability that we 

see among mental health problems is not due only to variability in how well we currently 

understand them (i.e., in our current knowledge of the underlying processes and our way of 

clustering these processes). The problems themselves can also have what we call meaningful 

heterogeneity. This is heterogeneity that arises due to the interdependence of the elements 

that constitute the problem, which makes it difficult to classify them at any one point in 

time and out of context (Lydon-Staley et al. 2021, Nelson et al. 2017). The three heuristics 

described in this section are meant to illustrate the indicators and practical consequences of 

meaningful heterogeneity through a series of examples.

In particular, we consider Parkinson’s disease, schizophrenia, and MDD as running 

examples of high-, moderate-, and low-essentiality disorders, respectively. To situate this 

discussion, we draw on the neurocomputational functions of corticostriatal circuitry and 

dopamine (DA) in decision making, motivation, and reinforcement learning and on how 

dysfunctions or alterations in this circuitry relate to mental health (Maia & Frank 2011). We 

introduce each section with one or two questions to frame the discussion.

2.1. Neurobiological Mechanism Heuristic

Does a single, well-specified neurobiological mechanism cause the mental health problem? 

Would repairing it resolve the problem?
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High-essentiality problems are caused by impairment of a specific, core neurobiological 

mechanism, beginning in a well-defined temporal window and leading to the disorder’s 

primary signs and symptoms. Note that a single neurobiological mechanism can lead to 

more than one neurocomputational dysfunction (see Section 2.1.1 and the sidebar titled 

What Does Dysfunction Mean in a Mental Health Context?). The paradigmatic example of 

a clear biological etiology and resulting neurobiological impairment is general paresis of 

the insane, today known as late-stage syphilis. In the early twentieth century, this disorder 

was famously discovered to be caused by the spiral-shaped bacterium Treponema pallidum, 

which produces frontotemporal atrophy. This raised the prospect that simple etiologies 

would soon be found to underlie many mental health problems (Kendler 2005). More than a 

century later, however, this appears quite unlikely; as Kendler (2005, p. 433) has noted, “we 

can expect no more ‘spirochete-like’ discoveries.” Although most mental health problems 

are more etiologically complex than general paresis of the insane, there still appears to be 

substantial variation in the extent to which they are characterized by a core neurobiological 

mechanism.

2.1.1. Parkinson’s disease.—Parkinson’s disease is a relatively high-essentiality 

disorder that involves the progressive denervation of DA neurons of the substantia nigra, 

preferentially targeting dorsal striatum of the basal ganglia (BG) early in the disease 

(Cools et al. 2001). In computational models, a healthy dynamic striatal DA range is 

required for adaptive action selection and reinforcement learning. Chronic DA depletion in 

Parkinson’s disease leads to a bias toward learning more from negative than from positive 

reward prediction errors (RPEs; Wiecki & Frank 2010). DA medications reverse these 

biases by restricting DA levels to an artificially high range, preventing the DA “dips” that 

normally accompany negative RPEs, as captured by computational modeling (Frank 2005). 

Confirming model predictions, relative to healthy controls, unmedicated Parkinson’s disease 

patients showed impaired learning from positive RPEs but relatively enhanced learning 

from negative RPEs; medications reversed this bias, impairing learning from negative RPEs 

(Frank et al. 2004). This pattern may explain some of the adverse effects of DA medications, 

such as impulsivity, and has been replicated at least 15 times (some of which are reviewed in 

Collins & Frank 2014).

Other Parkinson’s disease sequelae arise as a consequence of this core pathology. This 

pattern is common to many high-essentiality problems: A core neurobiological mechanism 

can lead to multiple neurocomputational dysfunctions. In Parkinson’s disease, dopamine 

depletion affects not only the motor striatal circuits but also those interacting with the 

prefrontal cortex (PFC). Accordingly, in the computational models, this mechanism alters 

gating not only of motor actions but also of cognitive ones, such as the entrance of 

cortical content into working memory. Empirical work confirms that there are parallels 

in how motor actions and working memory content are gated, and that these are related 

to striatal DA mechanisms in Parkinson’s disease (Salmi et al. 2020, Wiecki & Frank 

2010). Within a given corticostriatal circuit, DA depletion also induces hyperactivity of the 

subthalamic nucleus (STN). According to the computational model, this hyperactivity leads 

to elevated decision thresholds for initiating actions, which is separate from the effect of 

DA on weighting costs versus benefits (Frank et al. 2007). Indeed, deep brain stimulation 
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of the STN reduces the decision threshold and partially remediates motor deficits, but it 

can accordingly lead to a distinct sort of impulsivity, preventing patients from adaptively 

elevating the decision threshold when needed for cognitive control (Cavanagh et al. 2011, 

Frank et al. 2015, Herz et al. 2016). Thus, the same computational model ties together 

several cognitive, motivational, and motor sequelae of Parkinson’s disease resulting from a 

core neurobiological mechanism: DA denervation in the BG. The model therefore suggests 

how varying rates of dysfunction in these pathways can help to explain Parkinson’s disease 

subtypes, such as those where gait freezing predominates (Matar et al. 2019).

2.1.2. Schizophrenia.—Schizophrenia is a middle-essentiality problem in which DA 

has long been implicated (McCutcheon et al. 2020). Indeed, many of the disorder’s 

positive symptoms can be accounted for by spontaneous striatal DA fluctuations that 

assign meaning to irrelevant events (defined as aberrant salience; Kapur 2003), and many 

negative symptoms can be explained by weaker adaptive DA responding to motivationally 

significant events (Gold et al. 2015, Maia & Frank 2017). Yet, it is clear that dysregulated 

striatal signals alone are an insufficient account of schizophrenia; much evidence also 

implicates PFC dysfunction that leads to context-inappropriate behavior (Cohen & Servan-

Schreiber 1992). In a formal model of the complementary contributions of BG and PFC, an 

extended neural network includes PFC layers that maintain stimulus-outcome associations in 

working memory “attractor states”; these afford specific representations about the expected 

values of stimuli and actions as well as rapid adjustment to recent outcomes (Frank & 

Claus 2006). Experiments disentangling these contributions with quantitative modeling 

revealed that schizophrenia patients mostly struggled with PFC-like computations (e.g., 

reduced contributions of working memory and expected value, reduced top-down biasing of 

learning), with relatively spared incremental reinforcement learning from RPEs (e.g., Collins 

et al. 2017, Geana et al. 2021, Gold et al. 2012). This conclusion is also supported by 

neuroimaging (Dowd et al. 2016) and is consistent with other dynamical systems models of 

deficient attractor states in schizophrenia (e.g., Durstewitz & Seamans 2008).

2.1.3. Depression.—MDD is a relatively low-essentiality problem in which a wide 

range of neurocomputational differences have been noted, including alterations in reward 

processing and cognitive control tasks, experience of more negative emotions, and proneness 

to self-referential, ruminative thinking (Goldstein & Klein 2014, Kaiser et al. 2015, Keren 

et al. 2018, Snyder 2013). Yet, in contrast to Parkinson’s disease, where there is a focal 

pathological aberration of midbrain DA neurons, the processes implicated in MDD develop 

over a long time and in close interaction with one another. Depression also constitutes a 

heterogeneous phenotype (Fried & Nesse 2015): Differences documented at the group level 

are not reliably present among individual patients (e.g., Webb et al. 2016).

Critically, it is unclear which observed alterations in MDD should be thought of as 

dysfunctional (as opposed to adaptive) in light of other alterations and of social and 

environmental factors. For example, rumination has been consistently associated with 

depression (reviewed in Nolen-Hoeksema et al. 2008). Neuroimaging studies confirm altered 

activity patterns in depression in many areas implicated in self-referential processing and 

attentional control (Kaiser et al. 2015). These patterns are sometimes interpreted as aberrant, 
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yet it is unclear what distinguishes maladaptive from adaptive repetitive thinking about 

oneself (but see Watkins 2008 for one delineation). Intuitively, intense and protracted 

thinking can be important after a serious setback to one’s life plans. Stressful life events tend 

to precipitate MDD (Kendler et al. 2000); hence, it is unclear where to mark the boundary 

between dysfunctional thinking (Dayan & Huys 2008) and constructive thinking that helps 

to resolve problems, facilitate recovery, and elicit support (Andrews & Thomson 2009). 

Similarly, depressed individuals on average show performance decrements in cognitive 

control–demanding tasks (Snyder 2013). Yet, operating from a computational perspective 

on cognitive control allocation, Grahek and colleagues (2019) have emphasized that merely 

observing a difference in a control-demanding task is uninformative about whether the 

difference emanates from dysfunction per se or from learned control-allocation decisions. 

For example, control may be allocated to self-directed mentation if such thinking is valued 

(see also Agrawal et al. 2020, Andrews & Thomson 2009), and decreased control could be 

rationally learned from action-outcome statistics (Lieder et al. 2013, Shenhav et al. 2013). 

To the experimenter’s eye, these learned differences—products of a properly functioning 

control system—would (typically) lead to a performance pattern indistinguishable from 

cognitive control dysfunction (Grahek et al. 2019).

In sum, research points to a relatively specific core dysfunction in Parkinson’s disease, 

whereas schizophrenia arises from a more complicated interaction between striatal and PFC 

dysfunction and other interrelated neurocomputational processes (reviewed in Valton et al. 

2017). MDD involves an even more complicated set of alterations, many of which are 

difficult to interpret out of context (e.g., whether the alteration helps or harms in coping with 

recent life stress).

2.2. Variable Trajectory Heuristic

Would the problem manifest in the same way irrespective of neurocomputational and social 

and environmental context?

High-essentiality problems follow a stereotyped natural course (absent intervention), 

whereas low-essentiality problems involve the contingent interactions of neurocomputational 

and social and environmental processes over time. This makes it difficult to predict the 

specific trajectory of such problems (Henry et al. 2020). This heuristic thus concerns a 

continuum along which problems fall: from following an ordered and linear progression to 

comprising interacting elements that lead to ramifying trajectories over time.

At the heart of this heuristic is the degree of multifinality—that is, the extent to which the 

same predisposing constellation of factors leads to divergent outcomes (Cicchetti & Rogosch 

1996). For instance, a bias to attend to negative information has been implicated as a risk 

factor for various internalizing disorders, yet it is unclear why one individual develops 

obsessive-compulsive disorder whereas another develops MDD. One reason multifinal 

problems are challenging to model is that the causes of mental unhealth appear at different 

causal distances from the acute onset of the problem. Heuristically, these can be classified 

into distal versus proximal factors (i.e., things that happen to people, such as having 

certain genes or having experienced child abuse, versus things that vary over time within 

individuals, such as one’s current propensity to ruminate or tolerance for ambiguity) and 
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moderators that determine exactly how a problem unfolds (e.g., a problematic behavior 

crystallizing into a strong habit; Nolen-Hoeksema & Watkins 2011). In lower-essentiality 

problems, the dynamic interrelations between these elements, which are operative at 

different time scales, partly constitute the problem itself (McNally 2021). For instance, 

in MDD, processes such as negative schemas, rumination, cognitive control differences, 

interpersonal stress, and a conflict-laden work environment can mutually reinforce each 

other (Fried & Cramer 2017, Kendler et al. 2011).

In contrast, for higher-essentiality problems, there is a more direct path from distal 

risk factors to core neurobiological mechanism, concomitant dysfunction(s), and resulting 

symptoms. For instance, in contrast to many mental health problems, single-gene mutations 

confer strong risk for Parkinson’s disease (though note that various genes leading to 

somewhat different etiologies are implicated, hence Parkinson’s disease may be further 

subtyped eventually; Weiner 2008). The hallmark of Parkinson’s disease is denervation of 

DA neurons, leading to well-characterized problems that follow a fairly ordered progression 

over time. It is important to note that even this relatively high-essentiality disorder is 

dependent on the social milieu and environment. This follows from the aforementioned 

findings that DA denervation in Parkinson’s disease leads to exaggerated learning from 

negative outcomes (in the unmedicated state; Frank 2005). In addition to having direct 

detrimental effects on motor performance, this denervation can induce progressive aberrant 

learning that amplifies symptom progression in a context-dependent fashion (Beeler et al. 

2012). It is noteworthy that some degree of social and environmental dependence is present 

even toward the farthest end of the essentiality spectrum, such as in Huntington’s disease, 

which has a single genetic cause but for which it is nonetheless unclear when symptoms will 

manifest (Wiecki et al. 2016).

In schizophrenia, there appears to be a more temporally extended and interactive pathway 

to disorder development. Schizophrenia involves distal risk factors, including a complex 

suite of genetic risk factors that are thought to be at least partly responsible for cognitive 

impairments that become evident over childhood and adolescence (McCutcheon et al. 2020). 

Stress caused by difficulties in functioning due to these impairments, and compounding 

factors such as childhood abuse, familial stress, and social marginalization (Egerton et al. 

2016), are thought to alter the function of the striatal DA system by adulthood (McCutcheon 

et al. 2020). As noted, altered striatal DA signaling may serve to imbue irrelevant events 

with salience (via spontaneous firing) and to prevent appropriate responding to relevant 

events (via lower adaptive firing; Maia & Frank 2017). Disorganized and inappropriate 

responding resulting from these dysfunctions may in turn promote social ostracism and fuel 

the development of idiosyncratic beliefs, such as negative views about oneself and one’s 

abilities, leading to emotional symptoms and further functional impairment (Perivoliotis et 

al. 2009).

MDD (and other internalizing disorders with which it is highly comorbid) appear to show 

an intricate interdependency with the social and environmental context and to be highly 

dependent on the formation of specific beliefs. Strikingly, the genetic correlation between 

MDD and generalized anxiety disorder (GAD) has been estimated at 1 in women (and 

0.74 in men), implying that nongenetic (e.g., socioenvironmental) factors play a crucial 
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role in determining the unique symptoms of these problems (Kendler et al. 2007). Indeed, 

there appears to be some specificity in the relationship between life stress experienced and 

resulting symptoms, with humiliating events showing a stronger relationship with MDD and 

danger showing a stronger relationship with GAD (although loss is comparably associated 

with both and with mixed presentations; Kendler et al. 2003).

Hammen (2005) has emphasized that stressful life events include not only independent 

stressors (e.g., losing one’s spouse) but also dependent stressors (events in which 

individuals play a role, e.g., fighting with one’s spouse). This suggests a transaction 

between depression risk factors and stress-generating behavior in challenging situations. 

For instance, rumination and worry among individuals prone to MDD and GAD may disrupt 

reinforcement learning about external contingencies (Hitchcock et al. 2021, Whitmer et al. 

2012). Because rumination involves accessing negative memories within a negative affective 

context, it may also make negative memories more accessible in the future (e.g., Cohen 

& Kahana 2020, Van Vugt et al. 2012). Hence, rumination may simultaneously increase 

the future availability of negative thoughts and decrease the chance of adaptively behaving 

in similar (external) situations in the future (see Hitchcock et al. 2021 for discussion). 

Depending on what outcomes this leads to, different symptoms could result. For instance, 

an individual who experiences substantial humiliation may develop depression symptoms, 

whereas someone who finds themselves in ensnaring or dangerous situations could develop 

general anxiety symptoms (Kendler et al. 2003). This latter possibility may be especially 

likely if the individual becomes pessimistic about their ability to act safely in general 

(Zorowitz et al. 2020). Longitudinal investigation confirms that there is a complex interplay 

between the tendency to ruminate, impaired performance in control-demanding activities, 

dependent stress generation, and subsequent depression and anxiety symptoms (Snyder & 

Hankin 2016). As we discuss in Section 3, we think these complex interactions imply that 

time and context must be more fully incorporated into computational psychiatry models if 

we are to predict and model precisely problems such as MDD and GAD.

2.3. Relevance of Intentional Content Heuristic

Is mental content about something (such as beliefs and values) critical to the problem? Is 

intervening on such content an important lever to intervene on in the problem?

Mental health problems vary in the importance of intentional content: content that is 

about something, such as a belief about oneself, the significance attributed to a personally 

meaningful event, or a value about how one ought to live. This heuristic thus concerns 

the extent to which such content is central or peripheral to a mental health problem. 

For example, consider Parkinson’s disease and MDD. A Parkinson’s disease patient will 

experience substantial functional and occupational impairment as the disorder progresses, 

which may lead to negative views about themselves. Changing these beliefs may assist 

in this person’s ability to cope, but it will not fix the root problem: midbrain DA 

denervation. In contrast, negative views about oneself are arguably core to MDD; they 

partly constitute the problem (Kendler et al. 2011). Evidence-based psychotherapeutic 

interventions specifically target such negative schemata and can lead to considerable 

improvement.
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As another example, consider a soldier who unintentionally killed a civilian in combat 

(see Litz et al. 2009). Trauma-informed guilt reduction (TrIGR) psychotherapy guides 

clients who have incurred guilt from these kinds of experiences to reinstate the event’s 

complete context: distinguishing the knowledge they had at the time from that which they 

accrued later; recalling which actions were actually available then (rather than which actions 

they wish had been available); and identifying their specific responsibility (which typically 

reveals that their actions were embedded in a complex causal chain). Elaborating the context 

of such an experience with a psychotherapist may not bring full relief, but it can help to 

move a client from seeing themselves as deserving of unrelenting and lifelong shame toward 

living consistently with their values now (Norman et al. 2014).

An individual who has experienced an event or set of events that challenged their values 

and moral sense (sometimes referred to as moral injury) may report mental health symptoms 

(e.g., low mood, lost motivation, shame and guilt; Litz et al. 2009). Finding the best lever 

(Redish & Gordon 2016, p. 19) for intervening on these symptoms would probably require 

understanding the injurious memory and the beliefs that have developed around it; this 

would seem especially plausible if dialogue (via TrIGR, for example) improved the person’s 

symptoms. Of note, such an intervention undoubtedly would change memory and judgment 

engrams distributed through the person’s brain (and, eventually, larger-scale neural circuits). 

Yet, there is no reason to think that the specific details of the neural instantiation of these 

engrams would be especially interesting. A more useful level of analysis for understanding 

this person’s difficulties is at the level of their specific memories, judgments, and beliefs 

(Eronen 2019, Kendler 2005). By analogy, if I want to convince someone that I have a 

blue bandanna in my closet, I will almost assuredly have more success if I tell them as 

much directly rather than if I try to manipulate their brain. Similarly, when the causal loci 

of a mental health problem involve specific intentional mental content, intervening on such 

content (Eronen 2020b) may be the most direct route to effecting change.

A perhaps underappreciated point in computational psychiatry is that computational theories 

can inform clinical principles relevant to intervening on intentional content. For instance, 

inverse-planning models formalize theory-of-mind inferences about an agent’s goals and 

objectives from their actions in situations (Baker et al. 2017); potentially, such models 

could elucidate how one draws inferences about one’s own actions (see Gillan et al. 2017 

for a similar proposal). Understanding the computational costs of different action-selection 

strategies can help to explain how factors such as time pressure and proximity to threat 

mandate the use of fundamentally different ways of responding (Mobbs et al. 2020). This 

could help to explain why, when they are under pressure, people act in ways that are 

fundamentally different from the values they espouse when they have more time to reflect. 

The computational expense of certain ways of thinking might also help us understand why 

we tend to save (amortize) costly computations for later reuse (Dasgupta & Gershman 

2021), possibly including inferences about our own character made under or in the wake of 

duress. In fact, this may even help to explain why we tend not to recompute past inferences 

unless we have a strong motivation to do so—indeed, why we may not do so even if 

we have since acquired relevant new information (an observation that has puzzled many a 

psychotherapist who has observed their client express flatly contradictory beliefs that were 

formed in different contexts).
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Of note, moral injury provides a particularly clear example of the relevance of intentional 

content in mental health, yet beliefs, self-judgments, perceived violations of values, and 

other types of intentional content are core to many mental health problems (see also 

Gu et al. 2019). That intentional content is especially important in lower-essentiality 

problems follows from the two previous heuristics. Lower-essentiality problems do not 

involve a core mechanism that leads to generic neurocomputational deficits, but rather they 

comprise individual differences transacting with social and environmental contexts over 

time. Such contexts, rather than dysfunctions or neurocomputational propensities alone, 

partly determine which mental health elements will arise based on the conclusions that 

people draw (i.e., the intentional content that emerges) in such situations.

2.4. Concluding Thoughts on Our Three Heuristics for Estimating Essentiality

We offered three complementary heuristics for estimating the essentiality of a mental 

health problem: whether a single and specific neurobiological mechanism is core to the 

problem; whether the problem follows a straightforward natural course or is characterized 

by divergent trajectories (multifinality); and whether intentional mental content (beliefs, 

values, etc.) are core or peripheral to the problem. Note that although we used diagnostic 

categories in our running examples for familiarity, essentiality could be estimated for more 

granular representations (e.g., endophenotypes), subsuming representations (e.g., higher-

order factors; Kotov et al. 2017), or multidimensional profiles (Wiecki et al. 2015) or 

“biotypes” (Drysdale et al. 2017) if these are consistently replicated and refined in a way 

that enables categorization. For this reason, we refer throughout to “mental health problems” 

for simplicity and generalizability.

3. NEW METHODS TO MODEL LOWER-ESSENTIALITY PROBLEMS IN 

COMPUTATIONAL PSYCHIATRY

An important challenge to estimating essentiality is the possibility that a disorder may 

only appear to have low essentiality due to poor phenotyping (i.e., improper clustering 

and superficial understanding), and that perhaps it would be possible to derive a higher-

essentiality disorder (or disorders) through improved phenotyping. Enhancing phenotypic 

precision is critical to continued progress in computational psychiatry, and in the current 

context it is key to avoiding confounds in estimating essentiality. Section 3.1 reviews efforts 

to improve phenotypic precision in computational psychiatry (Figure 3).

However, even if we reached perfect phenotyping, there would still likely be a spectrum 

of essentiality, because many mental health problems are characterized by meaningful 

heterogeneity: that is, heterogeneity that arises from the interdependency of the elements 

constituting the problem, which confounds attempts to categorize the problem at any single 

point in time and without an understanding of the context in which it arose. Sections 3.2 

and 3.3 focus on modeling dynamics unfolding in context over time to tame meaningful 

heterogeneity (Figure 4).
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3.1. Refining Phenotypes

A key step toward more precise phenotyping is discovering (possibly high-dimensional) 

clusters of neurocomputational alterations. There are a few strategies for discovering 

such clusters (see also Maia & Frank 2011): top-down (from the diagnostic systems to 

neurocomputational processes), bottom-up (working from well-defined neurocomputational 

processes to mental health phenomena), and intermediate (e.g., using data-driven approaches 

to summarize questionnaire-based data from the diagnostic systems and then relating these 

summaries to neurocomputational processes).

3.1.1. Top-down approaches.—A number of computational psychiatry studies have 

taken steps to move beyond diagnostic categories. One strategy is to report differential 

relationships between neurocomputational processes and specific symptoms. Beevers and 

colleagues (2019) reported that estimated drift rate (a rate parameter in computational 

models that assume information is sequentially sampled over time) for negative words in 

the self-referential encoding task strongly related to depression symptoms such as sadness 

and self-dislike, yet it only weakly related to symptoms such as feeling like a failure, 

crying, and lost appetite. A symptom-centric approach may be particularly valuable for 

poorly phenotyped problems such as MDD (i.e., those with very different risk factors, 

neurobiological correlates, relationships to functional impairment, etc.; Fried & Nesse 

2015). Diagnostically minded theorists have also emphasized that there is special value in 

understanding the processes that underlie hallmark (disorder-specific) symptoms, because 

they carve phenotypic space at its joints (Spitzer et al. 2007). For instance, from a 

nosological perspective, there may be special value in understanding flashbacks in post-

traumatic stress disorder (PTSD) due to their specificity to this disorder, whereas symptoms 

such as negative beliefs about oneself and the world are much less specific to PTSD.

Another approach that begins with the diagnostic categories is to use common clusters 

of symptoms. For instance, Brown and colleagues (2018) reported that amygdalar activity 

evoked by computational-model-derived associability (i.e., increased attention proportional 

to prediction error, here specifically in a loss condition) was more related to avoidance/

numbing and hyperarousal than reexperiencing symptom clusters of PTSD. Note, however, 

that obtaining replicable symptom clusters for common mental health problems has been 

challenging (e.g., Armour et al. 2015).

3.1.2. Bottom-up approaches.—A fundamental challenge to top-down research that 

begins with the DSM diagnostic system is that the signs and symptoms collected in this 

manual were deliberately described at a superficial level rather than in terms of underlying 

processes. The aspiration was to enable reliable diagnosis by clinicians of different 

theoretical orientations who disagreed about the underlying processes (Wakefield 1992a). 

However, a critical aim for psychopathology science, including computational psychiatry, 

is to move beyond such superficial descriptions. Computational cognitive neuroscience 

offers powerful tools for fractionating into primitive units processes that were previously 

subsumed under an aggregating construct. Computational psychiatry seeks to fractionate 

the processes specifically relevant to mental health (Maia & Frank 2011); that is, it takes 

a bottom-up approach that begins with well-defined processes and relates these to mental 
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health phenomena. Underscoring the importance of this endeavor, many symptoms within 

the current diagnostic manuals (and constructs in the wider psychopathology vernacular) 

are turning out to be “suitcase terms”—terms that obscure precise distinctions (Minsky 

2007). For example, anhedonia, a cardinal symptom of MDD that is also present (or 

similar to symptoms described) in numerous other mental health problems (McCabe 2018), 

involves distinct components, only some of which are altered in MDD (Huys et al. 

2013, Keren et al. 2018, Treadway & Zald 2011). Similarly, impulsivity can arise from 

a variety of mechanisms, including valuation asymmetries related to striatal DA (Frank 

2005), alterations in decision-threshold activity during conflict via PFC-STN interactions 

(Frank et al. 2007), and differences in how future rewards are discounted (McClure et 

al. 2004). Once such decompositions are confirmed, they should influence our strategies 

with top-down phenotypes; for instance, the discovery that individuals with attention-deficit/

hyperactivity disorder could be distinguished by type of impulsivity can help to stratify 

pharmacological approaches. Ultimately, we will likely need dynamic, quantitative, and 

aggregative methods to iteratively refine our diagnostic systems, especially if the pace of 

discovery of strongly supported mental health–relevant decompositions quickens. Emerging 

data-driven neurocomputational ontologies offer inspiration (Poldrack & Yarkoni 2016).

3.1.3. Intermediate approaches.—An intermediate strategy is to begin with 

questionnaires related to diagnostic categories (i.e., problems or symptoms commonly seen 

in patients with a specific disorder) but then use dimension reduction techniques such 

as factor analysis to derive data summaries that cut across diagnostic symptoms, which 

can then be related to neurocomputational processes (e.g., Gillan & Daw 2017, Gillan & 

Seow 2020, Gillan et al. 2017). Studies using this approach have reported specificity in 

neurocomputational processes associated with distinct regions of phenotypic space (e.g., 

Gillan et al. 2016, Rouault et al. 2018). For instance, Rouault and colleagues (2018) found, 

using computational modeling applied to a perceptual decision-making task, that individuals 

who endorsed more compulsive behavior and intrusive thoughts (based on a data-driven 

summary factor with transdiagnostic symptoms including schizotypal symptomatology) 

were more confident in their choices, yet poorer in their ability to discern which choices 

were actually correct; by contrast, individuals endorsing more depression and anxiety 

symptoms (based on another factor including apathy symptoms) showed the opposite 

pattern: less confidence but relatively higher discernment of which choices were correct 

(Rouault et al. 2018). Parallel to these developments in computational psychiatry, efforts 

are underway in clinical science more broadly to delineate relations among symptoms and 

disorders transdiagnostically, such as the HiTOP (Kotov et al. 2017).

This intermediate approach is not without challenges. For one, dimensional summaries 

depend (of course) on the questionnaires they are summarizing. To establish factor structure 

replicability, computational psychiatrists have tended to use questionnaires similar to the 

ones employed in an original set of studies by Gillan and colleagues (reviewed in Gillan & 

Seow 2020), yet these may not encompass all processes of interest (see Watts et al. 2020 

for an interesting perspective on this issue). Gillan & Seow (2020) noted therefore that 

dimensions from prior studies (and the questionnaires from which they are constructed) must 

be iteratively refined to enable continued progress. Other challenges relate to interpretational 

Hitchcock et al. Page 13

Annu Rev Psychol. Author manuscript; available in PMC 2022 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and measurement challenges that arise whenever symptom questionnaires are used. 

Symptoms can covary for a number of reasons, and the methods that find dimensions based 

on symptom covariation often provide little insight into the data-generating mechanisms 

behind the covariation (Bringmann & Eronen 2018). For instance, symptoms can correlate 

due to a common cause (e.g., sweats and aches arising from a fever) or because one 

symptom causes another (e.g., worry causing insomnia; Borsboom 2008, Kendler et al. 

2011). They can also covary for more artificial reasons, such as semantic overlap among 

items (e.g., feeling sad, feeling blue, and feeling depressed in a prominent depression 

scale; Fried & Cramer 2017), response styles that have nothing to do with questionnaire 

content (e.g., tending to answer “strongly agree”), and implicit theories (e.g., guessing that 

one is answering a questionnaire about depression; Podsakoff et al. 2012). Identifying and 

extracting components, factors, or dimensions from such instruments thus does not by itself 

establish reliable or valid intermediary phenotypes between symptoms and disorders (see 

Leising et al. 2020 for an accessible overview of some of these issues).

In sum, bottom-up, top-down, and intermediate strategies have a natural synergy; each 

approach has limitations, but they also have complementary strengths and weaknesses. It 

is also worth noting that algorithmic computational models in computational psychiatry 

play a special bridging role in that they can connect clinical phenomena and observations 

to biologically realistic models. Yet, algorithmic models too have limitations and require 

substantial caution (see Supplemental Text). A more fundamental challenge than any of 

these particular limitations is that only so much progress can be made by refining static and 

decontextualized phenotypes, due to the challenge of meaningful heterogeneity (Figure 4). 

The next sections review emerging developments for incorporating time and context in order 

to tame this heterogeneity, and thereby expand the dimensionality of our models to a space 

within which even low-essentiality problems reside.

3.2. Capturing Domain-Specific and Time-Varying Phenomena in the Real World

We have argued that rather than arising from a core neurobiological mechanism, 

lower-essentiality problems comprise dynamically changing neurocomputational processes 

interacting with situations and social milieus encountered over time. This calls for an 

expansion of the focus of computational psychiatry away from looking exclusively for 

trait-like dysfunctions and toward understanding time-varying alterations in context (see also 

Radulescu & Niv 2019, Scholl & Klein-Flugge 2018).

3.2.1. Modeling state variation.—Many mental health problems are far from static; 

they follow stages or exhibit oscillations and change and transact in important ways 

with social and environmental contexts. Addiction, for example, has been described as 

following distinct stages, and neurocomputational processes may vary dynamically by stage, 

while possibly retaining an invariant multidimensional structure (Gueguen et al. 2021). A 

neurocomputational account of bipolar disorder produces oscillations whereby mood and 

reward appraisal interact in a positive feedback loop (Eldar & Niv 2015, Mason et al. 2017). 

MDD (and possibly many other internalizing disorders) is both precipitated by life stress 

and associated with stress-generating behavior (Hammen 2005), possibly due to a complex 
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interplay between dynamically changing propensities and stressful experiences (Hitchcock 

et al. 2021, Snyder & Hankin 2016).

Time-varying phenomena present a challenge to task assays performed at one cross-section 

in time, as these are predicated on the assumption that the processes under study are 

stable (i.e., trait-like; Rodebaugh et al. 2016). However, if time-varying phenomena can 

be harnessed, they present opportunities, in that phenomena that signal transition points 

in mental health could be detected for prediction and intervened upon for prevention. 

Exemplifying this possibility, Konova and colleagues (2020) administered a task, which 

distinguished comfort with known risk (via monetary gambles where the probabilities 

were known) from unknown risks (via monetary gambles where probabilities were 

partially occluded), up to 15 times over a period of 7 months to individuals receiving 

community treatment for opioid use. Using computational modeling, the researchers 

estimated individual propensities to take known and unknown risks and submitted these 

as one-time-back predictors in logistic regression models predicting opioid use. They found 

that tolerance for unknown (i.e., ambiguous) risks alone significantly predicted subsequent 

use. This result was especially compelling because data were collected from a parallel cohort 

of healthy controls, among whom the model-derived predictors were relatively stable over 

time; by contrast, the predictors’ stability was lower among the individuals struggling with 

opioid use, likely due in part to meaningful variation that facilitated prediction (Konova et 

al. 2020).

3.2.2. Incorporating domain-specific stimuli or contexts.—Another method for 

understanding neurocomputational differences in context is to use domain-specific stimuli or 

contexts rather than generic (e.g., fractal) stimuli. Frey and colleagues found that individuals 

with elevated depression symptoms showed slower incremental learning in two social tasks: 

one that involved picking items for a party and then seeing how each item was judged by 

other (putative) participants (Frey et al. 2021), and another that involved gradually learning 

how happy or fearful different people tended to be by repeatedly guessing each person’s 

emotion and then seeing them make a neutral or happy/fearful face (Frey & McCabe 

2020b). Those who were slower to learn in the first study also reported spending more time 

quarreling or engaging in other unpleasant social activities in their everyday lives (Frey et al. 

2021). Another interesting finding by this research group was that, in the face-learning task, 

nondepressed participants who underwent serotonin depletion showed similar patterns of 

sluggish learning and altered neural activity as the depressed participants (Frey & McCabe 

2020a).

One limitation of these studies is that they did not directly compare social and nonsocial 

contexts, making it difficult to determine whether participants were characterized by a 

generic decision-making alteration or one specific to social settings (see Pulcu & Browning 

2017). Addressing this issue, Lamba and colleagues (2020) investigated behavior in a game 

where participants received an initial monetary endowment and invested portions of it on 

a trial-wise basis with (they were told) a human partner or slot machine, which would 

subsequently return varying amounts; they were told the human participant would receive 

quadruple the invested amount before apportioning the return. In reality, the amount that 

the human partner/machine returned was rigged and drifted slowly over time, mimicking 

Hitchcock et al. Page 15

Annu Rev Psychol. Author manuscript; available in PMC 2022 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



real-world situations in which fortunes or attitudes change gradually (such as a job interview 

that takes a slow but steady turn for the worse). Participants across a spectrum of generalized 

anxiety symptoms struggled to stop investing in slot machines that began shorting them 

on returns; however, lower-anxiety participants rapidly adjusted when their human partners 

did the same, possibly reflecting a swift ability to detect exploitation in this social context. 

By contrast, higher-anxiety participants were similarly slow to adjust investments to human 

partners who became more miserly as they were to adjust to slot machines. The use of 

matched social and nonsocial contexts allowed the researchers to conclude that the difficulty 

in responding to gradual uncertainty among anxious participants was (mostly) specific to the 

social domain (Lamba et al. 2020).

3.2.3. Connecting lab-based observations to real-life behavior.—
Complementary to research that brings idiosyncratic and ecologically valid stimuli into the 

lab is work that relates lab-observed differences to behavioral variation in everyday life. 

Eldar and colleagues (2018) reported a tour-deforce example of how to connect modeling, 

real-world behavior, and multimodal measurement. In their study, ten individuals completed 

a reinforcement-learning task twice per day on their smartphones while portable systems 

recorded electroencephalography and heart-rate data. Computational modeling revealed 

individual differences related to dissociable fast and slow learning processes: Participants 

with stronger neural decodability of the fast-learning process (according to machine-learning 

methods) showed an improvement in their mood a few hours later, whereas those with 

stronger decodability of the slow-learning process showed higher mood the following day 

(Eldar et al. 2018).

In general, smartphones offer an unprecedented opportunity for so-called digital 

phenotyping, including high-frequency or even ubiquitous collection of certain types of 

mental health–relevant data with minimal participant burden (see Gillan & Rutledge 2021 

for an authoritative review).

3.2.4. Understanding alterations in context.—A theme of this section has been 

the importance of understanding empirically observed neurocomputational alterations in 

context, rather than merely documenting that an alteration exists. One area of computational 

psychiatry in which a shift has been evident in how to interpret observed differences is the 

investigation of model-free versus model-based strategies in reinforcement learning. Briefly, 

model-free reinforcement-learning algorithms are those that solve trial-and-error learning 

tasks without an explicit representation of the world, whereas model-based strategies 

represent aspects of the world such as reward distributions and transition probabilities. 

An impactful set of studies used the so-called two-step task (Daw et al. 2011) to infer 

participants’ model-free and model-based propensities. Early studies suggested that a 

tendency to employ model-based control emerges over development (Decker et al. 2016) 

and implicated decreased model-based control in obsessive-compulsive disorder (Gillan et 

al. 2015) and compulsive decision making broadly (Gillan et al. 2016). This seemed to 

imply that a trait-like and domain-general propensity toward model-free over model-based 

control contributes to faulty decision making and psychiatric disorders. This may be correct 

to an extent, but recent work has also shifted the focus toward understanding how different 
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contexts and goals influence the type of strategy used.1 This includes theoretical accounts 

that implicate incorrect model-based reasoning in depression (Huys et al. 2015) and suggest 

a spectrum of model-free to model-based reasoning depending on the speed under which 

a decision must be made (e.g., Keramati & Smittenaar 2016). A study involving the 

two-step task showed that people increased model-based control when incentivized to do 

so, cutting against the notion of a fixed capacity; surprisingly, the researchers also found 

that individuals high on sensation seeking and on an anxious-depressed dimension were 

especially responsive to incentives to use model-based control (Patzelt et al. 2019). In a 

reinforcement-learning task with a social framing, Hunter and colleagues (2019) found that 

individuals with elevated social anxiety symptoms showed increased model-based control 

specifically in response to “upward-counterfactual” feedback (Hunter et al. 2019). Finally, 

building on behavioral neuroscience research, Mobbs and colleagues (2020) argued that the 

same animal will tend to employ a spectrum of strategies depending on its proximity to 

threat: from hardwired responses when threat is extremely close to multi-step, model-based 

reasoning when threat is very far. Overall, this recent work reflects a shift in emphasis 

toward the differential use of model-free versus model-based strategies based on demand 

and context.

3.3. Measuring Dynamics and Person-Specific Processes and Developing Formal Mental 
Health Systems

This section reviews methods for modeling temporal and within-person dynamics, which we 

have argued are especially important in medium- and lower-essentiality problems (see also 

Gillan & Rutledge 2021, Huys et al. 2021, Scholl & Klein-Flugge 2018).

3.3.1. Modeling dynamics.—Recent frameworks that conceptualize mental disorders 

as complex systems of interacting processes have developed novel network methods to 

model dynamic changes to mental health over time (Beltz & Gates 2017, Borsboom 2008, 

Bringmann et al. 2013, Fried & Cramer 2017, McNally 2021, van de Leemput et al. 

2014). These network models are statistical representations of node-and-edge relationships 

between mental health elements (most commonly symptoms, although other variables are 

increasingly incorporated; Fried & Cramer 2017). These elements are often assessed by 

self-report; hence, they are subject to similar limitations as those mentioned above in the 

context of intermediate approaches. This includes that the methods typically provide only 

weak information about the structure of mental health problems (Bringmann & Eronen 

2018).

Notwithstanding these modeling limitations, the network approach has drawn important 

attention to the ontology of mental health (McNally 2021). Additionally, recent network 

modeling developments may provide more information about the structure of mental 

health problems and potentially point to novel intervention targets. These include recent 

methods that leverage control theory to attempt to infer the most controllable node 

within a network, which could be a fruitful target for psychotherapy (Henry et al. 2020). 

1Note that in their earliest work Daw and colleagues (2005) already emphasized that context should normatively influence the strategy 
used.
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Predictability methods estimate how well each node in a network can be predicted by all 

other nodes in terms of variance explained, potentially revealing how important a node 

(e.g., sleep difficulties) is within a broader system (e.g., depression). Moreover, the average 

predictability of all nodes in a network can (under some critical assumptions) provide 

insight into how well (or poorly) the included elements reflect the full system. For instance, 

a review of 18 network studies found that depression, PTSD, and anxiety had higher 

average predictability than psychosis, suggesting that some elements (possibly including 

a neurocomputational common cause) were not represented in the psychosis network 

(Haslbeck & Fried 2017). Methods from complex-system analysis could also aid our 

understanding of the structure and dynamics of various problems. These methods build on 

the properties of complex systems, such as their leaving signatures like autocorrelation and 

increasing variance near transition points, regardless of their specific constitutive elements. 

An influential paper argued that rising autocorrelation and variance among emotions signals 

a “critical slowing down” that augurs a depressed state, similar to critical transitions 

observed in fields such as ecology (van de Leemput et al. 2014).

In computational psychiatry, there is a rich tradition of modeling neural dynamics (recently 

reviewed in Durstewitz et al. 2020), yet there has been much less focus on the externally 

observable dynamic elements of mental health systems. A notable exception are the models 

developed by Eldar and colleagues that produce oscillatory dynamics (Eldar & Niv 2015, 

Mason et al. 2017). These frameworks model individual differences relevant to bipolar 

disorder via an interdependence between mood and evaluation. In this approach, a mood-

biasing parameter (assumed to be trait-like) can produce dynamics such that perceived 

rewards sometimes far exceed expectations, leading to large positive surprises that send 

mood rocketing upward, and sometimes fall far short of expectations, leading in turn to 

crushing disappointments after reward omission that drive mood downward. Remarkably, 

the administration of a selective serotonin reuptake inhibitor (SSRI) appeared to modulate 

this parameter, leading rewards to be more impactful when in a good mood, and in turn 

further increasing mood. This might lead to a slow but steady increase in the proportion of 

felicitous experiences, eventually leading to greater well-being over time. Thus, this finding 

may help to explain the gradual effects of SSRIs as well as the increased susceptibility to 

mood instability that these drugs appear to induce among a subset of individuals (Michely et 

al. 2020). Computational psychiatry theories that predict these kinds of temporally extended 

dynamics offer a glimpse into how risky predictions concerning how elements of mental 

health systems interrelate can be derived and then tested on data collected in the real world

—leading to an iterative refinement of model and theory (Figure 5). For instance, this model 

predicts trait-like individual differences as well as drug effects on mental health elements—

expectations, subsequent gloomy and glorifying appraisals of surprising experiences, and 

domino effects on mood. These could be tested by applying network models (such as 

moderated network models; Haslbeck et al. 2019) to data reported by participants over 

time, in order to capture varying drug effects or between-subject trajectories related to the 

mood-biasing parameter.

3.3.2. Capturing person-specific processes.—Due to the divergent trajectories of 

lower-essentiality problems (i.e., multifinality), measuring, modeling, and understanding 
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person-specific patterns are especially important. One striking example of how person-

specific patterns can dissociate from group-level patterns is Simpson’s paradox—the fact 

that, for example, coffee consumption may perfectly positively correlate with neuroticism 

between subjects, even if the relationship is negative within subjects (i.e., these individuals 

become less neurotic when they consume coffee; Kievit et al. 2013). Such a possibility 

should trouble computational psychiatrists, because a tacit assumption in much task-based 

research is that finding an altered pattern between mentally unhealthy and healthy 

individuals (or groups) is the first step toward developing a remedial within-subject 

intervention. Notably, the fact that extrapolating from between-person to within-person 

patterns—or more generally from groups to subgroups, groups to individuals, or averages 

across time to temporal patterns (Kievit et al. 2013)—can lead to misleading conclusions 

appears to be of more than theoretical concern, with a recent computational psychiatry 

study providing an interesting example. As mentioned above, a longitudinal investigation by 

Konova and colleagues (2020) found that opioid use could be predicted by a one-time-back 

measure of tolerance for ambiguous risk. On average between groups, however, a quite 

different pattern emerged: Tolerance of known risk, which was not a significant predictor 

of subsequent opioid use, was the only different marker among the recovering and healthy 

control groups (see also Gueguen et al. 2021 for discussion of this result).

Hierarchical modeling (including frequentist mixed-effects models and hierarchical 

Bayesian models; see Supplemental Figure 1) offers a statistically principled approach 

to modeling between- and within-subject effects, and it enjoys widespread use in 

computational neuroscience and psychiatry. Multilevel vector auto-regressive (VAR) models 

enable the estimation of some specific temporal effects, permitting examination, for 

example, of how various emotions predict themselves and other emotions over time (Lydon-

Staley et al. 2021). This allowed researchers to corroborate clinical insights such as the idea 

that, among neurotic individuals, worry strengthens the duration and transition between 

negative emotions (Bringmann et al. 2013). To date, such models have largely relied 

on self-reports, but an exciting future avenue is to use multimodal methods, including 

neurocomputational markers derived from computational psychiatry methods, to estimate 

the elements in such networks with higher precision. This is especially important to 

overcome the problems inherent to the investigation of suitcase constructs, such as worry, 

that may encompass so many primitive processes that their relationships to other items are 

confounded (Eronen 2020a).

Despite their advantages, hierarchical methods alone are of course unable to resolve 

the limitations inherent in attempting to extrapolate from between-subjects data to within-

subject patterns. Moreover, from the perspective of informing person-specific interventions, 

hierarchical methods can distort individual patterns that may be important (due to their 

imposition of distributions that can alter patterns from the raw data, especially outlying 

points). In particular, hierarchical methods may sometimes mask patterns operative within 

individuals over time that could be important—to psychotherapy conceptualizations, for 

example. Drawing on a rich tradition of single-case designs (Barlow & Hersen 1973), 

psychotherapy-minded research is seeing an efflorescence of methods aimed at capturing 

and capitalizing on within-subject patterns (Wright & Woods 2020). Potentially offering the 

best of both worlds, methods such as the GIMME algorithm seek to capture time-series 
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patterns reliably present within a group and at the same time extract idiographic patterns 

(Beltz & Gates 2017).

An exciting avenue for future research is to connect these person-specific approaches 

that offer rigorous methods for functional conceptualizations of mental health with 

computational psychiatry accounts. What the latter have to offer are new clinical principles 

for the next generation of psychotherapies built upon basic (e.g., computer and decision) 

sciences (Moutoussis et al. 2018, Niv et al. 2021). It is worth noting that there are natural 

complementarities among the functional-analytic tradition in behavior therapy, which seeks 

to understand why behavior occurs in a context with an eye toward modifying it (Burger 

et al. 2020, Hofmann & Hayes 2019); the network approach, which views mental health 

problems as causally related elements interacting over time (McNally 2021); and the 

bounded (computational) rationality perspective in the decision and computer sciences, 

which seeks to model decision making under limited resources, and which can explain how 

what might appear to be dysfunctional responding is actually rational in light of context and 

constraints (Gershman et al. 2015, Russek et al. 2020, Simon 1990).

3.3.3. Formalizing mental health systems.—A landmark development toward 

modeling time and context is the recent development by Robinaugh and colleagues 

(2019) of a large-scale mental health system (in this case, panic disorder). This system 

implements the network approach vision of interacting mental health elements within a 

detailed computational model that can simulate mental health dynamics. Notably, this 

system was recently extended to model the effect of functional-analytic interventions 

for panic disorder (Burger et al. 2020), thereby demonstrating a parallel functionality 

to the ability of biologically detailed computational neuroscience models to simulate the 

dynamics of specific interventions, such as an increase in tonic dopamine. Robinaugh et al.’s 

(2019) model has not yet incorporated rich biological detail, nor has it been paired with 

algorithmic approaches to concisely summarize key model behaviors that can be applied 

to describe individual differences between people; these are exciting avenues for future 

research. Integrating this type of approach with powerful techniques from the mainstream 

of computational psychiatry may eventually enable time and context to be rigorously 

incorporated into computational psychiatry, providing insights and targeted intervention 

opportunities even for low-essentiality problems.
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WHAT DOES DYSFUNCTION MEAN IN A MENTAL HEALTH CONTEXT?

How to define dysfunction within a mental health context has been the subject of 

intense debate (e.g., McNally 2001, Wakefield 1992b). We favor a definition proposed by 

McNally (2011) that casts dysfunction as a disrupted process operating within a larger 

causal system. For instance, the heart malfunctions within the context of the circulatory 

system if it fails to pump blood; the amygdala malfunctions within the threat-detection 

system if it fails to respond to proximal threat or responds excessively to neutral stimuli 

(McNally 2011). This definition rests on a notion of normal function versus aberrant 

functioning. Wachbroit (1994) argued that a concept of normality is indispensable within 

biology. Normal function, according to this account, is not the same as statistically 

normal (i.e., average or prototypical function). For instance, a radioactive accident could 

render the hearts of everyone on earth dysfunctional; in this case, statistical deviation 

would not help to reveal dysfunction (Wakefield 1992a). Rather, normal function by this 

account refers to an idealized operation of the function against which deviations can be 

gauged (Wachbroit 1994).
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SUMMARY POINTS

1. We predict that progress in the next generation of computational psychiatry 

will come from modeling time and context in order to tame the complexity of 

mental health disorders of lower essentiality.

2. Three heuristics can help to estimate essentiality: Is there a single, core 

neurobiological mechanism at the problem’s root? Does the problem follow a 

straightforward natural course? Is intentional mental content (such as beliefs) 

distinct from the problem itself?

3. If the answer to all of these questions is yes, the problem has high essentiality. 

By contrast, lower-essentiality problems comprise multiple interrelated 

elements (not all necessarily dysfunctional) and vary greatly over time. 

Intentional content is important in these problems.

4. Clinical principles concerning beliefs, values, personal significance, 

humiliation, and other types of intentional content could be grounded in 

computational theories. In addition, the type of intentional content endemic 

to a problem can help us contextualize observed differences. For instance, do 

individuals with this problem invariably show differences in trial-and-error 

learning, or are the differences limited to specific social contexts? What does 

this tell us about the problem itself?

5. Mental health problems may spuriously appear to have low essentiality 

because of imprecise phenotyping. Computational psychiatry has much to 

contribute to the important project of refining phenotypes. Yet, standard 

approaches to deriving more precise phenotypes at a single point in time 

may be insufficient for lower-essentiality problems because of their temporal 

and contextual dependence (i.e., their meaningful heterogeneity). Modeling 

variation over time and in context is critical. Even when this is done, the 

complexity of these problems implies that it might take more time to make 

progress on them compared to simpler problems.

6. Algorithmic modeling has a special role in bridging levels and dimensions 

of analysis in computational psychiatry, although there are many technical 

and inferential challenges. Caution is required. Recent innovations may 

dramatically advance the scope and power of these models (see Supplemental 

Figure 1).

7. Computational psychiatry theories are beginning to make risky predictions 

about dynamics in the real world. Modeling and measurement techniques 

from adjacent areas—including network and complex-systems approaches 

and digital phenotyping—will be important to the next generation of 

computational psychiatry, especially for capturing and modeling the real-

world dynamics of lower-essentiality problems and thereby enabling iterative 

refinement of increasingly sharp predictions.

Hitchcock et al. Page 30

Annu Rev Psychol. Author manuscript; available in PMC 2022 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. The importance of context in lower-essentiality problems resonates with the 

perspectives of three traditions that developed largely independently: the 

functional-analytic tradition in behavior therapy, the bounded (computational) 

rationality tradition in the decision sciences, and the network approach 

to mental health. These shared perspectives raise the prospect of uniting 

computational and psychotherapy principles.
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Figure 1. 
Estimates of whether several well-known mental health problems have high, medium, or low 

essentiality. Abbreviation: NMDAR, N-methyl-D-aspartate receptor.
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Figure 2. 
Visualization of three heuristics for estimating essentiality. (a) High-essentiality problems 

comprise a set of signs and symptoms that arise from a core neurobiological mechanism, 

whereas low-essentiality problems are best thought of as a set of elements in varied 

relational patterns with one another (denoted by arrows of different widths and directions). 

These elements constitute low-essentiality problems. (b) High-essentiality problems follow 

a relatively linear naturalistic (i.e., absent intervention) course, whereas lower-essentiality 

problems follow variable trajectories. (c) Intentional mental content (e.g., negative schemata; 

blue bubble) is central to low-essentiality problems (e.g., major depression; white plane). 

Such content may be present in high-essentiality problems (e.g., Parkinson’s disease), but it 

is not key to understanding such problems.
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Figure 3. 
Approaches to improving phenotypic precision. (a) Top-down approaches begin with 

symptoms or symptom clusters (white circles) and relate these to processes inferred via 

computational psychiatry methods (such as differences in learning rate, represented by an 

α parameter). (b) Intermediate approaches also typically use symptoms encoded in the 

diagnostic systems, but they use dimension-reduction techniques to derive summaries of 

which symptoms share variance (represented by the orthogonal planes) and then relate these 

summaries to inferred processes. (c) The bottom-up approach begins with a process well 

characterized by computational psychiatry methods, such as a mechanism represented by a 

parameter that can be distinguished from others and that often has a clear function and link 

to neurobiology. It then attempts to relate differences in this process to clinical phenomena, 

such as symptoms or diagnostic categories. Abbreviation: DSM, Diagnostic and Statistical 
Manual of Mental Disorders.
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Figure 4. 
An example of meaningful heterogeneity. Various mental health problem elements, such 

as elements of major depression disorder or generalized anxiety disorder, might arise in 

some individual (pastel-colored dots). The specific elements that arise in a given time frame 

(bright-colored dots), and their relations to each other (arrows), are determined in part by the 

socioenviromental context, such as a stressful life event involving humiliation (more likely 

to lead to depression) or endangerment (more likely to lead to general anxiety) (Kendler et 

al. 2003).
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Figure 5. 
Theories from recent computational accounts that predict temporal and contextual dynamics 

in the real world. The figure illustrates theorized interrelations between mental health 

elements in two recent computational psychiatry accounts. These predict real-world 

dynamics; hence, data could be collected over time and analyzed (e.g., via network-model 

representations) in order to test and iteratively refine the theories. The arrows show the 

theorized direction, and the arrow width the hypothetical strength, of relations for different 

individuals. This reflects that specific elements of the relationships between the elements 

may vary among people; e.g., one person may show an especially strong or weak effect 

of reward prediction error on mood. (a) Based on empirical literature on mood and 

reinforcement learning and computational modeling, Eldar and colleagues recently proposed 

a positive feedback loop between mood, appraisal of outcomes, and reward prediction error 

(Eldar & Niv 2015, Mason et al. 2017). (b) Based on empirical literature on rumination 

and stress-dependent behavior, Hitchcock et al. (2021) recently suggested that rumination 

comprises the recollection and reconsolidation of negative self-referential memories (and 

other cognitive processes, not depicted). And when rumination takes place at the same 

time as a potentially important external learning experience, it impairs reinforcement 

learning about the contingencies. This concurrent process may at once increase the future 

likelihood of recalling negative memory and engaging in stress-dependent behavior (given 

that avoiding the latter requires learning adaptive responses to contingencies).
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