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Abstract

Basement membranes (BMs) are specialised extracellular matrices that provide structural support 

to tissues as well as influence cell behaviour and signalling. Mutations in COL4A1/COL4A2, a 

major BM component, cause a familial form of eye, kidney and cerebrovascular disease, including 

stroke, while common variants in these genes are a risk factor for intracerebral haemorrhage 

in the general population. These phenotypes are associated with matrix defects, due to mutant 

protein incorporation in the BM and/or its absence by endoplasmic reticulum (ER) retention. 

However, the effects of these mutations on matrix stiffness, the contribution of the matrix to 

the disease mechanism(s) and its effects on the biology of cells harbouring a collagen IV 

mutation remain poorly understood. To shed light on this, we employed synthetic polymer 

biointerfaces, poly(ethyl acrylate) (PEA) and poly(methyl acrylate) (PMA) coated with ECM 

proteins laminin or fibronectin (FN), to generate controlled microenvironments and investigate 

their effects on the cellular phenotype of primary fibroblasts harbouring a COL4A2+/G702D 

mutation. FN nanonetworks assembled on PEA induced increased deposition and assembly of 

collagen IV in COL4A2+/G702D cells, which was associated with reduced ER size and enhanced 
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levels of protein chaperones such as BIP, suggesting increased protein folding capacity of the cell. 

FN nanonetworks on PEA also partially rescued the reduced stiffness of the deposited matrix and 

cells, and enhanced cell adhesion through increased actin-myosin contractility, effectively rescuing 

some of the cellular phenotypes associated with COL4A1/4A2 mutations. The mechanism by 

which FN nanonetworks enhanced the cell phenotype involved integrin β1-mediated signalling. 

Collectively, these results suggest that biomaterials and enhanced integrin signalling via assembled 

FN are able to shape the matrix and cellular phenotype of the COL4A2+/G702D mutation in 

patient-derived cells.
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Introduction

Basement membranes (BMs) are specialised extracellular matrices (ECM) structures that 

provide structural support to tissues as well as influence cell behaviour and signalling 

[1–3]. Major components are laminins, collagen IV, perlecan and nidogen [2, 4]. The 

vertebrate genome encodes six collagen IV alpha chains, α1(IV)-α6(IV), encoded by the 

genes COL4A1-COL4A6 that generate three collagen IV networks, namely α1α1α2(IV), 

α3α4α5(IV) and α5α5α6(IV) [3, 5].

Mutations in COL4A1 and COL4A2 result in a rare familial multi-systemic disease 

encompassing vascular, eye, kidney and muscle defects [3]. The COL4A1 cerebrovascular 

disease affects the small vessels of the brain and can result in intracerebral haemorrhage, 

porencephaly (the formation of cerebral cavity due to intracerebral haemorrhage), and white 

matter hyperintensities [6–11]. The vast majority of mutations affect glycine residues of 

the collagen repeats which alter protein structure [5, 12–14]. Interestingly, common variants 

within these genes have been identified as risk factors for intracerebral haemorrhage [10], 

myocardial infarct [15], coronary artery disease [16] and vascular stiffness [17]. Thus, 

collagen IV is emerging as a major component for vascular diseases [7, 9, 10, 15–22]. For 

many of these diseases, there is an urgent need for novel treatments, which will require a 

more detailed understanding of the underlying molecular mechanisms.

COL4A1/4A2 mutations such as the COL4A2+/G702D mutation, a classical glycine 

mutation that substitutes a glycine residue for aspartic acid [8], results in matrix defects 

in patients and mouse models, possibly due to reduced levels of collagen IV caused 

by intracellular retention in the endoplasmic reticulum (ER) [8, 14, 23–26]. The ER is 

the site where three alpha chains interact to form a triple-helical collagen IV protomer 

which after secretion generates a collagen IV network in the matrix. ER retention of 

mutant protein can cause ER stress, which can activate the unfolded protein response 

(UPR), a homeostatic response that can become pathogenic when chronic [24]. Whereas the 

pathogenic mechanisms of collagen IV mutations remain unclear, a combination of matrix 

defects and ER stress likely contribute to pathogenesis.
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Recent data indicate that at least some of the cellular and mouse phenotypes due to 

COL4A1/4A2 mutations can be modulated. Targeting ER stress using the FDA-approved 

chemical chaperone phenyl butyric acid (PBA) decreased intracellular collagen IV retention 

and ER stress, and increased collagen IV secretion and deposition in the BM in mice; 

this was associated with reduced cerebrovascular disease [8, 27–29]. However, PBA did 

not ameliorate the renal defects [27], with recent evidence from mouse models supporting 

cell and/or tissue-specific disease mechanisms whereby the contribution of ER stress and 

matrix defects to disease may differ [13]. This has led to the suggestion that the matrix 

defects also need to be targeted in order to develop treatments that address the phenotypes 

in different tissues [27]. However, the effects of COL4A1/4A2 mutations on BM function 

and characteristics remain poorly understood and, importantly, the effects of the matrix 

on the behaviour and cellular phenotype of COL4A1/4A2 mutant cells remains unknown. 

Addressing these gaps in our knowledge could identify potential therapeutic targets and/or 

approaches.

Matrix composition, surface topography and the physical properties of the substrate 

influence the behaviour of cells, and engineered biomaterials provide a powerful approach 

to modulate the microenvironment of cells and investigate their behaviour and function 

in response to this altered environment [30]. In tissues, the ECM is a critical part of 

the cell environment, and fibronectin (FN) is a major ECM component that binds other 

matrix proteins, growth factors and cell surface receptors such as integrins, which are 

also collagen receptors. The biological activity of FN can be controlled by adsorbing it 

onto polymers with defined chemistry, such as poly(ethyl acrylate) (PEA) and poly(methyl 

acrylate) (PMA). Adsorption onto PEA results in physiological-like FN nanonetworks that 

provide better availability of cell and growth factors binding regions, while PMA leads 

to the formation of globular aggregates (Figure 1) [31–36]. The ability to adsorb matrix 

components onto PEA and PMA therefore provides a powerful system to present the cell 

with controlled distribution and conformation of matrix proteins. For FN, the physical and 

chemical similarity of PEA and PMA provides a robust system to investigate the effect of 

the FN network as a model of an altered ECM on cells expressing mutant collagen IV [36].

Here, we have uncovered that FN nanonetworks assembled on PEA promote the deposition 

of collagen IV in primary patient cells carrying a COL4A2+/G702D mutation. This is 

associated with an increase in the protein folding capacity of the cell, ameliorated stiffness 

of the cells and their matrix, and increased cell attachment through focal adhesions. We 

show that these effects are mediated by FN via specific integrin-mediated signalling. 

These data indicate that biomaterials can offer a controlled matrix to modulate the cellular 

phenotype of collagen IV mutations.

Materials and Methods

Preparation of polymer surfaces and protein adsorption

PEA and PMA polymers were synthesized by radical polymerization of ethyl acrylate and 

methyl acrylate (Sigma, St. Louis, MO), initiated by benzoin at 1 wt% and 0.35 wt%, 

respectively. PEA and PMA were then dried by vacuum extraction to constant weight and 

solubilized in toluene 2.5% w/v and 6% w/v respectively. PEA and PMA films (~1μm) 
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were obtained by spin-casting polymer solutions on glass coverslips (12 or 25mm) at 

2000 (PEA) and 3000 (PMA) rpm for 30 seconds, with an acceleration of 3000 rpm/sec. 

Samples were dried in vacuum for 2 h at 60oC to remove excess toluene. Polymer surfaces 

were coated with either natural mouse laminin 111 (LM; Invitrogen) or human plasma FN 

(Sigma) solutions, in Dulbecco’s phosphate-buffered saline (DPBS) at concentrations 2, 

10, 20, 50, and 100 μg/mL for 1h and then rinsed with DPBS before use. Mouse plasma 

fibronectins carrying mutations in the FNIII10 module were also used. ΔRGD FN (FN 

without the RGD sequence) and syn FN (FN with a mutation in the synergy sequence 

DRVPPSRN>DAVPPSAN) were generated and purified as previously reported [37, 38]. The 

amount of adsorbed protein was calculated via depletion assay using the bicinchoninic acid 

working reagent (Thermo Fisher Scientific, Waltham, MA) as previously reported [36].

Cell culture

Primary dermal fibroblast harbouring COL4A2+G702D mutation (MT) [8] and wild type 

(WT) fibroblast cells (Tissue Culture Solutions Cell Works, UK) were cultured in DMEM 

supplemented with 1% Glutamax (Invitrogen™), 1% penicillin and streptomycin solution 

(Gibco®) (final concentrations of 100 μg/mL), and 10% fetal bovine serum (FBS, 

Invitrogen™) and kept in an incubator at 37°C with 5% CO2. L-ascorbic acid 2-phosphate 

sesquimagnesium salt hydrate (0.25 mM; Sigma) was administered before cells were fixed 

to standardise collagen expression and post-translational modifications [8].

Cell adhesion strength measurements

Cell adhesion strength to adsorbed FN on the polymer surfaces was measured using a 

spinning disk device [39]. Substrates (25 mm coverslips) were incubated with 2 or 20 

μg/mL human FN for 30 min at RT and then incubated with 1% BSA for 30 min at RT. 

Cells (10,000 cells/cm2) were seeded onto substrates and allowed to uniformly attach for 

several hours (as indicated in figure captions) in media with/without serum in the incubator. 

Some substrates were treated with 10 μM blebbistatin (B0560, Sigma-Aldrich) (inhibitor of 

myosin II). Samples were mounted on the spinning disk device, the chamber apparatus was 

filled with DPBS with 2 mM glucose, and the disk was spun for 5 min at a constant speed 

with controlled acceleration rates at RT. After spinning, cells were immediately fixed in 

3.7% PFA, permeabilized with 1% Triton X-100, and stained with ethidium homodimer 

(Molecular Probes, Eugene, OR, USA), a DNA-specific fluorescent probe. Cells were 

counted automatically at specific radial positions using a Nikon TE300 equipped with a Ludl 

motorized stage, Spot-RT camera, and Image-Pro analysis system, at ×10 magnification.

Sixty-one fields (80–100 cells/field before spinning) were analysed and cell counts were 

normalized to the number of cells present at the centre of the disk, where negligible force 

is applied. The applied fluid shear stress is given by the formula: τ = 0.8r ρμω3
1
2 , where r 

is the radial position from the centre of the coverslip, and ρ, μ, and ω are the fluid density, 

viscosity, and rotational speed, respectively.

The fraction of adherent cells (f) was then fitted to a sigmoid curve,
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f = 1
1 + eb τ − τ50

,

where b is the inflection slope, and τ50 is defined as the shear stress for 50% cell detachment 

and characterizes the mean adhesion strength of the cell population. The experiment was 

performed with over eight coverslips per condition and repeated at least twice.

Immunofluorescence staining

Cells were seeded (5,000 cells/cm2) onto PEA and PMA (sterilised under UV for 20 min) 

coated for 1 h with either wild type or mutant FN (2, 20 μg/mL) or LM (20 μg/mL) 

and incubated for 2 h in serum-free medium at 37°C, 5% CO2, after which the medium 

was replaced with medium with 10% FBS and 0.25 mM ascorbic acid. Incubation with 

blebbistatin was performed (if appropriate) and cells fixed with PFA 3.7% for 20 min after 

specified times (1 and 7 days for matrix secretion), washed 3x with DPBS, permeabilised 

(0.5% Triton X-100, 10.3 % saccharose, 0.292% NaCl, 0.06% MgCl2, and 0.48% HEPES 

adjusted to pH 7.2) for 5 min and blocked in blocking buffer (BB, 1% Bovine serum 

albumin, BSA, in DPBS) for 30 min. Cells were incubated with primary antibodies in BB 

for 1h at RT: monoclonal mouse anti-Col4a2 (Millipore, Cat. No. MAB1910), polyclonal 

rabbit anti-LM (Sigma, Cat. No. L9393), polyclonal rabbit anti-PDI (Stressgen), polyclonal 

rabbit anti-FN antibodies, rat anti-mouse CD29 integrin β1 (BD Biosciences), human 

integrin alpha V/CD51 antibody (R&D Systems), mouse vinculin hVIN-1 (Sigma-Aldrich, 

St. Louis, MO) or polyclonal rabbit paxillin (Thermo Fisher Scientific, Waltham, MA). 

Cells were washed 3x DPBS/Tween 20 (0.5% w/v), then incubated for 1 h with secondary 

antibodies. These included Cy3 AffiniPure goat anti-rabbit (Cat. No. 111–165-003, Jackson 

ImmunoResearch Laboratories Inc), Cy3 AffiniPure goat anti-mouse IgG (Cat. No. 115–

165-062, Jackson ImmunoResearch Laboratories Inc), donkey anti-goat Alexa Fluor 568, 

anti-rat Alexa Fluor 488, anti-mouse Alexa Fluor 488, anti-rabbit Alexa Fluor 647 (Thermo 

Fisher Scientific) (in BB). Actin staining was performed using BODIPY FL phalloidin, 

Alexa Fluor® 350 Phalloidin or Rhodamine-Phalloidin (Thermo Fisher Scientific). Samples 

were washed 3x, then mounted with Vectashield with DAPI (Vector Laboratories) to stain 

the nuclei and visualized using an epifluorescence microscope. Images were taken and 

channels merged using ImageJ (1.47v).

Fractal dimension analysis of stained secreted collagen IV was carried out using the ImageJ 

Fractal box count analysis tool, using box sizes of 2, 3, 4, 6, 8, 12, 16, 32, and 64 pixels 

after thresholding and binarization (Supplementary Figure 1). Quantification of integrated 

density was done using ImageJ; the integrated density of each picture was normalised using 

the number of cells (counted using DAPI) to obtain the integrated density per cell.

Focal adhesions were quantified using the focal adhesion analysis server [40]. Focal 

complexes, dot-like complexes shorter than 1 μm, were discarded from the analysis [41]. 

Only isolated cells were used to avoid altered area and roundness values that overlapping 

cells would have produced. Images were analysed with ImageJ coupled with an in-house 

macro processor, and the values of each condition were compared.
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Western blotting

Western blotting was performed as previously reported [26]. Protein extracts were prepared 

using RIPA buffer containing EDTA protease (Roche Applied Science) and phosphatase 

inhibitors (Phostop Roche). Membranes were blocked with 5% milk before incubation 

with primary antibodies calnexin (1/1000, Cell Signalling Technology), BIP (1/40000, 

BD Transduction), DDR1 (C-20, sc-532, dilution 1:100), polyclonal mouse anti FAK 

(1:2500 Upstate), and polyclonal rabbit anti p-FAK (Tyr 397) (Merck Millipore). Secondary 

antibodies used were anti-mouse (1:15000) or anti-rabbit (1:15000) fluorescently tagged 

antibodies diluted in 50% TBS-T (0.1%) and 50% Seablock with 0.01% SDS; for HRP-

conjugated antibodies: donkey monoclonal anti-mouse (1:10000) and donkey monoclonal 

anti-rabbit antibody (1:10000, GE Healthcare) diluted in 2% BSA-TBST. Protein levels were 

corrected for Coomassie staining of total protein gels ran in parallel with the western blot 

gels, and measured using ImageJ software analysis. For analysis of collagen IV secretion, 

culture medium was switched to serum starved DMEM containing Ascorbic Acid 24 hours 

before medium and cell collection. Conditioned media was collected and cell lysate were 

collected following trypsinisation after which protein homogenates were prepared in RIPA 

buffer. Primary antibody used was rat anti-COL4A2 H22 (1:75) from Dr. Tomono Yasuko 

(Shigei Medical Research Institute) and rabbit anti-GAPDH (1:2000) (Sigma). Statistical 

analysis was performed on a minimum of three independent experiments using the unpaired 

t-test.

Atomic Force microscopy

Atomic force microscopy (AFM) imaging was performed using a JPK Nanowizard® 3 

BioScience AFM (JPK Instruments, Berlin, Germany). For imaging of FN adsorbed onto 

PEA or PMA, samples were rinsed in water, dried gently with a nitrogen flow and imaged 

in tapping mode using a cantilever with a resonance frequency ~75 kHz, a spring constant 

of ~3 N/m, and a tip radius below 10 nm (Bruker). The AFM images were 256 × 256 pixels 

unless specified. Height, phase and amplitude magnitudes were recorded simultaneously for 

each image.

For imaging and force spectroscopy measurements of cells and their secreted matrix, cells 

were cultured on FN-interfaces for 7 days. All measurements were then taken in liquid 

(DPBS or CO2 independent media) at 37 oC. Stiffness of cells and matrix was measured 

in force mapping mode using a tipless cantilever (Arrow TL1, k = ~0.03 N/m, NanoWorld, 

Neuchâtel, Switzerland) mounted with a 4.83 μm diameter silica bead (previously incubated 

in 1% BSA for 30 min to minimize adhesion). Measurements were performed by indenting 

living cells on top their nucleus in CO2 independent media. Force spectroscopy curves were 

obtained, after calibration of cantilever sensitivity and spring constant, with a set-point of 5 

nN, a z-length of 5 μm, and a constant duration of 1 s. Analyses were performed using the 

JPK data processing software (v4.3.21) by fitting the force curves with a Hertz model at 500 

nm indentation to obtain the Young’s modulus [42, 43]. The stiffness of the ECMs secreted 

by the cells on the surfaces was also measured via AFM, using the quantitative imaging 

(QI) mode. To do so, the samples were decellularised to obtain intact matrix deposited by 

cells via treatment with 20 mM ammonium hydroxide (NH4OH) 0.5% (w/v) in warm water 

until all the cells debris was removed except the insoluble ECMs. The ECMs were then 
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scanned using a pyramidal cantilever (PNP-DB-20, k = ~ 0.4 N/m, NanoWorld, Neuchâtel, 

Switzerland). The analysis was performed using the JPK data processing software (v4.3.21) 

by fitting the force curves with a Hertz model at 50 nm indentation to obtain the Young’s 

modulus map alongside the contact point height image of the secreted protein matrices. The 

ECMs were also stained with DAPI to confirm whether the cells were successfully removed.

Electron microscopy analysis

Cells were cultured on FN-coated PMA and PEA for 7 days and fixed in 2% glutaraldehyde 

prepared in 100 mM phosphate buffer (pH 7.0). Further processing was performed as 

previously described [44].

Statistical analysis

All images were analysed using ImageJ software (v1.48). The data were statistically 

analysed using GraphPad Prism 6 (GraphPad software, La Jolla, CA). Where relevant, 

one-way or two-way ANOVA tests were performed using a Bonferroni or Tukey post-hoc 

test to compare all columns, and the differences between groups were considered significant 

for *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Error bars represent a standard 

deviation.

Results

Col4 deposition and ER-stress of COL4A2+/G702D fibroblasts

COL4A2+/G702D fibroblasts (MT) were cultured on fibronectin (FN)-coated substrates, 

which control the organisation and presentation of adsorbed FN, and on glass controls 

(uncoated). Adsorbed FN assembled into physiological-like nanonetworks on PEA, whilst it 

retained a globular conformation on PMA, with similar amounts of adsorbed FN (Figure 1). 

To investigate the effects of the controlled matrix on the behaviour of COL4A2 mutant cells, 

we assessed COL4A2 deposition. Image analysis revealed reduced COL4A2 deposition on 

glass after 1 and 7 days (Figure 2A and 2C) in MT cells compared to WT, as previously 

reported [8, 45]. To provide the first insight into the secreted collagen IV network of 

COL4A1 or COL4A2 mutant cells, we also assessed the fractal dimension of the collagen 

IV network as a descriptor of its interconnected fibrillar organisation (Figure 2E). The 

collagen IV network of COL4A2+/G702D fibroblasts on glass is characterised by reduced 

fractal dimension and a disrupted fibrillar organisation; this confirms the “structural” 

effect of the glycine mutations on the collagen IV network. This was accompanied by a 

slower growth rate for the MT cells [6], which were less confluent, with cell size often 

enlarged and formation of patchy populations indicative of cell death compared to WT cells 

(Supplementary Figure 2).

Strikingly, we observed that MT fibroblasts on FN-coated polymers displayed increased 

deposition of secreted collagen IV, especially after 7 days of culture (Figure 2C). This 

was particularly significant for cells on the FN nanonetworks on PEA, where collagen IV 

deposition by MT cells was the highest and the fractal feature of the collagen meshwork 

was recovered (Figure 2E). This enhanced deposition on FN-coated PEA compared to 

FN-coated PMA (where FN remains globular) and glass was confirmed by in-cell-western 
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(Supplementary Figure 3A–B), ELISA (Supplementary Figure 3C) and fluorescent staining 

without cell permeabilization to avoid detecting intracellular proteins (Supplementary Figure 

4). Increased matrix deposition was also apparent in electron microscopy images, which 

showed enhanced fibrillar matrix deposition in MT cells on PEA compared to PMA 

(Supplementary Figure 5). Moreover, this response appeared specific for FN-coated PEA, as 

LM-coated samples did not yield the same effect (Supplementary Figure 6). The increased 

deposition did not extend to other major BM components as LM protein levels decreased 

on FN-coated polymers (Figure 2D), and was independent of increased bulk secretion 

(Supplementary Figure 7).

We next investigated whether the higher collagen IV levels on FN-coated PEA were 

accompanied by a reduction in intracellular collagen IV retention. Co-staining was 

performed with protein disulphide isomerase (PDI), a marker of the endoplasmic reticulum 

(ER), as ER stress is associated with an increase in ER size and area of the cells [8]. This 

revealed significantly lower levels for MT cells on PEA-FN compared to MT cells on glass 

and PMA-FN, suggesting a decrease in ER area in MT cells on FN-coated PEA (Figure 3A 

and B). Swollen vesicles were also more apparent by electron microscopy in cells cultured 

on PMA compared to PEA (Supplementary Figure 5).

The protein folding capacity of the cells is determined by the levels and activities of the 

protein folding machinery including chaperones such as BIP; for example, levels of BIP are 

associated with levels of protein secretion in yeast [46]. To investigate whether the decrease 

in ER area in the MT cells on FN-coated PEA was associated with increased protein folding 

capacity, the protein levels of chaperones BIP and calnexin were measured by western 

blot (Figure 3C). Interestingly, this revealed elevated BIP protein levels in both cell lines 

when grown on PEA-FN compared to PMA, indicating a mutation-independent effect. This 

suggests that PEA-FN may lead to an increase in the protein folding capacity of the cells.

Elastic properties of COL4A2+/G702D fibroblasts and of their ECM

The characteristics of the extracellular matrix influence the behaviour and function of 

various cell types, including vascular cells [47]. However, the effect of any collagen IV 

mutation on the characteristics of the basement membrane remains unclear. To address this, 

the effect of the COL4A2+/G702D mutation on the biomechanical properties of the cells and 

their matrix was analysed via atomic force microscopy (AFM) by measuring the overall 

stiffness of matrix and cells, and then of the decellularised ECM only. The Young’s modulus 

of the MT cells, measured via nano-indentation using beaded cantilevers, was 10-fold lower 

than that of WT cells after 7 days of culture on glass, PEA-FN or PMA-FN (Figure 4A). 

Values ranged mainly from 500 to 1000 Pa on glass, from 2000 to 5000 Pa on PEA-FN, 

and from 500 to 1500 Pa on PMA-FN for WT cells (Supplementary Figure 8A), and from 

10 to 50 Pa on glass, from 100 to 350 Pa on PEA-FN, and from 25 to 150 Pa on PMA-FN 

for MT cells (Supplementary Figure 8B). In any case, culture on PEA-FN increased the 

Young’s modulus of cells and their matrix (Figure 4A). Most interestingly, the measurement 

of the elastic properties of the decellularized matrix (Figure 4B) using a pyramidal tip in 

quantitative imaging mode revealed a partial recover of matrix stiffness when MT cells 

were cultured on PEA. Indeed, the values on PEA-FN ranged from 7.5 to 18 kPa for the 
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MT-secreted matrix, and from 20 to 43 kPa for WT. On PMA-FN the values were instead 

generally lower than 10 kPa for both cell types. These data suggest that the increased 

deposition by culture on PEA-FN is able to partially rescue the mechanical properties of 

the secreted ECM. Moreover, 3D reconstruction of the decellularised ECMs by MT cells 

cultured on PEA-FN show a clear fibrillar organisation (Figure 4C–D). No measurements 

were made for ECMs secreted by cells on glass, as they often detached from the substrate 

during the measurements.

Cell adhesion

To gain insight into underlying mechanisms of the altered stiffness and behaviour of the 

MT cells when cultured on FN-coated PEA, we analysed the early cell adhesion to the 

substrates, focusing on the development of focal adhesion (FA) complexes and on the role 

of the cytoskeleton. Focal adhesions were visualised using antibody staining against paxillin 

(Figure 5A–B). Image analysis revealed increased cell size for MT cells compared to WT 

(Figure 5C), and well-defined FA plaques for both cell types, mainly located at the cell 

periphery (Figure 5A–B). To explore the role of contractility, cells were incubated with 

blebbistatin, which inhibits myosin-II-specific ATPase activity. Treatment with blebbistatin 

did not affect cell morphology, except a few cell protrusions of MT cells on PEA-FN and 

PMA-FN (Supplementary Figure 9A–B). To quantify the maturation level of the FAs on 

the different surfaces, FA count and size (defined as the length of the major axis of the FA 

plaque) were analysed (process detailed in Supplementary Figure 10). The number and size 

of FAs for MT cells were significantly higher on PEA-FN compared to glass and PMA-FN 

(Figure 5D and E), whilst no differences were found for WT cells. Strikingly, treatment with 

blebbistatin only affected the MT cells cultured on PEA-FN by reducing the number and 

size of the FAs to the same levels as the other surfaces (Figure 5D and E), indicating myosin 

II-regulated adhesion [48]. It is also worth noting that ligand availability, as defined by the 

concentration of the FN coating solution, affected MT cell behaviour, in terms of cell size 

and FA number only on PEA-FN whilst it had no effect for MT cells cultured on PMA-FN 

(Supplementary Figure 9D and E).

The increased size and number of FAs for MT cells on PEA-FN correlated with higher 

adhesion strength, measured using a spinning disk hydrodynamic shear assay (Figure 5F) 

[39, 49, 50]. Detachment profiles (adherent fraction f versus shear stress τ) were fitted 

to a sigmoid curve to obtain the shear stress for 50% detachment (τ50), which is defined 

as the adhesion strength (Figure 5G) [51]. MT cells showed statistically higher adhesion 

strength on PEA-FN compared to glass and PMA-FN. This was reduced when contractility 

was inhibited using blebbistatin (Figure 5H), in accordance with FA analyses results (Figure 

5D and E) and supporting the role for myosin II-regulated adhesion on PEA-FN. Studies 

at increasing FN coating solution concentrations confirmed a direct relationship between 

ligand density and adhesion strength, which increased for PEA-FN (Supplementary Figure 

9G) [39, 50, 51]. The role of cell cytoskeleton in adhesion to PEA was also confirmed 

via electron microscopy, which showed enhanced microfilament organisation within cells 

cultured on PEA-FN compared to PMA-FN (Supplementary Figure 5).
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Considering that cell adhesion to FN is mainly mediated by α5β1 and αVβ3 integrins [52], 

we explored their role in the stronger adhesion of MT cells to the FN nanonetworks on PEA 

compared to PMA-FN or glass. Both integrins were expressed by both cell types adhering 

on FN-coated substrates (Figure 5A–B and Supplementary Figure 11). In particular, β1 

staining showed well-pronounced clusters resembling FA contacts for the WT cells on all 

the surfaces. In contrast, it was rather dispersed throughout the MT cells (Figure 5A–B), 

while αv showed a diffused staining in the entire cell on all the substrates for both MT and 

WT cells (Supplementary Figure 11A–B). Quantification of integrin staining showed that 

number, size and area of β1 integrin clusters were generally higher for MT and WT cells 

on PEA-FN than on PMA-FN and glass. For αv, on the other hand, the expression levels 

by MT cells were maintained independently of the substrates (Supplementary Figure 11C). 

Collectively, these results indicate higher β1 expression by MT cells on PEA-FN, suggesting 

the involvement of the FN fibrillar network on PEA in cell adhesion and signalling.

As myosin II is important for the FA recruitment of focal adhesion kinase (FAK) [53], 

we explored the potential role of FAK via Western Blotting and immunofluorescent 

staining. Well-developed Y397-pFAK clusters were observed on FN-coated polymers, while 

poorly developed clusters occurred on glass (Supplementary Figure 12A). Western blotting 

confirmed higher levels of pFAK for the MT cells on FN-coated substrates compared to 

glass. The MT cells level of pFAK was elevated on PEA-FN compared to the WT cells 

(Supplementary Figure 12B–C), correlating with the observations of the immunostaining. 

This revealed enhanced FAK signalling on MT cells from FN networks on PEA; note that 

previous studies have shown little difference for pFAK between PEA-FN and PMA-FN [34, 

35].

Besides integrin receptors, the disk-shaped receptor tyrosine kinases discoidin domain 

receptors (DDRs) [54] also bind collagen [55]. DDR1 is a tyrosine kinase transmembrane 

receptor that binds collagen IV and other collagens and regulates cell adhesion, 

differentiation, migration and proliferation [54, 55]. As the effects of collagen IV mutations 

on DDR1 expression are unknown, we performed immunostaining which revealed DDR1 

expression on the membrane surface for both cell types on all surfaces (Supplementary 

Figure 12D). Intriguingly, western blotting detected higher DDR1 protein levels for the MT 

cells on glass compared to the FN-coated substrates, and statistically higher than WT cells 

(Supplementary Figure 12E–F). This suggests an inverse correlation between DDR1 protein 

levels and amount of collagen IV deposition, whereby reduced collagen deposition due to 

the COL4A2 mutation leads to upregulation of DDR1.

To further corroborate the implication of integrin binding and cell contractility in the change 

of the MT cell phenotype when cultured on FN nanonetworks, COL4A2 deposition was 

assessed on PEA substrates coated with mutated fibronectin molecules or in the presence of 

blebbistatin. In particular, mouse ΔRGD FN (FN lacking the RGD motif) and mouse syn 

FN (FN with a mutation on the DRVPPSRN synergy binding site) were coated onto PEA, 

forming FN nanonetworks lacking the ability to bind both α5β1 and αvβ3 (ΔRGD FN) or 

to reinforce binding to α5β1 (syn FN), respectively (Supplementary Figure 13A) [56, 57]. 

Immunofluorescent staining confirmed that higher deposition and fibrillar organisation of 

collagen IV by MT fibroblasts only occurred on PEA coated with wild type FN, as both 

Mpoyi et al. Page 10

Biomaterials. Author manuscript; available in PMC 2022 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutations reverted the rescue effect of the wild type FN nanonetworks (Figure 6). This 

suggests a major role for α5β1 integrin. Interestingly, the unavailability of the cell binding 

and of the synergy domain on the FN nanonetwork only affected the behaviour of MT cells, 

whilst WT fibroblasts were unaffected (Supplementary Figure 13B). Moreover, the addition 

of blebbistatin to the media during the culture also ablated MT cells collagen IV deposition 

by inhibiting cell contractility (Figure 6).

Discussion

It is known that material properties, such as stiffness, topography and chemistry, can alter 

cell phenotype and drive cellular processes such as cell migration, cell signalling and (stem) 

cell differentiation [58–60]. These processes involve the secretion of new ECM at the 

cell-material interface, whose composition and nature are modulated by the properties of the 

biomaterials on which cells grow. Here, we demonstrate that engineered biomaterials have 

the potential to modulate matrix defects due to mutations in collagen IV in fibroblasts. The 

COL4A2+/G702D mutation and other COL4A1/4A2 mutations result in lower deposition and 

incorporation of collagen IV into the BM [8, 45]. Our results show that FN nanonetworks 

assembled on the surface of PEA increase the deposition of COL4A2 by COL4A2+/G702D 

mutant cells to levels similar to WT (normal) cells. This phenomenon is shown via 

several approaches: immunofluorescence (including without permeabilization, to rule out 

the possibility of staining intracellular COL4A2, and after a decellularization assay), in-cell 

western and ELISA. We also demonstrate reduced ER stress (reduced ER area – PDI) in 

MT cells triggered by PEA-FN; this is accompanied by a likely increase in protein folding 

capacity, with increased levels of molecular chaperone BIP (Figure 7).

MT cells do not increase COL4A2 deposition when cultured on LM interfaces (PEA, PMA, 

glass) or interfaces where FN remains globular (glass, PMA). The effect is specific to FN 

nanonetworks assembled on PEA, which appear to enable a partial rescue of the retention 

and intracellular accumulation of COL4A2 in MT cells.

Larger MT cells were found on PEA-FN, with higher FA count and size compared to 

the cells cultured on PMA-FN or glass. Moreover, these FAs contain higher density 

of β1 integrins, which are the main receptor involved during the initial cell interaction 

with the material-driven FN network and physiological FN matrices [34]. FN adsorption 

on PEA unfolds the protein leading to the availability of domains that promote FN-FN 

interactions, such as FNI1–5, enabling self-assembly into fibrils, recapitulating aspects of 

cell-mediated FN fibrillogenesis [35, 36]. This material-driven FN matrix also favours 

enhanced exposure of the integrin-binding region FNIII9–10 along with the growth factor 

binding region FNIII12–14 [31, 33, 60]. Hence, FN assembled on PEA is recognised by 

β1 integrins, as confirmed here in COL4A2+/G702D fibroblasts on PEA-FN (Figure 5). 

Higher expression of β1 has also been previously correlated to α5β1 integrin-mediated 

adhesion to FN matrices [51]. The role of β1 in rescuing the deposition of COL4A2 in 

MT cells is demonstrated by the use of mutant fibronectins (Figure 6). Binding of α5β1 

involves simultaneous availability of the synergy DRVPPSRN and RGD sequences within 

FN [34]. FNs lacking the RGD peptide or the synergy sequence are also assembled into 

nanonetworks on PEA (Supplementary Figure 13A), but they do not lead to enhanced 
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matrix deposition of COL4A2 in MT cells (Figure 6) [33, 36, 61]. Interestingly, our data 

are in agreement with recent in vivo data in C. elegans supporting the role of integrin 

in promoting the incorporation of collagen IV into basement membranes from secreted 

proteins, independently of actual increase in collagen secretion [62]. Also, we show that 

the contractile machinery of the cells (ROCK) is activated by binding of β1 integrins to 

FN networks on PEA, as the use of blebbistatin reduces adhesion strength only on PEA 

(Figure 5H), and further ablates the rescue of COL4A2 deposition (Figure 6). This ability of 

FN-assembled on PEA to trigger cell contractility has been previously demonstrated in cell 

differentiation processes [35].

Mechanical properties, especially stiffness, of cells and their surrounding ECM play 

important roles in many biological processes including cell growth, motility, division, 

differentiation, tissue homeostasis, stem cell differentiation, tumour formation and wound 

healing [63]. Changes in stiffness of live cells and ECM are often signs of changes in cell 

physiology or diseases in tissues [64]. Stiffness analysis via AFM showed that the MT cells 

and their ECMs were 10-fold softer than the WT cells, directly indicating for the first time 

effects on matrix stiffness due to collagen IV mutations (Figure 4A). However, MT cells 

were significantly stiffer on FN assembled on PEA, than on glass and FN-coated PMA. Cell 

stiffness is related to the networks of F-actin and intermediate filaments inside the cells [39, 

49, 65, 66], which are generally observed in a lower amount in the MT than in the WT cells, 

but not on PEA-FN (Figure 5 and Supplementary Figure 5). In addition to this, the ECM 

secreted by MT cells is also stiffer on PEA-FN (Figure 4B), which can be related to the 

higher amount of deposited COL4A2 on PEA-FN forming interconnected fibrillar networks 

(Figures 2 and 4D) [67]. It is also interesting to note that variants in COL4A1, the obligatory 

protein partner of COL4A2, are genetically associated with vascular stiffness [17].

While this study has used patient-derived fibroblasts, it could be extended to other types of 

collagen IV-producing cells in relevant tissues and organs. However, analysis into different 

cell types would include extensive genome editing; altering collagen IV levels, for example 

by transfecting the expression construct driving the COL4A2 G702D mutation, may cause 

other defects, hampering the analysis.

Conclusion

We show that biomaterials alter the behaviour of COL4A2+/G702D mutant cells by 

overcoming some of the cellular and matrix defects caused by the mutation. Indeed, 

physiological-like FN nanonetworks assembled on a specific polymer chemistry (PEA) 

trigger contractility-dependent strengthening of MT cell adhesion through enhanced 

recruitment of β1 integrins, which lead to increased protein folding capacity, increased 

collagen IV deposition and partial rescue of the mechanical properties of the secret matrix. 

Collectively, our results suggest that enhanced integrin signalling, controlled here via 

biomaterial engineering, influence aspects of the matrix and cellular phenotype of the 

COL4A2+/G702D mutation in primary patient cells. These data enhance our understanding 

of the biological consequences (function/behaviour) of COL4A2 mutations and highlight 

avenues for potential therapeutic approaches, which are critical to developing personalized 
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therapeutic strategies for intracerebral haemorrhage and other pathologies due to collagen IV 

mutations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Molecular organisation of FN after adsorption on PEA and PMA polymer substrates.
(A) Structure of PEA and PMA, and amount of adsorbed FN from a solution concentration 

of 20 μg/mL for 1 hour. (B) Immunostaining of FN. Insert: high magnification images. Scale 

bars: 50 μm. (C) AFM height images of FN. Scale bar: 250 nm.
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Figure 2. Deposition of Col4A2 (green) and LM (red) by control (A) and mutant fibroblasts (B) 
on PEA and PMA coated with FN.
Cells were grown on PEA and PMA substrates-coated with FN 20 μg/ml and on glass for 2 

h under serum free conditions; then with serum before fixation at different time points (1 and 

7 days). Cells were also simultaneously stained with DAPI (Blue). Scale bars: 50 μm (for all 

micrographs). Quantification of expressed Col4A2 (C) and LM (D) using integrated density 

per cell. Fractal dimension analysis of secreted Col4A2 (E). Data presented as mean ± SD, 

N ≥10; and analysed with an ANOVA test; *p < 0.05; ***p<0.001. Important statistical 

significance differences between the WT and the MT cells are indicated, including between 

the substrates for the MT. WT, wild type control fibroblast cells; MT, COL4A2+/G702D 

mutant fibroblast cells.
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Figure 3. Protein folding capacity of COL4A2+/G702D fibroblast cells.
Staining of COL4A2 (green) and PDI (red) in WT (top row) and MT fibroblasts (bottom 

row), also simultaneously stained with DAPI (Blue). Cells were cultured on FN-coated PEA 

and PMA substrates for 7 days. Scale bars: 50 μm (for all micrographs) (A). Quantification 

of expressed PDI and Col4A2 integrated density measurements per cell (B). Western blot 

analysis of ER stress markers Calnexin (90 kDa) and BIP (78 kDa) levels in cell lysates 

from WT and MT cells cultured for 7 day (C); Densitometry of western blots shown 

in arbitrary units (AU) (D). Data presented as mean ± SD, N =4; *p<0.05, **p<0.01, 

***p<0.001; N-number: 12. WT, wild type; MT, COL4A2+/G702D fibroblasts.
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Figure 4. Elastic modulus analysis of mutant cells and secreted ECMs.
Young’s modulus of WT and MT cells on the different substrates measured via AFM force 

mapping; cells were cultured for 7 days and then indented with a cantilever mounted with a 

4.83 μm silica bead (A). Young’s modulus of ECMs obtained using the Hertz model on at 

least 20 measurements (N ≥20) taken from the points indicated by the yellow arrows in the 

AFM images C and D (B). AFM height images (first column) and 3D reconstruction (second 

column) of ECMs after decellularization of WT (C) and MT (D) cells; cells were cultured 

on FN-coated PEA and PMA for 7 days and then decellularized using 20 mM ammonium 

hydroxide (NH4OH) solution, leaving the ECMs intact; then, AFM quantitative imaging 

was carried out in DPBS using a pyramidal tip. The colour scale of the 3D reconstruction 

represents the local Young’s modulus of the ECMs, calculated using the Hertz model. All 

data are presented as mean ± SD, and analysed with an ANOVA test; **p<0.01, ***p<0.001, 

****p<0.0001. WT, wild type; MT, COL4A2+/G702D cells.
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Figure 5. Focal adhesion assembly, β1 integrin expression and cell adhesion strength 
measurements on FN-coated PEA and PMA substrates.
Immunofluorescence images of focal adhesions and β1 integrin of WT (A) and MT (B) 

fibroblast cells on glass, and on PEA and PMA coated with 20 μg/ml of FN. Cells were 

cultured for 2h in media under serum-free conditions, then fixed and stained for paxillin 

(red), β1 integrin (blue) and actin (green). Further images, including cells treated with 

blebbistatin, are provided in supplementary data (Supplementary Figure 9B). Size of WT 

and MT cells (C); number of FAs per cell (D); size of FAs (E). Schematic of spinning disk 

assay (F). Characteristic detachment profile (G) showing fraction of adherent cells (f) as a 
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function of surface shear stress (τ). Adhesion strength measurements for WT and MT cells 

(H). Quantification of integrated β1 integrin cluster size (I), area (J) and count (K). Data 

presented as mean ± SD, N ≥12 for images C-H and N ≥3 for images I-K, and analysed 

with an ANOVA test; *p<0.05, **p<0.01, ***p<0.001. Important statistical significance 

differences between the WT and the MT cells are indicated, including between the substrates 

for the MT. WT, wild type; MT, COL4A2+/G702D fibroblasts.
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Figure 6. Deposition of COL4A2 by MT fibroblasts on FN nanonetworks is regulated by integrin 
binding and cell contractility.
COL4A2 staining (green) of cells grown on PEA substrates coated with either FN, FN 

without the RGD domain (ΔRGD FN), FN with a mutation on the synergy binding site (syn 

FN), or in the presence of blebbistatin (BB) in the culture medium for 7 days; LM (red) 

and nuclei (blue) were also stained (A). Quantification of the integrated density of COL4A2 

staining after variance filtering (B). Controls are WT fibroblasts and MT fibroblasts cultured 

on glass. Data presented as mean ± SD, N ≥12, and analysed with an ANOVA test; *p<0.05, 

**p<0.01, ***p<0.001. WT, wild type; MT, COL4A2+/G702D fibroblasts.
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Figure 7. Conceptual scheme.
Illustration of the effect of the fibrillar FN nanonetworks on PEA, which induces increased 

deposition of Col4A2 by COL4A2+/G702D mutant cells.
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