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Abstract

Purpose: To compare different optimization approaches for choosing the spin-lock times (TSLs), 

in spin-lattice relaxation time in the rotating frame (T1ρ) mapping.

Methods: Optimization criteria for TSLs based on Cramér-Rao lower bounds (CRLB) are 

compared with matched sampling-fitting (MSF) approaches for T1ρ mapping on synthetic data, 

model phantoms, and knee cartilage. The MSF approaches are optimized using robust methods 

for noisy cost functions. The MSF approaches assume that optimal TSLs depend on the chosen 

fitting method. An iterative non-linear least squares (NLS) and artificial neural networks (ANN) 

are tested as two possible T1ρ fitting methods for MSF approaches.

Results: All optimized criteria were better than non-optimized ones. However, we observe that a 

modified CRLB and an MSF based on the mean of the normalized absolute error (MNAE) were 

more robust optimization approaches, performing well in all tested cases. The optimized TSLs 

obtained the best performance with synthetic data (3.5–8.0% error), model phantoms (1.5–2.8% 

error), and healthy volunteers (7.7–21.1% error), showing stable and improved quality results, 

comparing to non-optimized approaches (4.2–13.3% error on synthetic data, 2.1–6.2% error on 

model phantoms, 9.8–27.8% error on healthy volunteers).

Conclusion: A modified CRLB and the MSF based on MNAE are robust optimization 

approaches for choosing TSLs in T1ρ mapping. All optimized criteria allowed good results even 

using rapid scans with 2 TSLs when a complex-valued fitting is done with iterative NLS or ANN.
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1. INTRODUCTION

The spin-lattice relaxation time in the rotating frame (T1ρ) has shown sensitiveness to loss 

of proteoglycan content in the cartilage (1,2) and T1ρ relaxation mapping can be useful for 

early detection of osteoarthritis (OA) (3). To produce good and stable T1ρ maps, many T1ρ-
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weighted images must be acquired, taking a long acquisition time if a good signal-to-noise 

ratio (SNR) and small variance in the estimated parameters are desired.

The quality of T1ρ mapping can be improved if the SNR of the acquired data is improved 

(4). This can be achieved by using different pulse sequences (5), by averaging multiple 

acquisitions, or even by using multiple receiving coils (6). Specifically, in T1ρ mapping, 

improved quality can also be obtained by optimally choosing the spin-lock times (TSLs), 

also called optimal TSL sampling schedules (7). Efficient choices can reduce the overall 

acquisition time while maintaining a good quality of the estimated parameters.

The choice of the sampling schedules is important in quantitative MRI in general. This 

has been discussed for T1ρ mapping (7), for spin-lattice relaxation time (T1) and spin-

spin relaxation time (T2) mapping (8–12), for magnetic resonance (MR) fingerprinting 

(13,14). Typically, this problem is handled with optimization of the Cramér-Rao lower 

bounds (CRLB) (15). Improving the CRLB using better signal sampling is related to the 

improvement of the stability of unbiased statistical estimators. In (16,17), the similarity 

in construction of the Fisher information matrix (FIM), used in the CRLB optimizations, 

and the Hessian matrix (or its approximations using the Jacobian matrix), used by fitting 

algorithms based on non-linear least squares (NLS) (18), is demonstrated for the case of 

Gaussian noise and differentiable fitting models. Essentially, this implies that optimizing 

the sampling schedule using CRLB leads to a “regularization by discretization” of the NLS 

problem (19), improving the condition number of the matrix used in the non-linear system 

solved by these algorithms and, consequently, stabilizing the non-linear inverse problem 

(17). Even though NLS methods had direct benefit from the optimized sampling schedule, 

other aspects of the estimation algorithms are not considered when using CRLB, such as 

the type of iterative algorithm, constraints, step-sizes, number of iterations, or initial guess. 

However, these choices are relevant for the effectiveness of the fitting algorithm. Data-driven 

approaches, such as those used to optimize the k-space sampling pattern in MRI (20–22) and 

flip-angles in T1 mapping (16), can consider the specific strategies of a fitting algorithm. 

These approaches claim that effective sampling patterns depend on the recovering method 

and expected signal parameters. They are called here as matched sampling-fitting (MSF) 

because they include the fitting algorithm in their criterion for optimal sampling.

While curve fitting is classically solved with NLS, other approaches, such as artificial neural 

networks (ANNs)(23–27) can be exploited. Curve fitting with ANNs is not a novelty (23), 

but the topic has been revived in MRI (28–30) due to the good results of deep learning 

with relaxometry (31,32). An ANN is usually trained with sample data of the expected 

exponential relaxation process. The input signals are non-linearly processed by the ANN to 

obtain the parameters of the relaxation model. Since ANN works differently from unbiased 

estimators, it is not known if optimization of the sampling schedules with CRLB is useful 

for T1ρ mapping with ANNs.

Both approaches, CRLB and MSF, consider a specific distribution of relaxation parameters 

for the optimization process, which should correspond to the distribution expected on the 

scanned subjects. Besides, there are many possible cost functions to compose a criterion. 

The cost function objectively defines what the best sampling schedules are (considering 
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a given distribution of relaxation parameters is expected). All these choices lead to 

different optimal sampling schedules, which may have different performances in practical 

applications.

In this study, we compare four different criteria. Two CRLB criteria are compared: one 

based on the sum of the CRLB for each parameter, and the other one based on the sum of 

the squared root of the CRLB normalized by its parameter value. Also, two MSF criteria are 

compared: one based on the mean squared error (MSE), and the other one based on the mean 

of the normalized absolute error (MNAE). All approaches consider the monoexponential 

complex-valued signal model, the expected distribution of parameters in the human knee 

cartilage, and complex-valued Gaussian noise. Besides, MSF criteria also consider the fitting 

method. Because MSF leads to the optimization of noisy cost functions, we optimize it with 

subset selection algorithms for noisy problems, such as (33).

We observe that different optimal TSLs are obtained from different criteria and, in general, 

they are always better than non-optimized TSLs. However, the Modified CRLB and the 

MSF criterion based on MNAE described later in this work are more robust approaches, 

being insensitive if the model of choice considers the optimization of T1ρ or its inverse, 

the spin-lattice relaxation rate in the rotating frame (R1ρ). These optimizing approaches 

obtained TSLs that are stable across the test problems, enabling good T1ρ mapping results 

for synthetic data, model phantoms, and healthy volunteer’s knee cartilage.

2. METHODS

2.1. 3D-T1ρ-Weighted Data Acquisition and Reconstruction

The 3D-T1ρ-weighted datasets were acquired with various TSLs (optimized and non-

optimized) using a modified 3D Cartesian low flip-angle fast gradient-echo sequence (34). 

Fourier Transform is applied in the readout (frequency-encoding) direction, denominated kx, 

to separate 3D Cartesian data into multiple 2D slices on the ky-kz plane.

The MRI scans were performed using a 3T clinical MRI scanner (Prisma, Siemens 

Healthcare, Erlangen, Germany) with a 15-channel Tx/Rx knee coil (QED, Cleveland OH). 

The T1ρ preparation module P uses spin-lock frequency=500Hz and TSL defined by the TSL 

sampling schedule. The 3D imaging module A acquires 64 k-space lines (with 256 samples 

each) of the data matrix per preparation pulse, using a steady-state sequence with TR/

TE=7.60ms/3.86ms and flip-angle=8°, and receiver bandwidth=510 Hz/pixel. A longitudinal 

magnetization restoration module R with delay=1000ms is used after the imaging module 

A and before the repetition of the next set of modules P-A-R, which are repeated 128 

times to capture a data matrix of size 256×128×64 per TSL. The slice thickness=2mm, the 

field of view (FOV)=140mm×140mm. This T1ρ pulse sequence is illustrated in Figure 1. 

Each module P takes approximately the TSL (between 1 and 55 ms), each module A takes 

approximately 64×TR=486.4ms, and each module R takes 1000ms. Each shot is composed 

of one set of modules P-A-R and takes 1.5 sec. The shots are repeated 128 times to collect 

all k-space data for one specific TSL, taking 3.28 minutes per TSL. The more TSLs are 

captured, the longer is the total acquisition time.
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After separation of 2D slices, each slice is reconstructed with SENSE (35), that minimizes:

xt = argminxt yt − FBxt 2
2, [1]

where xt is a complex-valued vector that represents an image with TSLt, with size Ny × Nz = 

128 × 64, with Ny being the image size in the y-axis and Nz the size in the z-axis. The vector 

yt represents the captured k-space with size Ny × Nz× Nc, where Nc = 15 is the number of 

coils. The matrix B contains the coil sensitivities and phase compensation (36,37), F the 

Fourier transforms of all sensitivity-weighted images. The e 2
2 is the squared l2-norm or 

Euclidean norm of e = yt − FBxt.

The T1ρ magnetization-preparation pulses in this study accept TSLs between 1 and 55 ms, 

spaced by 1 ms. In this study, two non-optimized choices of TSL, one logarithmically 

spaced and one linearly spaced within the range of possible TSLs were used to compare 

against optimized TSLs.

The T1ρ-weighted scans were performed in model phantoms and human volunteers. The 

model phantoms are composed of 2%, 3%, 4%, 5%, and 6% agar gel. The human knee 

data were acquired in the sagittal plane from five healthy volunteers (males, mean age 31±8 

years). Each scanning session acquired 16 TLSs for agar gel model phantoms and 15 TSLs 

for healthy volunteers, with an acquisition time of 3.28 minutes per TSL. The scanning 

session of model agar gel phantoms and one human volunteer was repeated for repeatability 

evaluation. This study was approved by the institutional review board (IRB) and all the 

volunteers consented before scanning.

2.2. Exponential Models:

The T1ρ relaxation is represented using a complex-valued exponentially decaying process 

(38), described as:

x t, n = θ1 n exp − t
θ2 n + η t, n [2]

with complex-valued θ1(n), real-valued relaxation time θ2(n), and complex-valued white 

Gaussian noise η(t, n) at spin-lock time t and spatial position n with voxel [xt]n = x(t, n). 

The model in Equation 2 is the same for all spatial positions, then we will omit n from the 

following equations. Also, the observed signal will be acquired using K spin-lock times t = 

[t1, … , tK]T, where tk ∈ T which is a finite set containing all possible TSLs one can set in 

the MRI scanner (between 1 and 55 ms, spaced by 1 ms), x = [x(t1), … , x(tK)]T, and the 

parameters are shown as θ = [θ1 θ2]T. We may write x(t, θ) = [x(t1, θ), … , x(tK, θ)]T, to 

emphasize the dependence Equation 2 on the TSL sampling schedule t and parameters θ.

The model based on the R1ρ, which is the inverse of the T1ρ value, is described as:

x tK = θ1exp −θ2tK + η tK , [3]

where θ2 = 1/θ2. Unless explicitly noted, we will use the T1ρ model from Equation 2.
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2.3. Fitting Algorithms:

Two methods were used for T1ρ fitting. The first method uses NLS, according to:

θ = arg minθ ∈ Θ∑k = 1
K x tk − f tk, θ

2
≈ R x [4]

where f (tk, θ) = θ1 exp(−tk/θ2), and Θ is a set that contains the relaxation parameters.

Equation 4 is minimized using the conjugate gradient Steihaug’s trust-region (CGSTR) 

algorithm (39), stopping at a maximum of 2500 iterations or when the normalized update is 

lower than 10−9. The set Θ constrains the parameter θ2, the T1ρ relaxation time, within the 

range of 10 and 100 ms, while θ1 is not constrained.

The second fitting method is a shallow ANN (23), with one hidden layer of fully connected 

components of dimension 12, hyperbolic tangent sigmoid transfer function as the non-linear 

element, and a linear output layer. The number of inputs is 2K where the magnitude and 

phase of the complex numbers are used as separated inputs for each of the K TSLs. There 

are 3 real-valued outputs: the magnitude and phase of the θ1 and the real-valued θ2. The 

output θ2 is constrained between 10 and 100 ms as in the NLS fitting.

To use an ANN for fitting, the following training process needs to be performed:

w = arg minw∑p = 1
P θp − R w, xp 2

2
[5]

where θp = R w, xp  represents the ANN, with parameters w (learned during training) and 

input signal xp, such as used in (23). The index p is the index of the sample of the 

parameters θ ∈ Θ. The learning problem in Equation 5 is performed using 400 iterations of 

the Levenberg-Marquadt algorithm (18), using P=20000 samples of the exponential signal 

xp artificially generated according to Equation 2. From the parameters θp = [θ1 θ2]T, θ2 is 

taken from a uniform distribution between 10 and 100 milliseconds, and the parameter θ1 

is a random complex number with normalized magnitude. The additive Gaussian noise η is 

independent and identically distributed with zero mean and a standard deviation selected to 

obtain an SNR of 30. The SNR of 30 was the lowest value obtained from measuring SNR in 

model phantoms and in vivo knee cartilage data, as described next in section 2.4. When the 

fitting is applied to model phantoms or healthy volunteer data, the signal x is normalized and 

the normalization constant integrated into parameter θ1.

2.4. T1ρ and SNR Statistics:

For the TSL optimization procedure, it is necessary to give sample values for θ1, θ2, 

and noise. For this purpose, we use reference values from the literature (7) for synthetic 

experiments and measured values from the model agar gel phantoms and human knee 

experiments. For synthetic experiments, following (7), we used T1ρ values for θ2 as a 

uniform distribution between 20 and 70 ms, θ1 values as random complex-valued numbers 

with normalized magnitude, and Gaussian noise with fixed standard deviation to obtain SNR 

values of 30 and 125 (from our measurements on human volunteers).
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For the optimization of the TSLs for model phantoms and knee cartilage, we used data 

obtained using a non-optimized sequence. First, the noise standard deviation was estimated 

using the Marchenko–Pastur principal component analysis (MP-PCA) (40). The MP-PCA 

reshapes the 3D volumes of all K TSLs into a matrix X, of size (K×256)×(128×64), and uses 

the singular value decomposition X = UΛVT, with singular values Λm m = 1
M = diag Λ . The 

MP-PCA detects the thresholding 1 ≤ p ≤ M, where the noise standard deviation is

ση = ∑m = p + 1
M Λm

2 / M − p . [6]

To obtain values for θ1 and θ2, a fitting algorithm was applied voxel-wise in a region of 

interest (ROI) of the model phantoms and the knee cartilage. The pairs of parameters θ1 

(complex-valued amplitudes) and θ2 (T1ρ values) were stored. Note that in model phantoms 

and human knee images, the SNR is variable voxel-wise, and can be computed as

SNR(n) = θ1(n) /ση, [7]

where n is the spatial position. The SNR=30 was the lowest SNR obtained in knee cartilage 

measurements, and SNR=125 was the mean value. The SNR values were fixed in the 

synthetic experiments.

2.5. Optimizing Spin-Lock Times using Cramér-Rao Lower Bounds:

The CRLB asserts a lower bound on the variance of any unbiased estimator (15). In multi-

parameter estimators, the Cramér-Rao matrix (CRM), defined as V (t, θ), is given by:

V (t, θ) = I−1(t, θ), [8]

where I (t, θ) is the Fisher information matrix (FIM), given by:

I t, θ = E ∂lnρ x t, θ
∂θ

∂lnρ x t, θ
∂θ

T
t, θ . [9]

where x(t, θ) = [x(t1, θ), … , x(tK, θ)]T and ρ (x(t, θ)) ln is the natural logarithm of the 

probability density function of the signal given by Equation 2 or 3. Explicit forms of the 

FIM for the models in Equations 2 and 3 are in the Appendix. The i-th diagonal element 

of the CRM in Equation 8 represents the lower bound of the variance of the estimated i-th 

parameter, written as:

Var(θ i) ≥ V t, θ i, i [10]

The CRM depends on the TSLs t used in the acquisition and the model parameters θ. The 

parameters depend on the expected values according to the anatomy, such as knee cartilage. 

We used in the optimization the values obtained with the procedure from section 2.4.

We are interested in t that minimizes the CRLB averaged over the parameters θ expected in 

the cartilage. The optimization of the weighted averaged CRLB is stated as:
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t = arg mint ∈ T
1
S ∑s = 1

S ∑iωi V t, θs i, i , [11]

where ωi is the weight of a particular parameter, and it is used to weigh the importance 

of the parameters. In this work, we are just interested in improving the T1ρ value of the 

exponential model, given by θ2, regardless of θ1, using ω1 = 0 and ω2 = 1. The TSLs 

t should be in a pre-defined grid T. In this study, T corresponds to a grid of possible 

TSLs between 1 and 55 ms, spaced by 1 ms. Where θs is the s-th sample drawn from the 

distribution of the parameters of the anatomy or object.

We are particularly interested in the following Modified CRLB criterion that resembles the 

mean of the normalized absolute error (NAE), which leads to:

t = arg mint ∈ T
1
S ∑s = 1

S ∑iωi
V t, θs i, i

θs i
. [12]

This is the squared root of the magnitude of the element in the CRM weighted by the 

magnitude of the component, which favors equal relative precision across the components 

(11), and is more robust since it avoids that large V (t, θ) dominates the overall cost (41). 

This is also connected to the mean of coefficient of variations (CV) over a set of possible 

parameters.

Because the optimization of the CRLB is an exact (i.e. non-noisy) optimization, any method 

for combinatorial problems can be used. We used recently-developed subset selection 

methods such as Pareto Optimization for Subset Selection (POSS) (42,43).

2.6. Matched Sampling-Fitting Optimization:

CRLB criteria are connected to the use of unbiased estimation methods for fitting (16,17) 

and optimize the lower bound for the variance of the estimated parameters (15). This does 

make the Hessian matrix (or its approximation using the Jacobian matrix) involved in 

NLS methods more stable, with a better condition number (19,44). However, this does not 

necessarily mean that the chosen t will provide the best performance on a particular fitting 

method. Note that iterative fitting methods for NLS, such as CGSTR (39) or Levenberg-

Marquardt (18), are not necessarily unbiased estimators. They have their approaches to deal 

with the ill-conditioning of the non-linear system (18). This means that CRLB may not be 

a fundamental bound in this context. Besides, fitting methods based on ANNs may have no 

benefit by using CRLB-optimized TSLs.

Following the arguments of data-driven approaches for MRI that optimizes the k-space 

sampling according to the recovery method (20–22), where it was observed that a matched 

sampling-reconstruction is more effective, we decided to modify the TSLs optimization to 

include the fitting algorithm. CRLB is partially symbolic, using the model derivative and 

statistical expectation of the second-order moment of the noise, and partially numerical, 

using numerical values of θ. In contrast, sampling-fitting approaches are purely numerical, 

even though the data can be generated from analytical models, as we did in this work.
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Considering θs as the s-th sample of the expected parameters, and xs is the noisy signal 

generated with θs from Equation 2, the fitting algorithm returns the estimated θs = R t; xs , 

assuming that the TSL schedule t was used to generate xs. The proposed criterion considers 

the following minimization problem:

t = arg mint ∈ TF t , [13]

being:

F t = 1
S ∑s = 1

S d θs, R t; xs , [14]

where d θ, θ  is a measurement of the distance between the exact parameters θ and its 

estimation θ . One possible choice for d θ, θ  is the weighted squared error, given by:

d θ, θ = ∑i = 1
2 ωi θi − θ i

2, [15]

leading Equation 13 to the optimization of the mean squared error (MSE), where ωi is the 

weight on the i-th element of θ, which we denominated MSF-MSE. Another possible cost 

function is to use the normalized absolute error (NAE) of each parameter, given by:

d θ, θ = ∑i = 1
2 ωi

θi − θ i
θi

, [16]

leading Equation 13 to the optimization of the mean of the normalized absolute error 

(MNAE), denominated MSF-MNAE, which is also related to the coefficient of variations.

The learning problem in Equation 13 uses samples of the signal xs, generated according to 

Equation 2, considering the current t, η, and θ = [θ1 θ2]T. We used values obtained with the 

procedure described in section 2.4.

Note that the cost function in Equation 13 is noisy (33), because the cost d(θs, R(t, xs)) 

requires to compute R(t; xs), where the signal xs is generated with random noise. This makes 

the optimization problem also noisy, and the optimization algorithm must be aware of it.

Algorithm 1 is a modification of Pareto Optimization for Noisy Subset Selection (PONSS) 

(33,42), denoted here as Modified PONSS. Similar to PONSS, a group of candidate 

solutions is stored in the set C. At each iteration of Algorithm 1, one element of C, defined 

as t, is selected (in line 5) and modified (in line 6) by changing one of its elements in the 

composition of a new candidate as t′. The modification is a random switch of one of its time 

points to a new point in a pre-defined grid T. The new candidate t′ will be accepted in the 

set C if F (t′) < F (tbest) + 2b.

Because F (t) is noisy, one needs to include the dispersion of the values of the cost function, 

represented by b. In the same way as PONSS, good candidates in the ±b range are not 

discarded. However, since the size of the set C may grow significantly, a new evaluation of 

the cost function is done between lines 12 and 15 of Algorithm 1, also called a tie-break 
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in (33). In the regular PONSS, in (33), a new sample of F (t) is drawn from each t ∈ C, 

while previous F (t)’s are forgotten. Here, in the Modified PONSS, the new samples are 

proportionally averaged to the mean F (t), (in line 14), leading the optimization to the mean 

value of the noisy cost function. As more tie-breaks are done, more samples of F (t) are 

drawn, producing better estimations of the mean F (t)’s.

2.7. Analysis of Estimated T1ρ Values:

To validate the results, we compare the estimated T1ρ values obtained with different TSLs 

against reference values. In the synthetic experiments, the exact T1ρ values are known. For 

the other cases, the reference values are estimated using all TSLs acquired in each scanning 

session. We used the MNAE:

MNAE = 1
ROI ∑n ∈ ROI

θ2 n − θ2 n
θ2 n , [17]

and normalized root MSE (NRMSE):

NRMSE =
∑n ∈ ROI θ2 n − θ2 n 2

∑n ∈ ROI θ2 n 2 . [18]

The sums consider the voxels n in the region of interest (ROI), where |ROI| is the number of 

voxels in the ROI. The ROI was manually segmented. Also, θ2 (n) is the reference value of a 

particular voxel, and θ2 n  is its estimation using the TSL schedule being evaluated.
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To assess repeatability, we evaluate the coefficient of variations (CV), which corresponds 

to RMS CV used in (45). For agar gel phantoms the sessions were repeated one after the 

other without moving the phantom. We also assessed linear predictability between agar gel 

concentrations and R1ρ values by using the coefficient of determination (R2). For healthy 

volunteer scans, motion correction was used to register the knees in the same position.

3. RESULTS

3.1. Illustration of Noisy Cost Functions and Stability of the Modified CRLB:

In Figure 2 we illustrate the issue with noisy cost functions and the stability of the modified 

CRLB using curves related to small problems (K=2). Figure 2(a) shows CRLB and Modified 

CRLB for optimizing TSLs targeting the models in Equations 2 and 3. If the objective is 

improving T1ρ, then the FIM, shown in Equation A1 in theAppendix, has its components as 

in Equation A2. On the other hand, if the objective is improving R1ρ, then the components 

of FIM should be as in Equation A3. Note that when the T1ρ value is estimated, the R1ρ 
value is automatically obtained. However, from the point of view of the CRLB optimization, 

they are different things and have different optimal TSLs. In this sense, the Modified CRLB 

has the advantage of being invariant to this choice, as seen in Figure 2(a). No matter if 

one is interested in improving T1ρ or R1ρ estimation, the optimal TSL sampling schedule 

is the same. Figure 2(b) shows a comparison of the two (non-noisy) CRLB criteria for T1ρ 
values (CRLB and the Modified CRLB) and the mean cost function (averaged from 15 

realizations) of the two (noisy) MSF criteria (MSF-MSE and MSF-MNAE). Note that the 

optimal solutions for the Modified CLRB and MSF-MNAE are much closer to one another 

than the CRLB and MSF-MSE. Figures 2(a) and 2(b) illustrate the stability of the Modified 

CRLB.

Because the MSF cost functions are noisy, each realization may have a different minimum. 

In Figure 2(c), it is shown the curves for two different realizations. Optimization methods for 

exact cost functions are likely to converge to the optimum of one realization because they 

expect the evaluations of F(t) to be exact. Since they are not exact, we need a method able to 

converge to the optimal solution of the mean cost function. To achieve this, the optimization 

method needs to average among multiple measures of F(t). Also, the value of b in Modified 

PONSS should be chosen considering the dispersion of the noisy cost function around its 

mean value. This can be seen in Figures 2(d), which shows the mean cost function and a 

range of values (±3 st.dev.) where 99.73% of the realizations are expected to be.

3.2. Evaluation of the Optimized TSLs for Synthetic Data:

The evaluation of the methods with synthetic data is composed of 15 repetitions of the 

sampling-fitting, using S=5000 samples of exponential functions generated according to the 

model from Equation 2, with parameters (θ1 and θ2) obtained as described in section 2.4.

The non-optimized and optimized TSLs, for different K, are shown in Table 1 for SNR=30 

and in Supporting Information Table S1 (in the supplemental information) for SNR=125 

showing the MNAE and NRMSE, in percentages. Note that optimized TSLs with K=2 are 

approximately equal in quality to non-optimized with K=3, and optimized TSLs with K=3 
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are equivalent to non-optimized with K=4. In Figure 3, we see the performance of some 

TSL schedules for individualized T1ρ values in the range used in this experiment. This 

figure shows an average of 500 repetitions for each T1ρ value. The resulting curve (with 

lower MNAE) shows the reduced estimation error for T1ρ values (with low MNAE) in 

the expected range. Note that the estimation error is different for each T1ρ and each TSL 

schedule favors some T1ρ values.

3.3. Experiments with T1ρ Model Phantoms:

The reference T1ρ map of the model phantom (composed of tubes with 2%, 3%, 4%, 5%, 

and 6% agar gel) is shown in Figure 5(a). It was computed using all the 16 TSLs acquired 

in the session (1, 1, 3, 10, 20, 25, 30, 32, 32, 34, 34, 38, 40, 40, 42, 55 ms). Figures 4 

shows the linear regression between agar gel concentrations and R1ρ values. The strong 

coefficient of determination (R2) with R1ρ values shows the linear predictability between 

agar gel concentrations and R1ρ values. One-dimensional histograms of the T1ρ values for 

the first and second scans of the phantom are shown in Figure 5(b). Some illustrative 

examples of T1ρ maps and their voxel-wise error related to the reference are shown in Figure 

5(c)–(f). These examples illustrate the improvement in the maps and reduction of error with 

optimization of the TSLs. Table 2 shows all the results with model phantoms computed from 

10 slices of the T1ρ phantom.

3.4. Experiments with In Vivo Knee Cartilage Data:

In-vivo knee cartilage data from five volunteers were acquired. A non-optimized scan of one 

of the volunteers was used to obtain parameters for training, as described in section 2.4. In 

Figure 7(e) a 2D histogram showing the pair of T1ρ and SNR (as defined in Equation 7) 

values of the volunteer used for training is presented. The 2D histogram of one of the other 

volunteers is shown in Figure 7(m), with its respective 1D versions for each repeated scan in 

Figures 6(e) and 6(m).

In each scanning session, a total of 15 TSLs were acquired to compose all optimized and 

non-optimized TSLs needed for the comparison (only K =2 and K =3 were compared 

to avoid long scanning sessions). The reference T1ρ map was computed using the values 

measured from all the 15 TSLs (TSLs=1, 1, 3, 10, 20, 25, 30, 31, 32, 36, 37, 40, 42, 

47, 55 ms). One of the volunteers was scanned twice, one week apart, for repeatability 

evaluation. The MNAE, NRMSE, and CV are shown in Table 3. Figure 6 shows some 

illustrative T1ρ maps and voxel-wise errors (related to the reference) to compare optimized 

and non-optimized TSLs for medial cartilage. Also, the first and second scans of one 

volunteer are shown (same slice) to illustrate the repeatability. Figure 7 shows similar results 

for the lateral cartilage.

4. DISCUSSION

4.1. Fitting with Non-Linear Least Squares and Artificial Neural Networks:

The T1ρ mapping results using NLS or ANN are very similar in terms of quality, as seen 

in Tables 1, 2, 3, and Supporting Information Table S1, more than previously reported (23). 

ANNs are computationally advantageous when a large number of voxels are to be fitted. 
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Even though the training process takes some time (0.2~1 hours), the fitting process of new 

data is fast (2~10 sec).

While the difference in quality according to the fitting method is not large in this problem, 

the difference in quality according to the chosen TSL is. Using optimal TSLs improved both 

fitting approaches, NLS and ANN, by larger margins, especially for small K, as seen in the 

tables.

4.2. Difficulties of the Optimization of MSF and Advantages of CRLB:

Algorithms like POSS can find the optimal solution for CRLB criteria relatively quickly, 

taking from 10 minutes to 1 hour in our problems, because the cost function only needs to 

be evaluated once for a particular t. On the other hand, optimizing any of the MSF criteria 

is more difficult. Cost functions are more expensive to evaluate since it requires to perform 

the fitting process, and they have to be evaluated multiple times for improved precision. 

The finer the precision of the grid T, the more evaluations are needed to properly resolve 

which t is optimal. Because of these issues, algorithms like the Modified PONSS require 

a longer optimization time, in the order of 10 to 100 times more cost function evaluations 

than with exact cost functions (from 1 day to a couple of weeks in our problems). This long 

optimization time is not always worthwhile, considering that CRLB criteria, which is easier 

to optimize, obtain very close quality results.

4.3. Robustness of the Modified CRLB and MSF-MNAE:

As seen in Figure 2(a), the CRLB is sensitive to the exponential model used, leading to 

different optimal TSLs for T1ρ and R1ρ. In contrast, the Modified CRLB was insensitive to 

choice for T1ρ or R1ρ. The MSF-MNAE also shares the same robustness property, as seen 

in Figure 2(b), producing stable results across the different experiments than the ordinary 

CRLB and MSF-MSE.

4.4. Stability and Unicity of the Optimal TSLs:

Note that the optimization of the TSLs is a non-convex problem. In this sense, there is no 

guarantee of uniqueness. On top of it, the optimal TSLs are usually in a plateau in the cost 

function (a plateau is a region of the cost function where the cost is approximately equal), 

as seen in Figure 2, particularly in Figure 2(a) and 2(b). This explains why different TSL 

schedules performed almost equally well in most experiments, particularly with large K. In 

this sense, the resulting TSLs provided in Tables 1, 2, and 3 and Supporting Information 

Table S1 should not be taken as the unique optimal TSL because other non-tested TSLs 

schedules may perform equally well. Note also that, as shown in Figure 3, that a particular 

choice of TSL schedule may perform better for some T1ρ values than the others. This 

usually depends on the given distribution T1ρ values of and the chosen criterion.

4.5. Comparison with Previous Studies:

In (7) only linear fitting in the magnitude values was considered. Here we rely on the fact 

that complex-valued fitting, being it done by NLS or ANNs, is more precise, and we also 

assessed different optimization criteria. Even though the precision of the grid T in (7) is 

small (TSLs spaced by 10 ms), some similarities among optimal values are observed: the 
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first TSL is usually in the smallest position of the grid while the others are clustered nearby 

in mid to large positions. Similar results have already been shown in (46). In some sense, 

the optimal TSLs we obtained contradicted our previous intuition that good TSLs should be 

spread in time (34,47). Plots like in Figure 3 can help to check if certain expected T1ρ values 

are well-covered by the chosen TSL schedule.

In (8,9) the worst-case of the CRLB for the expected range of parameters was optimized, 

instead of the mean-case considered in Equations 11. Worst-case optimization focus on 

reducing the cost for the worst parameter in the range of expected parameter values. The 

mean of the CRLB, on the other hand, depends on the expected distribution of parameters, 

giving more importance to more frequent parameters. Mean-case is more accurate when the 

distribution is known and stable across different scanned subjects.

In (11) worst-case of the Modified CRLB for the expected range of parameters was 

optimized. This is the same modification of the CRLB parameters done in Equation 12, 

except that in Equation 12 the mean is optimized. In (13), the mean-case optimization with 

a cost function similar to Equations 11 was used for MR fingerprinting. To the best of 

our knowledge, no other study compared different CRLB approaches and different MSF 

approaches with various fitting methods to find which one is better for choosing the TSL 

sampling schedules.

4.6. Limitations of This Study and Future Directions

In this study, we considered Gaussian noise in complex-valued fitting algorithms, assuming 

the image reconstruction returns a complex-valued image. Magnitude-only fitting, outliers, 

and problems with motion other than translation motion are not considered here. For the 

magnitude-only fitting, Rician noise is more adequate than Gaussian noise (48). Under 

outliers and complex motion, approaches based on robust statistics (46) can perform better. 

Also, ANN can be trained with these problems, possibly overcoming them in a more 

simplified and advantageous computational manner than robust fitting methods.

The approaches discussing here can also be applied to other quantitative mapping 

techniques, such as T1 and T2 mapping (8–12,16), and diffusion measurements (49). Also, 

these approaches can be extended with sophisticated multi-compartment models such as 

biexponential (34,50), stretched exponential (51,52) models.

We did not discuss k-space undersampling as a way to reduce scan time for T1ρ mapping in 

this study, only the scan time reduction by reducing the number of TSLs. In this sense, we 

observe that the TSLs optimized by the Modified CRLB and MSF-MNAD performed well 

even when 2 TSLs were used. Nevertheless, k-space undersampling, specially optimized 

k-space undersampling (22), can be combined with optimized TSL for even faster and stable 

T1ρ mapping.

5. CONCLUSION

In this work, different optimization criteria for choosing the spin-lock times in T1ρ 
mapping were compared. According to our results in synthetic data, model phantoms, 
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and healthy volunteers, a modified CRLB and the MSF based on MNAE were the most 

robust optimization approaches for choosing TSLs. The Modified CRLB was easier to 

optimize since this criterion has exact (non-noisy) cost functions. The optimized TSLs with 

these methods allowed robust results with improved quality when using only 2 TSLs and 

complex-valued fitting with iterative NLS or ANN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Fisher Information Matrix used in CRLB optimization:

The FIM for CRLB optimization with the T1ρ model from Equation 2 can be written as

I t, θ = 1
ση2

∑k = 1
K J tk, θ HJ tk, θ , [A1]

with

J tk, θ = exp −tk/θ2     tkθ1/θ2
2 exp −tk/θ2 , [A2]

where J (tk, θ)H is the transpose and complex-conjugate version of J (tk, θ). Note that the 

R1ρ model from Equation 3 can also be used. In this case

J tk, θ = exp −θ2tk     − tkθ1 exp −θ2tk . [A3]
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Figure 1: 
Pulse sequence used to capture one T1ρ-weighted 3D volume (one TSL). The pulse sequence 

is composed of a T1ρ preparation module P, that applies the T1ρ weighting, a 3D imaging 

module A, that acquires 64 k-space lines of the entire 3D k-space, and the longitudinal 

magnetization restoration module R, which recovers the main magnetization before the 

sequence be repeated until all 3D k-space lines are acquired.
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Figure 2: 
In (a), the comparison of the renormalized costs of CRLB and Modified CRLB when 

optimizing T1ρ values or R1ρ values, using 2 TSLs, with t = [t1 t2]T, where t1=1 millisecond 

(ms) and t2 is the optimizing variable. In (b), Modified CRLB has its shape and minimum 

very close to the MSF-MNAE, while CRLB and MSF-MSE are not so close to one another. 

In (c) two different realizations of the noisy cost function (for MSF-MNAE) are shown with 

their corresponding minima. In (d) the mean cost function (averaged from 15 realizations) 

for MSF-MNAE and the range of ± 3 standard deviations are shown, illustrating where 

99.73% of the realizations are expected to be.
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Figure 3: 
Performance of different choices of TSL in the synthetic experiments with SNR=30 for each 

expected T1ρ value, measured by MNAE. This curve considers that the measured signal was 

generated by the specified T1ρ value (in the range of 20 and 70 ms). In (a), increasing K 

lowers the curve of MNAE. In (b), the optimization finds the best TSL sampling schedules 

for an expected range of T1ρ values using the same K.
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Figure 4: 
Correlation between R1ρ values and agar gel concentration in the model phantoms.
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Figure 5: 
Illustration of the T1ρ maps obtained with the T1ρ agar gel model phantoms experiment. 

In (a) is shown the reference map obtained using all the 16 TSLs acquired in a phantom 

scan session (1, 1, 3, 10, 20, 25, 30, 32, 32, 34, 34, 38, 40, 40, 42, 55 ms). In (b) is shown 

the histogram of the T1ρ values of the phantom (histogram CV=5.9%). In (c) and (d) are 

shown respectively the T1ρ map and error map obtained with K=2 optimized TSLs: 1, 32 ms 

(optimal TSLs for Modified CRLB and MSF-MNAE when K=2). In (e) and (f) are shown 

respectively the T1ρ map and error map obtained with K=2 non-optimized logarithmic 

scaled TSLs: 1, 20 ms.
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Figure 6: 
Illustration of the T1ρ maps of the medial cartilage obtained with the volunteer 5. The 

reference map obtained using all the TSLs (K=15, TSLs=1, 1, 3, 10, 20, 25, 30, 31, 32, 36, 

37, 40, 42, 47, 55 ms) from the first scan is shown in (a) and from the second scan in (i). 

T1ρ map obtained with volunteer 5 in the first scan with non-optimized TSLs (K=2, TSLs=1, 

20 ms) is shown in (b), with TSLs optimized for Mod. CRLB (K=2, TSLs=1, 30 ms) in (c), 

and MSF-MNAE (K=3, TSLs=1, 25, 47 ms) in (d). T1ρ maps of the second scan of the same 

volunteer are shown in (j)-(l). In (f)-(h) and (n)-(p) the corresponding errors related to the 

reference are shown. The histograms obtained in the first and second scans are shown in (e) 

for the SNR (CV=10.9%) and in (m) for T1ρ values (CV=8.6%).
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Figure 7: 
Illustration of the T1ρ maps of the lateral cartilage obtained with the volunteer 5. The 

reference map obtained using all the TSLs (K=15, TSLs=1, 1, 3, 10, 20, 25, 30, 31, 32, 36, 

37, 40, 42, 47, 55 ms) from the first scan is shown in (a) and from the second scan in (i). 

T1ρ map obtained with volunteer 5 in the first scan with non-optimized TSLs (K=2, TSLs=1, 

20 ms) is shown in (b), with TSLs optimized for Mod. CRLB (K=2, TSLs=1, 30 ms) in (c), 

and MSF-MNAE (K=3, TSLs=1, 25, 47 ms) in (d). T1ρ maps of the second scan of the same 

volunteer are shown in (j)-(l). In (f)-(h) and (n)-(p) the corresponding errors related to the 

reference are shown. The 2D histogram obtained with volunteer 1, which was used for the 

optimization, is shown in (e). The 2D histogram obtained after optimization, with volunteer 

5 is shown in (m).
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Table 1:

Optimized and non-optimized spin lock times, in milliseconds (ms) for the various criteria and sizes K, with 

SNR=30.

MNAE NRMSE MNAE NRMSE

Non-Optimized log. spaced NLS ANN NLS ANN Non-Optimized linearly spaced NLS ANN NLS ANN

K=2 1 20 8.6% 9.3% 12.6% 13.3% K=2 1 25 7.4% 7.9% 10.5% 11.2%

K=3 1 3 30 6.6% 6.9% 9.0% 9.5% K=3 1 20 40 5.4% 5.5% 7.5% 7.7%

K=4 1 2 9 40 5.8% 5.9% 7.9% 7.8% K=4 1 15 30 45 4.7% 4.8% 6.6% 6.6%

K=5 1 2 5 16 50 5.2% 5.2% 7.0% 6.8% K=5 1 13 26 39 52 4.2% 4.2% 6.0% 5.6%

MNAE NRMSE MNAE NRMSE

CRLB NLS ANN NLS ANN Modified CRLB NLS ANN NLS ANN

K=2 1 53 6.7% 6.5% 7.9% 7.8% K=2 1 45 6.0% 6.3% 7.6% 8.0%

K=3 1 55 55 4.7% 4.8% 5.6% 5.7% K=3 1 47 48 4.5% 4.7% 5.7% 5.9%

K=4 1 55 55 55 3.9% 4.1% 4.8% 4.9% K=4 1 49 50 50 3.9% 4.0% 4.9% 5.0%

K=5 1 55 55 55 55 3.5% 3.6% 4.3% 4.4% K=5 1 51 51 51 52 3.5% 3.6% 4.4% 4.5%

MNAE NRMSE MNAE NRMSE

MSF-MSE for NLS NLS ANN NLS ANN MSF-MNAE for NLS NLS ANN NLS ANN

K=2 1 49 6.2% 6.3% 7.5% 7.8% K=2 1 44 6.1% 6.3% 7.7% 8.0%

K=3 1 51 54 4.6% 4.7% 5.6% 5.8% K=3 1 46 47 4.5% 4.7% 5.7% 5.9%

K=4 1 53 55 55 3.9% 4.0% 4.8% 4.9% K=4 1 47 48 52 3.9% 4.0% 4.9% 5.0%

K=5 1 54 54 55 55 3.5% 3.7% 4.3% 4.5% K=5 1 46 48 52 54 3.5% 3.6% 4.4% 4.5%

MNAE NRMSE MNAE NRMSE

MSF-MSE for ANN NLS ANN NLS ANN MSF-MNAE for ANN NLS ANN NLS ANN

K=2 1 50 6.4% 6.4% 7.6% 7.8% K=2 1 43 6.1% 6.3% 7.8% 8.0%

K=3 1 51 55 4.7% 4.7% 5.6% 5.8% K=3 1 43 44 4.6% 4.7% 5.9% 6.0%

K=4 1 50 55 55 4.0% 4.0% 4.8% 4.9% K=4 1 37 52 54 3.9% 4.0% 5.0% 5.1%

K=5 1 49 55 55 55 3.6% 3.6% 4.3% 4.4% K=5 1 32 52 54 55 3.6% 3.6% 4.6% 4.6%
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Table 2:

Optimized and non-optimized spin lock times, in milliseconds (ms) for the various criteria and K=2 and 3 with 

the T1ρ agar gel model phantoms in a 3T MRI scanner.

Comparison with the Reference (MNAE and NRMSE),
Repeatability (CV), and regression with agar gel (R2)

MNAE NRMSE CV
Regression of R1ρ 

(R2)

NLS ANN NLS ANN NLS ANN NLS ANN

Non-Optimized log. spaced K=2 1 20 5.3% 4.4% 6.2% 5.2% 1.7% 1.9% 0.996 0.996

K=3 1 3 30 2.3% 2.2% 3.2% 2.9% 1.5% 1.7% 0.998 0.998

Non-Optimized linearly 
spaced

K=2 1 25 3.6% 3.2% 4.6% 4.0% 1.6% 1.7% 0.997 0.997

K=3 1 20 40 2.2% 2.1% 2.6% 2.5% 1.2% 1.4% 0.998 0.998

CRLB K=2 1 38 2.2% 2.3% 2.7% 2.8% 1.6% 1.7% 0.998 0.998

K=3 1 40 40 2.0% 2.1% 2.3% 2.4% 1.3% 1.3% 0.998 0.998

Modified CRLB K=2 1 32 2.1% 2.0% 2.8% 2.7% 1.6% 1.7% 0.998 0.998

K=3 1 34 34 1.5% 1.5% 2.1% 2.0% 1.2% 1.3% 0.998 0.998

MSF-MSE for NLS K=2 1 38 2.2% 2.3% 2.7% 2.8% 1.6% 1.7% 0.998 0.998

K=3 1 38 42 2.0% 2.0% 2.3% 2.3% 1.3% 1.3% 0.998 0.998

MSF-MSE for ANN K=2 1 40 2.4% 2.5% 2.8% 2.8% 1.7% 1.7% 0.998 0.998

K=3 1 34 55 2.3% 2.3% 2.3% 2.6% 1.3% 1.4% 0.998 0.998

MSF-MNAE for NLS K=2 1 32 2.1% 2.0% 2.8% 2.7% 1.6% 1.7% 0.998 0.998

K=3 1 32 34 1.5% 1.5% 2.2% 2.0% 1.2% 1.3% 0.998 0.998

MSF-MNAE for ANN K=2 1 38 2.2% 2.3% 2.7% 2.8% 1.6% 1.7% 0.998 0.998

K=3 1 25 55 1.6% 1.8% 2.2% 2.4% 1.3% 1.4% 0.998 0.998

REFERENCE K=16 1, 1, 3, 10, 20, 25, 30, 32, 32, 34, 34, 38, 40, 40, 42, 55 0.6% 0.7% 0.999 0.999
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Table 3:

Optimized and non-optimized spin lock times, in milliseconds (ms) for the various criteria and K=2 and K=3 

on healthy volunteers in a 3T MRI scanner.

Comparison with the Reference (MNAE and NRMSE) and Repeatability (CV 
and ROI CV)

MNAE NRMSE CV

NLS ANN NLS ANN NLS ANN

Non-Optimized log. 
spaced

K=2 1 20 17.9% 18.1% 27.5% 27.8% 3.7% 3.8%

K=3 1 3 30 10.5% 10.6% 17.5% 16.7% 3.1% 3.3%

Non-Optimized linearly 
spaced

K=2 1 25 13.1% 13.1% 21.5% 20.8% 3.5% 3.6%

K=3 1 20 40 9.8% 10.4% 17.0% 16.6% 3.0% 3.2%

CRLB K=2 1 42 12.7% 12.8% 19.8% 20.1% 2.9% 3.0%

K=3 1 36 55 9.9% 9.9% 16.3% 16.4% 2.8% 2.9%

Modified CRLB K=2 1 30 11.0% 11.1% 18.2% 18.3% 2.9% 2.9%

K=3 1 30 32 8.0% 8.3% 14.2% 14.3% 2.8% 2.8%

MSF-MSE for NLS K=2 1 37 12.6% 12.7% 19.8% 19.9% 3.0% 3.0%

K=3 1 36 55 9.9% 9.9% 16.3% 16.4% 2.8% 2.9%

MSF-MSE for ANN K=2 1 42 12.7% 12.8% 19.8% 20.1% 2.9% 3.0%

K=3 1 42 47 10.0% 10.2% 14.5% 15.6% 2.9% 2.9%

MSF-MNAE for NLS K=2 1 31 10.3% 10.7% 16.6% 16.6% 2.9% 2.9%

K=3 1 32 37 7.7% 7.9% 12.8% 12.9% 2.7% 2.7%

MSF-MNAE for ANN K=2 1 32 10.1% 10.2% 16.5% 16.2% 2.8% 2.8%

K=3 1 25 47 7.7% 7.9% 13.9% 13.7% 2.7% 2.7%

REFERENCE K=15 1, 1, 3, 10, 20, 25, 30, 31, 32, 36, 37, 40, 42, 47, 55 2.5% 2.5%
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