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Abstract

Background: Sensitive measures of cognition are needed in preclinical and prodromal 

Alzheimer’s disease (AD) to track cognitive change and evaluate potential interventions. 

Neurofibrillary tangle pathology in AD is first observed in BA35, the medial portion of the 

perirhinal cortex. The importance of the perirhinal cortex for semantic memory may explain 

early impairments of semantics in preclinical AD. Additionally, our research has tied figurative 

language impairment to neurodegenerative disease.

Objective: We aim to identify tasks that are sensitive to cognitive impairment in individuals with 

Mild Cognitive Impairment (MCI), and that are sensitive to atrophy in Brodmann Area 35 (BA35).

Methods: Individuals with MCI and cognitively normal participants (CN) were tested on 

productive and receptive experimental measures of semantic memory and experimental tests of 

figurative language comprehension (including metaphor and verbal analogy). Performance was 

related to structural imaging and standard neuropsychological assessment.

Results: On the experimental tests of semantics and figurative language, people with MCI 

performed worse than CN participants. The experimental semantic memory tasks are sensitive 

and specific; performance on the experimental semantic memory tasks related to MTL structural 

integrity, including BA35, while standard neuropsychological assessments of semantic memory 

did not, demonstrating the sensitivity of these experimental measures. A visuo-spatial analogy task 

did not differentiate groups, confirming the specificity of semantic and figurative language tasks.
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Conclusion: These experimental measures appear sensitive to cognitive change and 

neurodegeneration early in the AD trajectory and may prove useful in tracking cognitive change in 

clinical trials aimed at early intervention.
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INTRODUCTION

Potential interventions in Alzheimer’s Disease (AD) are most likely to be effective if 

implemented as early as possible [1]. As such, sensitive measures of cognition that 

differentiate the earliest stages of AD from healthy aging are needed [2]. To define 

this “predementia” period, criteria have been developed to classify individuals as having 

preclinical and prodromal AD, the latter being the Mild Cognitive Impairment (MCI) stage 

of disease [3-5].

Cognitive assessments sensitive to preclinical AD are needed. Developing cognitive 

measures that differentiate preclinical AD from healthy aging promises to improve 

understanding of the disease and provide a way to track cognitive changes in this population. 

These measures would help assess the efficacy of interventions when applied early in the 

disease. While imaging and fluid biomarkers appear sensitive to some aspects of preclinical 

disease [6-9], a sensitive cognitive measure has greater face validity than biomarkers as 

outcome measures in clinical trials, since the ultimate goal of treatment is to improve or 

protect against cognitive decline [10].

The literature offers mixed evidence as to whether standard neuropsychological assessment 

is sensitive to preclinical AD. Some studies using standard psychometric assessments show 

promise in differentiating those with preclinical AD from healthy aging [9-11], while others 

suggest standard measures are relatively insensitive to preclinical AD [12-14].

The current study evaluates the utility of a battery of cognitive tasks predicted to be 

sensitive to MCI. We hypothesized that measures of semantic richness and comprehension 

of figurative language are sensitive to cognitive impairment in prodromal AD, and depend 

on intact MTL subregions, including those first affected in AD. We predicted that people 

with MCI would perform worse on these tasks than cognitively normal (CN) participants, 

and that task performance would relate to atrophy in Brodmann Area 35 (BA35).

The pathological processes contributing to AD begin years to decades before there are 

obvious cognitive consequences as measured with standard tools. Neurofibrillary tangle 

pathology begins in the medial portion of Brodmann Area 35 (BA35) in the perirhinal 

cortex, also referred to as the trans-entorhinal region, before spreading medially into 

entorhinal cortex and the hippocampus, and laterally to cortical temporal regions [15-16]. 

The perirhinal cortex has been shown to support semantic memory [17-23], especially when 

making fine-grained semantic distinctions [24-26]. Semantic impairments are reported in 

preclinical AD [27-29], leading some investigators (e.g. [30]) to propose that semantic 
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memory should be a greater research focus in these populations rather than the traditional 

and dominant emphasis on episodic memory.

Standard neuropsychological tests of semantic memory (e.g. picture naming) may not be 

sensitive enough to detect subtle impairments at the preclinical and prodromal stages of AD. 

The psycholinguistic and language learning literatures differentiate surface-level knowledge 

of a word or concept, from deep, rich meaning [31-32]. Shallow word knowledge enables 

a participant to correctly name a picture or provide a simple 3- or 4-word definition. 

Deeper mastery involves richer information associated with a word – its different senses, the 

number of features of a concept, and other words with which it is associated. The N400, an 

electrophysiological marker of semantic richness, is larger for words with greater number of 

associates, features, and senses [31].

As an example of the sensitivity of tests of semantic memory, we reported that people 

with hippocampal amnesia have previously unappreciated deficits of semantic knowledge 

[33]. Previously acquired, remote semantic knowledge had been considered intact in people 

with hippocampal amnesia who performed normally on standard clinical neuropsychological 

assessments of these abilities. However, more sensitive measures reveal that the patients’ 

knowledge was impoverished. While surface level knowledge was intact, patients associated 

less information with common words than healthy and brain damaged comparison 

participants. They provided fewer features and senses to target words and identified fewer 

correctly matching word associates. Similarly, people with preclinical and prodromal AD, 

who typically have MTL injury, might also be impaired on semantic richness despite normal 

performance on traditional neuropsychological assessments such as naming and category 

fluency.

Assessments of figurative language comprehension also show promise as sensitive measures 

of cognition and may map onto aspects of semantic knowledge. Figurative language, such as 

metaphor comprehension, can be impaired despite normal literal language abilities [34-35]. 

Successful metaphor processing requires working memory, cognitive flexibility, inhibition 

of literal meaning, abstract thinking, executive demands, and semantic memory. Decrements 

in any of these subdomains can lead to impairment. Metaphor comprehension is impaired 

following left-hemisphere neurodegeneration [36], and in AD [37-39]. Figurative language 

abilities more broadly are impaired in AD [40] and Mild Cognitive Impairment [41]. 

Metaphor comprehension may be an especially fragile cognitive ability and sensitive to 

cognitive decline early in the AD trajectory.

The current study evaluates the usefulness of a battery of tasks predicted to be sensitive 

to early stages of AD in a sample of cognitively normal older adults and people with 

MCI, a population enriched in individuals with prodromal AD. We predicted that tests of 

semantic richness would better discriminate the groups than standard neuropsychological 

assessments of semantic memory in prodromal AD. Tests of metaphor comprehension and 

verbal analogy were chosen because the complex cognitive skills needed to successfully 

resolve the meaning of novel figurative language may be specifically affected in early AD. A 

visuo-spatial analogy task was included as a control task to evaluate a potential dissociation 

from language and semantic tasks. We also examined brain-behavior relationships in this 
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population. Our primary anatomical analyses relate task performance to integrity of BA35, 

the first region affected by neurofibrillary tangles of AD. If these tasks rely on the 

integrity of this region, this brain-behavior relationship would support a potential role for 

these measures in preclinical AD. Finally, we conducted exploratory analyses to examine 

relationships with other MTL subregions and with brain regions outside the MTL.

MATERIALS AND METHODS

Participants

Cognitively normal older adults (CN) included 56 participants (35 female) without prior 

medical or neurologic conditions that may affect cognition. CN participants were an average 

of 72.84 (±7.34) years old and completed an average of 15.53 (±2.75) years of education. 

CN participants include 30 Caucasian participants, 22 African American, 2 multi-racial, and 

2 Latinx participants. All CN (MOCA: M = 27.10 ± 2.25) participants are enrolled in the 

Penn Alzheimer’s Disease Core Center where they undergo annual medical, neurological 

and psychometric evaluation. All CN participants have a Clinical Dementia Rating score of 

0. Consensus designation of cognitively normal status is made annually.

Participants with a clinical diagnosis of amnestic Mild Cognitive Impairment (MCI) 

consisted of 35 people (17 female). Two participants were borderline MCI; They did not 

have a subjective complaint, but had objective evidence of cognitive decline, and within 

the subsequent year were diagnosed with amnestic MCI. MCI status was determined based 

on clinical evaluation and standard psychometric testing following NIA-AA guidelines [4]. 

This group does not include individuals with prior neurological or medical conditions that 

affect cognition. Patients were matched to the CN group on age (72.68 ±6.84, p > 0.9), but 

completed more years of formal education on average (17.06 ±2.57, p < 0.01). MCI patients 

include 28 Caucasian participants and 7 African American participants. All participants 

completed evaluations from the Uniform Data Set (UDS 3: [42]). MCI patients performed 

worse than CN participants on tests of overall cognition (MOCA p < 0.01) indicating mildly 

impaired cognition, and on tests of semantic memory (Animal fluency: p < 0.01; Vegetable 

fluency: p < 0.01) and other domains (see Table 1).

All participants were native English speakers, gave informed consent in accordance with 

procedures of the University of Pennsylvania Institutional Review Board, and were paid 

$20/hour for their time. The research was conducted in accordance with the Declaration of 

Helsinki.

Experimental tasks

Senses listing task—Our productive measure of semantic richness (See [33] for task 

details), the senses task, presents participants with a target word (e.g. Pen.). Participants are 

given one minute to list as many different senses of the word as possible (e.g. “A writing 

instrument,” “To write a letter,” “An enclosure for animals,” “University of Pennsylvania”). 

Stimuli include the same 20 words chosen from normed databases [43-44]. Responses are 

recorded for later transcription and analysis.
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Transcription and coding of responses.

The first author transcribed all responses. A research assistant, blind to participant status and 

study hypotheses, transcribed 10% of the data for each participant chosen at random. This 

transcription was compared to the first author’s transcription to examine agreement. Inter-

rater reliability was κ = 0.89, indicating near perfect agreement [45]. These transcriptions 

were then evaluated and coded. Responses were evaluated with those in Wordnet, a 

normative database for polysemy [46], and with the Merriam Webster Dictionary [47]. 

Responses included in Wordnet were coded as correct responses, as were responses 

matching one of the definitions in Merriam Webster. Homophones to the target word and 

proper nouns were coded as correct responses. Other responses were coded as incorrect and 

were excluded from analysis.

Word Associates Task (WAT)—For a receptive measure of depth of semantic 

knowledge, participants are given a paper and pencil version of John Read’s 1998 WAT form 

[32]. Consisting of 40 items, each has a target word in bold with eight possible associates 

below it and participants choose the four correctly matching associates. Words on the left are 

possible synonyms and words on the right are possible collocates, words that might follow 

the target word in a phrase or a sentence. After instructions explaining the task, participants 

complete two practice problems and receive feedback. Each correct response is scored for a 

total of 160 possible points. Points are not deducted for incorrect responses.

Metaphor

Stimuli: Stimuli from the Metaphor Multiple Choice task [35, 48-49] include 120 sentences, 

60 novel metaphorical sentences, and 60 literal sentences, matched on the base term of the 

metaphor (See Table 2). The 60 sentence-pairs for this study were selected from a normative 

database designed for neuropsychological and imaging studies [49, 50] with the aid of 

Stochastic Optimization of Stimuli [51]. Sentences were matched group-wise on average 

frequency and concreteness, familiarity, naturalness, imageability, number of words, and 

number of content words.

Answer choices: Each sentence has four possible answers, the correct target answer and 

three foils. Answers consist of two words, an adjective-noun combination. Foils for literal 

sentences include 1) a category associate of the agent of the sentence not implied by the 

sentence, 2) the opposite of the literal meaning, and 3) an unrelated answer. Foils for the 

metaphor stimuli include 1) the literal meaning of the sentence, 2) the opposite of the 

metaphorical meaning, and 3) an unrelated answer. Answers were matched on average 

frequency and concreteness.

Procedure: The metaphor task was run in E-Prime 2.0. The target sentence appeared at the 

top of the screen, with the four answers in a square below it. Participants were instructed to 

select the answer that best expresses the meaning of the sentence. The position of the target 

and foils were randomized per item. Participants responded using keyboard button presses, 

responding as quickly and accurately as possible. The order of sentences was randomized 

across participants. Instructions were read aloud, and participants completed practice trials 

to ensure comprehension of the task
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Verbal Analogy: Participants completed the verbal analogy task based on Green et al., [52]. 

As depicted in Figure 1, participants see a relationship at the top of the screen and two 

possible response sets at the bottom. Participants choose one set from the possibilities at the 

bottom that are related in the same way as the words at the top. The task was administered 

through ePrime and included 30 trials. Order of trials was randomized across participants. 

Each correct response was scored for a total of 30 possible points.

Visual-spatial analogy: The visual analogy task served as a control task. Participants 

completed the visual analogy task described in Watson & Chatterjee [53]. As depicted in 

Figure 1, for each trial three sets of colored shapes were presented, the source set at the top 

of the screen and two possible response sets below it. Participants chose the response set 

that contained the same pattern of spatial relations as the source. The pattern can be based 

on color or shape. When the basis of the analogy was the relations between colors, all sets 

contained the same pattern of shapes. When the basis of the analogy was the relations of 

shapes, all sets contained the same pattern of colors. The task was administered through 

ePrime 2.0 and included 30 trials. Order of trials was randomized across participants. Each 

correct response was scored for a total of 30 possible points.

Statistical Methods

For behavioral group analyses, Generalized Linear Mixed-Effects Modelling (GLMEM) was 

used to predict group membership (CN or MCI) from task performance with random effects 

of item and participant. For anatomical analyses, Linear Mixed-Effects Modelling (LMEM) 

was used to predict task performance from fixed effects of anatomy, age, and education and 

random effects of item and participant. The lme4 package [54] in R (Version 3.6.3) was used 

for the following analyses.

Linear discriminant analysis was used to compare the relative performance of cognitive 

variables in discriminating participant group (CN and MCI). Validation procedures were 

not used, so these analyses are considered exploratory. Standard neuropsychological 

assessments (all tests listed in Table 1) were compared to the experimental measures 

(Senses, WAT, Literal trials, Metaphor trials, Verbal Analogy). Table 7 lists all the variable 

included in this analysis. Tests with higher coefficients of linear discrimination indicate 

a greater ability to differentiate groups. The lda function from the MASS package in R 

(Version 3.6.3) was used for these analyses.

Anatomical Methods

MRI scans were acquired on a 3T Siemens Prisma scanner at the Hospital of the University 

of Pennsylvania using a 64-channel array coil. The protocol includes T1-weighted 

(MPRAGE) whole-brain scan with the following parameters: TR/TE/TI=2400/2.24/1060 

ms, 8° flip angle, 0.8 × .0.8 × 0.8 mm3 resolution, acquisition time 6:38 min. MTL 

segmentation was performed in T1-weighted MRI using an analysis pipeline optimized for 

extracting subregional MTL measures, including anterior/posterior hippocampus, entorhinal 

cortex (ERC), BA35 (i.e. transentorhinal cortex), BA36, and parahippocampal cortex using 

an automatic pipeline, Automatic Segmentation of Hippocampal Subfields – T1 (ASHS-T1; 

[55]). This technique is tailored to reduce confounds of other approaches in this region, such 
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as anatomic variability and segmentation of dural tissue from grey matter [55]. Anterior/

posterior hippocampal volumes and cortical thickness of extrahippocampal MTL subregions 

(entorhinal cortex, BA35, BA36 and parahippocampal cortex) were calculated from ASHS-

T1 output [56]. See supplemental materials for additional details.

The participant groups were combined to examine brain-behavior relationships. LMEMs 

predicted task performance from the fixed effects of group, age and education and the 

random effects of participant and task item. First, the relationship between integrity of our 

region of interest, BA35, and task performance was examined. Next, exploratory analyses 

were run examining integrity of other MTL subregions and performance. The Holm method 

was used to control for multiple comparisons.

Finally, exploratory whole-brain cortical thickness analysis was performed using the ANTs 

cortical thickness pipeline that implements the DiReCT thickness estimation method [57]. 

These analyses relate performance on each task to cortical thickness in the collapsed groups. 

Regression analyses between cortical thickness values and performance on each task was 

performed at each voxel in a population template space. The randomize tool in FSL was 

used to run non-parametric permutations (n = 10,000) for each score. Clusters that met 

a height threshold of p < 0.05 uncorrected with threshold-free cluster enhancement and a 

minimum of 25 adjacent voxels are reported.

RESULTS

Tests of semantic memory, metaphor comprehension, and analogy comprehension were 

evaluated for their sensitivity to MCI and to cortical thickness of BA35.

Behavioral Results

Senses Task—GLMEM analyses (Table 3 and Figure 2A) revealed a significant effect of 

Senses performance (p < 0.05) in differentiating groups, with CN outperforming MCI.

WAT—GLMEM analyses (Table 4 and Figure 2B) reveal a significant effect of WAT 

performance (p < 0.005) in differentiating groups, with CN participants performing better 

than MCI.

Metaphor Task—Separate GLMEMs were used to analyze the effect of task performance 

on metaphor and literal trials in differentiating groups. These analyses reveal that Literal 

trial performance differentiates the CN and MCI groups (p < 0.01) while metaphor trials do 

not (p > 0.08, Table 5 and Figure 2C).

Verbal Analogy—GLMEM analyses (Table 6 and Figure 2D) reveal task performance 

significantly differentiates groups (p < 0.05) with CN outperforming MCI.

Visual-spatial Analogy—To examine potential group differences, 52 CN participants and 

35 people with MCI completed the Visual-spatial Analogy Task. GLMEM analyses show 

that visuo-spatial analogy task performance did not differentiate groups (p > 0.1). There 
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does not appear to be floor or ceiling effects as both groups perform significantly above 

chance (ps < 0.05) and perform more than 2 standard deviations away from a perfect score.

Linear discriminant analyses—Exploratory linear discriminant analyses were 

performed to examine which experimental and neuropsychological tests most strongly 

differentiate groups (MCI vs CN, Table 7). Tests with higher discriminant coefficients more 

strongly differentiate groups. These analyses reveal that the experimental measures better 

differentiate MCI from CN groups than standard neuropsychological assessments.

In summary, people with MCI perform worse on the tests of semantic richness, on the 

metaphor task, and on the verbal analogy task. Groups do not differ on the visuo-spatial 

analogy task. The experimental tasks appear to better differentiate groups than the standard 

neuropsychological assessments.

Anatomical results

Senses Task—Anatomical data was available from 25 participants with MCI who 

completed the senses task and 52 CN participants.

First, the relationship between integrity of our region of interest, BA35, and task 

performance was examined. Across groups, mean BA35 cortical thickness was associated 

with senses task performance (β == 0.77, p < 0.001, Table 8 and Figure 3). A 1 mm increase 

in BA35 thickness is associated with a 0.77 increase in the number of senses produced. 

Within the CN group, mean BA35 thickness was associated with the number of senses 

produced (p < 0.05). Within the MCI group, no relationships were seen between BA35 

integrity and task performance

Next, exploratory analyses were run examining integrity of other MTL subregions and task 

performance.

Across the combined groups, significant relationships were seen between senses task 

performance and integrity of mean anterior hippocampal volume (p < 0.05), mean BA36 

thickness (p < 0.001) and mean parahippocampal cortex thickness (p < 0.005).

Next, we examined relationships between MTL structural integrity and task performance 

in each group separately. Within the MCI group, no relationships were seen between MTL 

subregional integrity and task performance. Within the CN group, mean parahippocampal 

cortex thickness (p < 0.01) was associated with senses produced.

Finally, exploratory full-brain analyses revealed no relationship between cortical thickness 

and task performance within or outside the MTL.

WAT—Anatomical data was available from 26 participants with MCI who completed the 

WAT and 55 CN participants.

Across groups, mean BA35 thickness was associated with WAT performance (β = 0.191, p < 

0.05, Table 9 and Figure 4). Left BA35 thickness (β = 0.287) was more strongly associated 

with task performance that right BA35 (β = 0.199). Within the MCI group, no relationship 
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is seen between BA35 thickness and task performance (p > 0.1). Within the CN group, mean 

BA35 thickness was associated with WAT performance (p < 0.05).

Across groups, no other MTL subregions show a relationship with task performance. Within 

the MCI group, no relationships were seen between MTL subregional integrity and WAT 

performance. Within the CN group, mean parahippocampal cortex thickness was associated 

with performance (p < 0.001).

Exploratory full-brain voxel-based morphometry analyses reveal relationships between WAT 

performance and atrophy in the left hippocampus, the left anterior parahippocampal gyrus, 

and the right inferior temporal gyrus (Table 10 and Figure 5).

Metaphor—Anatomical data was available from 25 participants with MCI who completed 

the metaphor task and 51 CN participants.

For metaphor trials, mean BA35 thickness showed a trend in predicting accuracy (p < 0.1) 

across groups. Among CN participants, mean BA35 thickness showed a trend in predicting 

metaphor accuracy (p < 0.06). There was no relationship between BA35 and MCI task 

performance.

No other MTL subregions showed a relationship with metaphor accuracy across groups, or 

within the MCI or CN groups.

For literal trials, mean parahippocampal cortex thickness was associated with accuracy (p < 

0.05) across groups. Within both the MCI and CN participant groups, no MTL subregions 

predicted literal accuracy. Exploratory full-brain analyses revealed no relationship between 

cortical thickness and task performance outside the MTL.

Analogy Tasks—Anatomical data was available from 52 CN participants and 28 

participants with MCI who completed the verbal analogy and visual-spatial analogy tasks. 

There was no relationship between MTL subregional integrity and performance on either 

task.

Exploratory full-brain analyses reveal no relationship between cortical thickness and task 

performance outside the MTL.

Neuropsychological assessment and anatomy—MCI patients (Table 1) performed 

worse than CN participants on tests of overall cognition (MOCA p < 0.01) and on tests of 

semantic memory (Animal fluency p < 0.01. Vegetable fluency p < 0.01).

Animal (p > 0.9) and vegetable (p > 0.6) fluency did not relate to BA35 thickness, or to 

other MTL subregion integrity (ps > 0.2).

In summary for the anatomical analyses, performance on the semantic richness tasks 

showed relationships with BA35 integrity across groups and within the CN group. Metaphor 

task performance showed a trend. Performance on the analogy tasks and on standard 

neuropsychological assessments did not relate to atrophy in BA35.
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DISCUSSION

The goal of this study was to determine if experimental measures of semantic knowledge 

and figurative language can discriminate MCI from cognitively normal older adults, and to 

determine the degree to which performance on these tasks relates to morphometric measures 

of the earliest regions of AD pathology. Such measures, if sensitive to cognitive decline 

in the earliest stages of Alzheimer’s disease (AD), promise to help our ability to monitor 

disease progression and response to treatment. We tested the hypothesis that semantic 

richness is impaired in early stages of AD because of the recently appreciated role of the 

medial temporal lobe in supporting semantics, and the fact that these areas are known to be 

affected early in the disease. We also tested the hypothesis that comprehension of figurative 

language is impaired in this population. As predicted, these measures differentiated people 

with MCI from CN participants, and appear better at differentiating groups than standard 

psychometric tests. Further, performance on the experimental semantic measures, but not the 

figurative language tests, nor the standard neuropsychological assessments, was related to 

integrity of BA35, which includes the transentorhinal region, the first region associated with 

the neurofibrillary tangle pathology of AD.

On productive and receptive measures of semantic richness and depth of knowledge, MCI 

patients performed worse than CN participants and performance related to integrity of MTL 

subregions. Previous work has documented impairments on these tasks in patients with 

focal and stable MTL lesions [33, 58]. In the current study, semantic performance across 

groups, and remarkably within the CN group, related to integrity of BA35. Previous research 

has demonstrated a role for perirhinal cortex, including BA35, in supporting rich semantic 

memory [24-26]. It is striking that the standard neuropsychological assessments of semantic 

memory, which contributed to diagnostic classification, did not differentiate the groups with 

as large of an effect size, nor relate as well to MTL atrophy, supporting the claim of greater 

sensitivity for our experimental measures.

Given the involvement of MTL structures with early AD pathology, studies of episodic 

memory have been a focus of the study of prodromal [59-61] and preclinical AD [62-64]. 

While episodic memory is undoubtedly affected early in the course of AD, language is 

another aspect of cognition that notably deteriorates with disease progression [65-67]. 

Further, the perirhinal cortex, the area first affected by AD pathology, has long been tied 

to semantic memory [17, 20, 22, 29]. The current results argue that greater attention should 

be focused on semantic memory and figurative language in the study of preclinical and 

prodromal AD.

The ability to understand novel metaphorical and literal sentences differentiates CN from 

MCI participants. Previous work has documented metaphor impairments in the absence 

of literal language difficulty (as assessed by standard psychometric tools), in patients 

with focal brain lesions [35] and patients with neurodegenerative disease [36, 48]. These 

studies show that metaphor processing can be disproportionately impaired compared to 

literal sentence comprehension, suggesting that metaphor comprehension deficits could be 

a sensitive measure of cognitive change, revealing impairments while literal language is 

normal. Understanding a novel metaphor is a complex cognitive achievement requiring 
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inhibition of literal meaning, and cognitive flexibility to compare concepts from different 

domains to highlight their shared features. Impairments in multiple aspects of cognition 

may lead to a metaphor comprehension impairment. With its distributed neural support and 

cognitive complexity, metaphor comprehension may be sensitive to early cognitive changes 

in a variety of neurodegenerative disease.

MCI participants showed deficits on the semantic tasks, the metaphor task, and the verbal 

analogy task. The lack of group difference on the visuo-spatial analogy task, which also 

requires complex reasoning abilities, demonstrates the specificity of these findings. It is not 

the case that MCI patients are impaired at any complex task; their impairment in our study 

was restricted to tests that involved language and meaning.

Importantly, relationships were observed between task performance and integrity of MTL 

subregions not only across groups, but also within the CN group. The CN group 

likely contains individuals with preclinical AD and varying degrees of changes to MTL 

subregional integrity. Our morphometric measure of BA35 has been shown to be sensitive 

to the presence of preclinical AD in cognitively normal populations [68]. The present 

results suggest these cognitive tasks are related to these subtle changes and, thus, provide 

promise that they might have utility in detecting cognitive consequences of preclinical 

AD. It is unclear why this relationship is absent in the MCI group. Perhaps degeneration 

beyond the MTL diminishes the specific relationship between BA35 and task performance. 

Additionally, the smaller sample size of this group may have reduced power to detect such a 

relationship.

In our exploratory analyses we confirmed the relationship between hippocampal integrity 

and performance on the semantic memory tasks, revealing the necessity of the medial 

temporal lobe (MTL) for semantic richness, replicating previous findings [33]. These 

exploratory analyses failed to uncover relationships between task performance and neural 

regions outside of the medial temporal lobes, suggesting that MTL injury is sufficient 

to modulate performance on these tasks. This lack of correlation with additional cortical 

regions also may relate to that fact that in this population, tangle pathology, if present, would 

be largely confined to MTL structures. We predict that later in the course of AD, when 

degeneration spreads beyond the MTL, we would see relationships between degeneration 

and performance on the figurative language tasks. Novel metaphor comprehension, as 

tested in the current study, has previously been linked to neural activity in bilateral 

inferior frontal gyri and the left posterior middle temporal gyrus [36, 69). While the 

CN group outperformed MCI on the Verbal Analogy task, performance did not relate to 

MTL subregional anatomy. Task performance was previously tied to frontopolar activity 

[52]. Groups did not differ on Visuospatial Analogy performance and no relationship was 

observed with MTL integrity. Visuospatial analogy task performance was previously linked 

to bilateral rostrolateral prefrontal cortex [53]. In more advanced AD, when degeneration 

spreads to the frontal lobes, there would likely be stronger relationships seen with figurative 

language tasks.

A limitation of the current study is not having molecular markers of AD in enough 

individuals to include in the current analysis. Some participants in the CN group likely had 
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preclinical AD with evidence of cerebral amyloid. Accounting for such participants would 

likely further differentiate preclinical and prodromal AD from healthy aging. Conversely, 

some MCI participants would likely show an absence of cerebral amyloid and have cognitive 

impairment because of another etiology. Accounting for these individuals would give a 

clearer view of cognitive impairment specifically due to prodromal AD.

Other limitations include the relatively high level of education completed by our 

participants. The MCI group had a significantly higher level of education than the CN 

group, so we would expect to see even greater group differences if the groups were matched. 

Education was controlled for in all statistical models. That said, it remains to be seen 

how groups with lower levels of education would perform on these experimental measures. 

Finally, the current findings apply to native English speakers only. How non-native speakers 

would perform on these tasks is unknown.

Future directions for investigation include relating task performance to both amyloid and tau 

PET imaging. Useful cognitive screening instruments would ideally, in those with normal 

cognition, differentiate participants with and without cerebral amyloid. As the presence 

and location of neurofibrillary tangles often mirror the pattern of neurodegeneration and 

resulting cognitive decline [70-71], we predict that semantic task performances will be 

especially sensitive to the presence of Tau.

In summary, MCI patients performed worse than CN participants on measures of semantic 

richness and figurative language. Experimental semantic task performance relates to atrophy 

of BA35, the area first impacted by AD pathology, while standard neuropsychological 

assessments of semantics do not. The cognitive instruments evaluated here show promise in 

sensitivity to early stages of clinical AD.
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Figure 1. 
Example stimuli from shape and color trials of visuospatial analogical reasoning task (VSA) 

and within-domain and cross-domain verbal analogical reasoning task (VGA), derived from 

Watson & Chatterjee (2012) and Green et al (2010), respectively.
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Figure 2. 
Task performance (adjusted for differences in age and level of education) from participants 

with normal cognition (CN) and participants with Mild Cognitive Impairment (MCI). *p < 

0.05. Error bars represent standard error of the mean.
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Figure 3. 
Senses produced as a function of BA35 cortical thickness by cognitively normal participants 

(CN) and patients with mild cognitive impairment (MCI; β= 0.77, p < 0.05).
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Figure 4. 
Mean word associates correctly identified as a function of BA35 cortical thickness by 

healthy comparison participants (CN) and patients with mild cognitive impairment (MCI; β 
= 0.191, p < 0.05) on the Word Associates Test (WAT).
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Figure 5. 
Exploratory full-brain voxel-based morphometry showing relationships between 

performance on the Word Associates Test and brain atrophy. Clusters that meet a height 

threshold of p < 0.005 uncorrected with threshold-free cluster enhancement and a minimum 

of 25 adjacent voxels are depicted.
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Table 1

Neuropsychological Assessment

Group MOCA ANIMAL
Fluency

VEGETABLE
Fluency

TRAILA TRAILB CRAFTVRS CRAFTDVR UDSBENTC

MCI 21.96 
(3.31)

17.28 (4.87) 10.08 (3.90) 37.36 
(13.21)

163.16 
(188.67)

11.8 (6.16) 5.72 (6.00) 15.08 (1.68)

CN 27.10 

(2.25)***
23.04 

(5.39)***
14.83 (4.42)*** 30.12 

(7.81)**
68.13 

(26.99)***
22.81 

(5.32)***
20.44 

(5.98)***
15.71 (1.46)

Group UDSBENTD DIGFORCT DIGBACCT MINT UDSVERFC UDSVERLC Word 
List
Memory

Word 
List
Recall

Clock
Draw

MCI 5.32 (4.59) 7.4 (2.38) 5.72 (1.86) 27.4 
(3.51)

11.64 (4.53) 12.44 (5.21) 16.4 
(3.84)

4.60 
(2.25)

2.16 
(1.55)

CN 11.85 

(2.68)***
8.58 (2.29)* 7.73 

(2.25)***
30.19 

(2.21)***
16.21 

(4.45)***
14.54 

(4.52)**
24.46 

(3.39)***
8.50 

(1.60)***
1.21 

(0.78)***

Key: MCI: Patients with Mild Cognitive Impairment. CN: Healthy participants with normal cognition. MoCA: Montreal Cognitive Assessment. 
CRAFTVRS: Craft Story immediate recall. CRAFTDVR: Craft story delayed recall. UDSBENTC: Benson Complex Figure Copy. UDSBENTD: 
Benson Complex Figure Delayed. DIGFORCT: Number span forward. DIGBACCT: Number span backward. MINT: Multilingual Naming Test. 
UDSVERFC: Verbal Fluency Phonemic Test ‘F’. UDSVERLC: Verbal Fluency Phonemic Test ‘L’.

*
p < 0.05

**
p < 0.01

***
p < 0.005.

J Alzheimers Dis. Author manuscript; available in PMC 2022 February 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Klooster et al. Page 23

Table 2

Metaphor task examples

Sentence Target Foil 1 Foil 2 Foil 3

The uncle groaned in the other room physical suffering generous parent comfortable rest broken mirror

The inn groaned at the new guests crowded accommodations audible grumble plentiful vacancies winding road

J Alzheimers Dis. Author manuscript; available in PMC 2022 February 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Klooster et al. Page 24

Table 3:

Senses Task Fixed Effects

Parameter Estimate Std. Error z-value

Intercept −2.7922 1.4251 −1.959

Senses 1.0946 0.4478
2.445

*

*
p<0.05
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Table 4:

WAT Fixed Effects

Parameter Estimate Std. Error z-value

Intercept −8.7445 3.2699
2.674

**

WAT 2.7166 0.9355
2.904

**

**
p < 0.01
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Table 5:

Metaphor Task Fixed Effects

Parameter Estimate Std. Error z-value

Intercept −9.579 3.939
−2.432

*

Literal Trials 10.968 4.187
2.619

**

*
p < 0.05

**
p < 0.01.
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Table 6:

Verbal Analogy Fixed Effect

Parameter Estimate Std. Error z-value

Intercept −5.226 2.825 −1.850

Task performance 6.563 3.192
2.056

*

*
p<0.05
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Table 7

Coefficients of Linear Discriminants

Test Coefficients of linear discriminants

Literal Trials 4.90143564

Metaphor Trials 2.22805849

Verbal Analogy 1.43587324

Senses Test 0.41808097

Word Associates Test 0.3592963

Clock Draw 0.27567142

MINT 0.18601609

CRAFTDVR 0.16658615

Word List Immediate Memory 0.15247097

Complex Figure Copy 0.10362485

“F” fluency 0.0914816

Vegetable Fluency 0.07700773

CRAFTVRS 0.07401966

“L” Fluency 0.06845429

DIGFORCT 0.05365811

DIGBACCT 0.05350568

Complex Figure Delayed 0.04237303

MOCA 0.0239047

Word List Recall 0.0195345

TRAIL A 0.01682269

Animal Fluency 0.0159856

TRAIL B 0.00088722

Key: MINT: Multilingual Naming Test. CRAFTDVR: Craft story delayed recall. CRAFTVRS: Craft Story immediate recall. DIGFORCT: Number 
span forward. DIGBACCT: Number span backward. UDSBENTD: Benson Complex Figure Delayed. MoCA: Montreal Cognitive Assessment.
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Table 8:

Senses x BA35 Fixed Effects

Parameter Estimate Std. Error t-value

Intercept 1.20104 1.09642 1.095

Group (CN) 0.46299 0.15800
3.818

**

Age −0.01739 0.01025 −1.697

Education 0.08818 0.02331
3.783

**

Mean BA35 0.77254 0.32650
3.238

*

*
p < 0.05

**
p < 0.01.

CN: Cognitively normal participants. BA35: Brodmann Area 35.
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Table 9:

WAT x BA35 Fixed Effects

Parameter Estimate Std. Error t-value

Intercept 2.805618 0.493922
5.680

***

Group (CN) 0.285037 0.071716
3.975

***

Age −0.005537 0.004599 −1.204

Education 0.036152 0.010738
3.367

**

Mean BA35 0.328675 0.157183
2.091

*

*
p < 0.05

**
p < 0.01

***
p < 0.001.

CN: Cognitively normal participants. BA35: Brodmann Area 35.
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Table 10

Results of full-brain voxel-based morphometry analyses

cluster size Peak p-value x y z Location

198 < 0.001 −29 −18 −20 Left hippocampus

416 < 0.001 46 −35 −21 Right inferior temporal gyrus (posterior division)

82 0.002 −32 −21 −27 Left anterior parahippocampus gyrus
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