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Upregulation of NOD1 and NOD?2
contribute to cancer progression through
the positive regulation of tumorigenicity
and metastasis in human squamous
cervical cancer

Yuanyuan Zhang', Ning Li', Guangwen Yuan', Hongwen Yao', Die Zhang? Nan Li', Gongyi Zhang',
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Abstract

Background: Metastatic cervical squamous cell carcinoma (CSCC) has poor prognosis and is recalcitrant to the
current treatment strategies, which warrants the necessity to identify novel prognostic markers and therapeutic
targets. Given that CSCC is a virus-induced malignancy, we hypothesized that the pattern recognition receptors
(PRRs) involved in the innate immune response likely play a critical role in tumor development.

Methods: A bioinformatics analysis, gPCR, IHC, immunofluorescence, and WB were performed to determine the
expression of NOD1/NOD2. The biological characteristics of overexpression NOD1 or NOD2 CSCC cells were
compared to parental cells: proliferation, migration/invasion and cytokines secretion were examined in vitro
through CCK8/colony formation/cell cycle profiling/cell counting, wound healing/transwell, and ELISA assays,
respectively. The proliferative and metastatic capacity of overexpression NOD1 or NOD2 CSCC cells were also
evaluated in vivo. FCM, mRNA and protein arrays, ELISA, and WB were used to identify the mechanisms involved,
while novel pharmacological treatment were evaluated in vitro and in vivo. Quantitative variables between two
groups were compared by Student’s t test (normal distribution) or Mann-Whitney U test (non-normal distribution),
and one-way or two-way ANOVA was used for comparing multiple groups. Pearson x° test or Fisher's exact test was
used to compare qualitative variables. Survival curves were plotted by the Kaplan-Meier method and compared by
the log-rank test. P values of < 0.05 were considered statistically significant.
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Results: NOD1 was highly expressed in CSCC with lymph-vascular space invasion (LVSI, P < 0.01) and lymph node
metastasis (LM, P <0.01) and related to worse overall survival (OS, P = 0.016). In vitro and in vivo functional assays
revealed that the upregulation of NOD1 or NOD2 in CSCC cells promoted proliferation, invasion, and migration.
Mechanistically, NOD1 and NOD2 exerted their oncogenic effects by activating NF-kb and ERK signaling pathways
and enhancing IL-8 secretion. Inhibition of the IL-8 receptor partially abrogated the effects of NOD1/2 on CSCC

cells.

Conclusions: NOD1/2-NF-kb/ERK and IL-8 axis may be involved in the progression of CSCC; the NOD1 significantly
enhanced the progression of proliferation and metastasis, which leads to a poor prognosis. Anti-IL-8 was identified

as a potential therapeutic target for patients with NOD!1

high

tumor.

Keywords: Cervical squamous cell carcinoma, NOD1/2, Tumorigenicity, Metastasis, I1L-8

Background

Cervix carcinoma is the most common malignancy of
the reproductive tract in females [1, 2], and develop-
ing countries account for 85-90% of the newly diag-
nosed cases and deaths every year [1, 3]. The WHO
Cervical Cancer Elimination Modelling Consortium
(CCEMC) has been established to eliminate cervical
cancer in the low-income and lower middle-income
countries through regular screening and human papil-
loma virus (HPV) vaccination [4—6]. The burden of
cervical cancer is especially high in China, and over
106,000 new cases and 48,000 deaths have been re-
ported in 2018 [2, 7, 8]. HPV infection-induced cer-
vical squamous cell carcinoma (CSCC) is the
predominant pathological subtype of cervical cancer
[3, 9]. Since vaccination is estimated to achieve only a
0.1-0.5% reduction in mortality rates until 2030 [5,
10], there is an urgent need for novel treatment strat-
egies. Therefore, it is necessary to elucidate the mo-
lecular mechanisms involved in the progression of
CSCC in order to identify potential therapeutic tar-
gets. Given the vital role of HPV in cervical carcino-

genesis, the correlation between immunological
factors and cancer progression needs to be
investigated.

Pattern recognition receptors (PRRs) are host sen-
sors that detect pathogen-specific molecules and act
as the first line of defense against infections. The toll-
like receptors (TLRs) and nucleotide-binding
oligomerization domain receptors (NODs) are the two
major PRRs expressed on/in the cells that recognize
invading pathogens and mediate the inflammatory re-
sponse [11-13]. NOD1 and NOD2 recognize patho-
gens that express meso-diaminopimelic acid (meso-
DAP) and muramyl dipeptide (MDP) respectively [11,
14, 15]. Recent studies have implicated PRRs in the
carcinogenesis of multiple tissues. TLR4 and TLR2
enhance metastasis of colon cancers [16—18], whereas
NOD1 promotes several gastrointestinal malignancies
[19] such as colon cancer [20], as well as head and
neck and oral squamous cell carcinoma [21, 22]. In

addition, higher baseline levels of TLR2 and TLR7 are
associated with prior clearance of HPV in women
with cervical intra-epithelial (CIN) 2 lesions [23].
TLR5 is overexpressed in high-grade cervical dysplasia
and invasive cancers but is commonly absent in the
normal cervix [24]. TLR2 and TLR9 show significant
variation in their expression levels in CSCC [25]. Fur-
thermore, the TLR9 agonist CpG oligodeoxynucleo-
tide (CpG ODN) can effectively treat solid tumors in
combination with rlipo-E7m [26]. In contrast, the role
of NODs in cervical cancer progression is unclear. A
recent study showed that downregulation of NODI1
promoted CIN progression to cervical cancer [27]. In
this study, we examined the expression of the NOD
family of proteins in CSCC tissues and cell lines to
gain further insights into their role in advanced cer-
vical malignancies.

Results

NOD1 is overexpressed in CSCC tissues and associated
with poor prognosis

The CSCC tissues were confirmed by histopathological
examination and immunostaining for specific markers
(Additional file 1: Fig.S1A). Bioinformatics analysis iden-
tified 5140 upregulated genes in the CSCC samples, in-
cluding NOD1 and NOD2 (Additional file 1: Fig.S1B).
Preliminary RNA-Seq analysis confirmed that NOD1 and
NOD2 were upregulated in the CSCC relative to normal
cervix tissues (Fig. 1A), which was further confirmed by
RT-PCR (Fig. 1B) and analysis of TCGA data (Fig. 1C).
Consistent with this, the NOD1 and NOD2 protein levels
were significantly higher in the CSCC tissues compared
to the paired adjacent normal cervix tissues (Fig. 1D—F).
Furthermore, both NOD1 and NOD2 were overex-
pressed in embolic tumor cells resulting from lymph-
vascular space invasion (LVSI) compared to the primary
tumors without LVSI (P < 0.05, Fig. 1G), whereas signifi-
cantly higher expression of NOD1 was detected in the
CSCC tissues of patients with lymph node metastasis
(LM) relative to the non-LM samples (P < 0.05, Fig. 1H).
Although the tumor stage was not associated with
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expressed NLR genes including NOD1 and NOD2 in the CSCC (n = 4) and normal cervix (n = 6) tissues. B NOD1 and NOD2 mRNA copy numbers in
unpaired CSCC tissues (NOD1, n = 59; NOD2, n = 24) and normal cervix (NOD1, n = 33; NOD2, n = 31). C NOD1 and NOD2 mRNA expression in the
CSCC (NOD1, n =75, NOD2 n = 75) and normal cervix samples (non-tumoral adjacent tissue, NOD1, n = 188; NOD2 n = 188) extracted from TCGA
database. D Representative immunofluorescence images showing co-staining of AE1/AE3 and NOD1/NOD2 in paired CSCC tumors and normal cervix

tissues (data were from two independent experiments with eight samples). E Representative IHC images showing in situ expression of NOD1and
NOD?2 in paired human CSCC tissues of different pathological stages (early and late stages and LVSI) and adjacent non-tumor tissues (scale bar =

100 pm and magnification—x 10 or x 20). F-H IHC scores of NOD1 and NOD2 in F paired tumor and adjacent non-tumor tissues (NOD1, n = 75;
NOD2, n = 70), G tumors with and without LVSI (NOD1: LVSI = 58, non-LVSI = 45; NOD2: LVSI = 48, non-LVSI = 49), and H tumors with and without LM
(NOD1: LM = 48, non-LM = 48; NOD2: LM = 55, non-LM = 39). | Kaplan-Meier curves showing overall survival of CSCC patients demarcated on the
basis of in situ NOD1 expression (http://www.proteinatlas.org). J NOD1 and NOD2 mRNA levels and representative immunofluorescence images
showing respective protein levels in Siha and CasKi cell lines. K Immunofluorescence images showing respective NOD1 and NOD2 protein levels in
primary CSC cells. For cell lines, the experiments were performed in two wells with three replicates; for primary cells, the experiments were performed
by two independent experiments with four samples; the picture is a representative one. *P < 0.05, ** P < 0.01, *** P < 0.001

NOD1/NOD2 expression, both were overexpressed in tu-
mors with poorer differentiation (Additional file 1:
Fig.S1C and S1D). In clinic practice, LVSI and LM were
risk factors for un-promising survival trend. In agreement
with the above findings, TCGA data showed that overex-
pression of NOD1 predicted a worse prognosis in CSCC
patients (Fig. 11, left panel), whereas NOD2 expression
level did not show significantly correlation with the over-
all survival (Fig. 11, right panel). Interestingly, while the
NOD1 and NOD2 mRNA levels showed a positive cor-
relation (Additional file 1: Fig.S1E); the TCGA data
showed that both overexpression of NOD1 and NOD2
predicted a worse prognosis trend in CSCC patients but
not reached significance. These results maybe according
to the small cohort group (Additional file 1: Fig.S1F).
Consistent with the patient samples, NOD1/NOD2
mRNA and protein levels were intrinsically expressed in
the CSCC cell lines (Fig. 1J) and primary CSCC cells (Fig.
1K). In conclusion, NOD1 may play an important role in
the progression of CSCC patients.

NOD1 and NOD2 promoted CSCC cell proliferation and
enhanced metastatic potential

The primary cells were purified and identified as pre-
viously described (Additional file 2: Fig.S2A). NOD1
and NOD2 were stably upregulated in the primary
cells and cell lines with Tri-DAP and MDP stimula-
tion, respectively (Additional file 2: Fig.S2B). In
addition, the cell lines were transduced with NOD1/
2-overexpressing lentiviruses (Additional file 2:
Fig.S2C). Ectopic expression of NOD1 or NOD2 sig-
nificantly enhanced the colony-forming potential of
the CSCC cell lines (Fig. 2A, P < 0.05), which was
consistent with their increased viability and prolifera-
tion rates in Siha cells (Fig. 2B). On the other hand,
the NOD1 and NOD2 ligands only slightly enhanced
the proliferative capacity of the CSCC cells (Fig. 2C,
D). Consistent with the above, a significantly higher
proportion of Siha/LV-NOD1/NOD2 cells were ob-
served in the S phase compared to the Siha/LV-ctrl
cells (Fig. 2E, F; P < 0.01). Likewise, the Siha/LV-
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Fig. 2 NOD1 and NOD2 enhanced the proliferation of CSCC cells. A Number of colonies formed by Siha, CasKi, and C33a cells overexpressing
NOD1 or NOD2 (each group was performed triplicate wells, reproducible in three independent experiments). B Time-dependent increase in the
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independent samples. E Cell cycle distribution of control and NOD1/NOD2 overexpressing Siha, CasKi, and C33a cells. The percentage of cells in
each phase is shown on the right. F Representative images of EDU-stained Siha/LV-NOD?1, Siha/LV-NOD2, and Siha/LV-Ctrl cells (scale bar—30 pym,
triplicate independent experiments). G Representative images of tumors in BALB/C nude mice subcutaneously injected with Siha/LV-NOD1, Siha/
LV-NOD2 (right), and respective control cells (left). The tumor volume and weight of the indicated groups are shown on the right. All data are
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NOD1 and Siha/LV-NOD2 cells resulted in signifi-
cantly larger tumors in vivo compared to the control
cells (Fig. 2Q).

The impact of NOD1 and NOD2 expression on the
metastatic potential of CSCC cells was analyzed by
in vitro and in vivo assays [28]. NOD1 and NOD2 over-
expression significantly increased the extent of wound
closure, as well the number of cells that migrated or in-
vaded into the bottom surface of the transwell insert
membranes (Fig. 3A—C, Additional file 3: Fig.S3A). The
metastatic effect of NOD1/2 was also verified on the pri-
mary CSCC cells (Fig. 3D). Furthermore, the number of
pulmonary metastatic nodules was markedly higher in
the mice injected intravenously with Siha/LV-NOD1/
NOD2 cells as opposed to the control Siha cells (Fig.
3E). Although the weight of the tumor-bearing mice was

similar across the three groups (Additional file 3:
Fig.S3B), the animals harboring Siha/LV-NOD1 or Siha/
LV-NOD2 tumors had worse survival rates (Fig. 3F).
Taken together, NOD1 and NOD2 significantly pro-
moted CSCC proliferation by accelerating transition into
the S phase of the cell cycle, and increased their meta-
static potential.

NOD1 and NOD2 enhanced the tumorigenic and
metastatic potential of CSCC cells through multiple
pathways

The mechanisms underlying the oncogenic effects of
NOD1/NOD2 were further elucidated via pharmaco-
logical inhibition with ML-130 as well as siRNA-
mediated gene knockdown (Additional file 4: Fig.S4). In-
hibition of NOD1 or NOD2 significantly decreased the
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proliferative capacity (Fig. 4A, B), and the migration and
invasion rates of Siha/LV-NOD1 or Siha/LV-NOD2 re-
spectively (Fig. 4C) compared to the vehicle controls.
GO and KEGG enrichment analyses further showed that
the genes and proteins correlated with the upregulation
of NOD1 or NOD2 were involved in cell proliferation,
cytokines, and pathways in cancer such as ERK, NF-kB,
and IL-8 (Fig. 4D-G). As shown in Fig. 4F, the ERK and
NF-«kB pathway proteins were also upregulated in the
LV-NOD1 and LV-NOD2 cells. The quantity of cytokine
in-cell array indicated that IL-6 and IL-8 were upregulated
by NOD1 or NOD?2 increasing (Fig. 4G upper panels);
however, only significant higher IL-8 secretion by Siha/
LV-NOD1 or Siha/LV-NOD2 was identified (Fig. 4G,
down panels). NOD1/NOD2 increased the secretion of
IL-8 but not of IL-6 (Fig. 4G, down panels), which was ab-
rogated by their respective siRNAs (Fig. 5A, left panels) as
well as ML-130 (Fig. 5A, right panels) and the NF-kB in-
hibitor (Fig. 5B). In addition, the proliferation ability of
Siha/LV-NODI1 or Siha/LV-NOD2 was significantly inhib-
ited by selective inhibitors of the IL-8 receptor CXCR1/2
(Reparixin), NF-kB (EVP4593), or ERK (SCH772984) (Fig.

5C), and the combination of all three showed a cumulative
inhibitory effect (Fig. 5C). Reparixin and EVP4593 also de-
creased the metastatic potential of Siha/LV-NOD1 and
Siha/LV-NOD?2 cells (Fig. 5D, E).

The enhanced IL-8 secretion by NOD1/NOD2-overex-
pressing Siha cells upregulated the adhesion molecule
EN1 (Additional file 5: Fig.S5A), and knocking down
EN1 inhibited metastasis of Siha/LV-NODI1 and Siha/
LV-NOD2 cells (Additional file 5: Fig.S5B). In addition,
the elevated FN1 in Siha/LV-NOD1 or Siha/LV-NOD2
cells was downregulated by Reparixin (Additional file
5C). To summarize, the oncogenic effects of NOD1 and
NOD2 in CSCC are mediated through multiple path-
ways; and knocking down either NOD1 or NOD2 in
Siha cells downregulated P65/p-P65and ERK/p-ERK sig-
nificantly (Fig. 5F, G).

Reparixin prolonged the survival of mice harboring
NOD1"9" tumors

Consistent with the in vitro findings, Reparixin or
EVP4593 markedly decreased the volume and weight
(Fig. 6A, B) of tumors derived from mice with
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Fig. 4 NOD1/NOD2 promote CSCC tumorigenesis by activating the ERK and NF-kB signaling pathways. A Proliferation rates of Siha/LV-NOD1 and
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subcutaneous Siha/LV-NOD1 or Siha/LV-NOD2 cells
compared to the untreated controls. Reparixin signifi-
cantly improved the OS of mice bearing Siha/LV-
NOD1 tumors subcutaneously (Fig. 6C). In the metas-
tasis models induced by tail vein injection with Siha/
LV-NOD1 or Siha/LV-NOD2 cells, Reparixin inhib-
ited the growth of metastatic nodules compared to
the placebo controls (Fig. 6D). Finally, Reparixin sig-
nificantly improved the OS of mice with metastatic
Siha/LV-NOD1 nodule xenografts (Fig. 6E). Taken to-
gether, the NOD1/ NF-kB/IL-8 axis is a promising
therapeutic target in CSCC.

Discussion

Metastatic and recurrent CSCC are highly recalcitrant
tumors and challenging to treat. Previous study indi-
cated several PRRs have been implicated in the progres-
sion of cervical cancer [23], the NLR family of PRRs has
been identified in host immune defense [11, 29], and its
members NOD1 and NOD2 are widely expressed in the
female reproductive organs including endometrium, fal-
lopian tubes, cervix, and ecto-cervix [27, 30, 31]. NOD1
plays an important role in the development of colon
cancer and breast cancer [11, 20, 32, 33], and its dysreg-
ulation drives the progression of CIN to cervical cancer
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(See figure on previous page.)

Fig. 5 Reparixin inhibits NOD1/2-induced tumorigenesis of CSCC cells by inhibiting the secretion of IL-8. A IL-8 levels secreted by Siha/LV-NOD1
and Siha/LV-NOD2 cells with NOD1 and NOD2 knockdown (left panels), or ML-130 pretreatment (right panels). B IL-8 levels secreted by Siha/LV-
NOD1 and Siha/LV-NOD?2 treated with EVP4593 (NF-kB inhibitor). C Proliferation rates of Siha/LV-NOD1 and Siha/LV-NOD?2 cells treated with
Reparixin (R), EVP4593 (E), SCH772984 (S), and their combination. D, E Representative images of transwell assays showing migration and invasion
of Siha/LV-NOD1 and Siha/LV-NOD2 cells treated with Reparixin or EVP4593. The percentages are shown on the right. ELISA and transwell assays
were performed in triplicates and CCK8 assay in five replicates. F, G Immunoblot showing expression of ERK/p-ERK and NF-kB/p-NF-kB in the
Siha/LV-NOD1 and Siha/LV-NOD2 CSCC cells (data are from three independent experiment) transfected with siRNAs. All data are presented as

mean = SD. *P < 0.05; **P < 0.01; ***P < 0.001

[27]. The correlation between NOD2 expression and
tumorigenesis varies across different cancer types [33—
36]. We detected higher levels of NOD1 and NOD2 in
the CSCC tissues compared to the normal cervix. Fur-
thermore, NOD1 was particularly overexpressed in tu-
mors with LVSI, LM, and poor differentiation and
associated with worse survival. NOD2 was elevated in
the tumors with LVSI and poor differentiation, although

its association with LM and survival was not as signifi-
cant as observed with NODI1. In clinical characteristics,
LVSI and LM associate with higher metastatic rate. The
higher risk for worse prognosis is LM, and the Sedlis cri-
teria include risk factor of LVSI for worse prognosis
[37]. Our results also indicated that higher NOD1 or
NOD2 expression was not associated with advanced
tumor stages. As we know, advanced stage cervical
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cancer means worse OS; poor differentiation is not a
definitely middle/high-risk factor for prognosis in pa-
tients with CSCC [38]. From the above results, we can
predict that CSCC patients in the same stage with the
higher NOD1 expression have worse prognosis. How-
ever, we collected the CSCC tissue from “Oct 2017 to
Dec 2019” and most of these samples were from patients
at early stages (IB1-IIA, FIGO 2009 staging system), and
we could not get the powerful survival data from our en-
rolled patients (OS and DFS (disease free survival)) be-
cause of the relatively short follow-up period. Therefore,
we abstracted the clinical characteristics from “TCGA”
database and calculated the OS.

Furthermore, in a functional experiment, the ectopic
expression of NOD1 or NOD2 in CSCC cell lines en-
hanced their proliferative and metastatic capacities
in vitro and in vivo. Besides, we isolated and cultured
primary CSCC cells for counterpart experiments of
CSCC cell lines since there is a limited source of cell
lines in the world. The upregulation of NOD1 in pri-
mary CSCC cells also increased the metastatic capacity
in vitro as cell lines showed. This is consistent with the
increased expression of NOD1 observed in colon cancer
metastasis and breast cancer cell lines [33, 39]. However,
Liu et al reported a suppressive role of NOD1 in CSCC
[27], which might point to a differential function de-
pending on the disease stage.

NOD1 and NOD2 stimulation by their respective lig-
and activates the ERK and NF-«xB signaling pathways
[33, 40, 41], and several studies have demonstrated
NOD1/2-mediated phosphorylation of ERK and P65 [11,
12, 33, 36, 42, 43]. The activation of NF-kB and ERK
pathways culminates in the upregulation in multiple
downstream targets, such as IL-8 and fibronectin (FN1)
[44—47]. FN1 is extravasated from the bloodstream into
tissues and promotes tumor adhesion [39, 48] in re-
sponse to increased IL-8 secretion [49]. Both TLRs and
NODs are involved in CSCC progression [50], and up-
regulation of TLRs (such as TLR8) may also induce IL8
secretion [51]. Additionally, previous studies have dem-
onstrated that the IL-8-CXCR1/2 axis is involved in the
tumorigenesis and metastasis of multiple cancers [44, 52,
53] and the safety of ML-130 has not been examined by
any clinical trial; we surmised that NF-«kB/IL-8 are po-
tential therapeutic targets in CSCC patients with
metastasis.

Indeed, tumor progression was remarkably attenuated
by the CXCR1/2 inhibitor Reparixin, whereas inhibition
of NF-kB had limited effect given the involvement of
multiple signaling pathways. Consistent with our find-
ings, IL-8 and CXCR1/2 inhibitors significantly attenu-
ated progression of breast cancer [54-56]. Anti-IL-8
treatment regimens are currently in the clinical testing
phase for non-small cell lung cancer (NSCLC),
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hepatocellular ~ carcinoma (HCC) (NCT04123379,
recruiting), and early (NCT01861054) and metastatic
breast cancer (NCT02001974). Interestingly, Reparixin
significantly improved the survival of mice bearing meta-
static Siha/LV-NOD1 tumors but its therapeutic effect
was less pronounced in the Siha/LV-NOD2 group.

Conclusions

In summary, NOD1 is a potential biomarker of worse
prognosis in CSCC patients. Both NOD1 and NOD2 en-
hanced the proliferative and metastatic abilities of CSCC
cells by promoting IL-8 secretion via the NF-«kB path-
ways. Furthermore, Reparixin is a promising agent
against CSCC and should be further examined in a clin-
ical setting in NOD1-positive populations with meta-
static CSCC.

Methods

Patient samples and clinicopathological data

Specimen collection and clinicopathological data review
were approved by the Ethics Committee of Cancer Hos-
pital, CAMS (Chinese Academy of Medical Sciences &
Peking Union Medical College). This study was per-
formed in accordance with the International Ethical
Guidelines for Biomedical Research Involving Human
Subjects (CIOMS), and none of the procedures con-
ducted in this study interfered with the treatment plan
of the patients. CSCC tissues were collected during sur-
gery or biopsies conducted between Oct 2017 and Dec
2019 at the Cancer Hospital, after obtaining consent
from the patients. Totally, fifty-eight CSCC samples and
thirty-three normal cervix tissue samples were used for
the quantitative real-time PCR (qPCR) assay, and 143
CSCC samples were collected for immunohistochemistry
(IHC). Sixteen tumor samples were used for primary cell
isolation and subsequent assays.

Transcriptome sequencing and bioinformatics analysis

The NOD1 and NOD2 expression data of CSCC patients
was extracted from the Human Protein Atlas (http://
www.proteinatlas.org), and the mRNA expression and
survival data from The Cancer Genome Atlas (TCGA)
databases. The transcriptome sequencing (differential
expression genes, DEG) of CSCC and normal cervical
tissue (from Cancer Hospital) were identified by BGI-
SEQ platform and analyzed on the DR. TOM network
platform of BGI (https://biosys.bgi.com/#/report/login).
The sequencing reads which contain low-quality,
adaptor-polluted, and high content of unknown base (N)
reads should be processed to be removed before down-
stream analyses. After sequencing data filtering, DEG
level was calculated for each sample with RSEM [57].
The target genes were functionally annotated by Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
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Genomes (KEGG) pathway analyses, and the significant
biological processes, cellular components, and molecular
functions were identified.

Cell culture

The human CSCC cell lines Siha, CasKi, and C33a were
all purchased from Cell Resource Center (Beijing, China).
The cell lines were verified by short tandem repeat (STR)
sequencing by the Beijing Microread Genetics Company
on July 2018. The cells were cultured in DMEM/F12
medium (Lonza, Walkersville, MD, USA) supplemented
with 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher
Scientific, USA) and 1% penicillin/streptomycin (PS)
(Gibco, Thermo Fisher Scientific, USA) at 37 °C under 5%
CO,; (Thermo Technologies, Vancouver, Japan). The cells
were treated with Tri-DAP, MDP (InvivoGen, USA), ML-
130 (TargetMol, USA), CXCR1/2 inhibitor (Reparixin,
Med Chem Express, USA), NF-kB inhibitor (EVP4593,
Sellect, USA), or ERK inhibitor (SCH772984, Sellect,
USA) as required. Primary CSCC cells were isolated from
patient samples as previously described [58]. Briefly, the
specimens were minced into 1-mm? pieces in 6-cm petri
dishes, and sequentially digested with 0.05% trypsin con-
taining EDTA (Lonza, Walkersville, MD, USA) and 0.2%
type I collagenase (Sigma-Aldrich Corp., St Louis, MO,
USA) at 37°C with constant shaking. FBS was added to
terminate the reaction, and the cells were washed and re-
suspended in DMEM/F12 complete medium with 5% FBS
(Gibco). The primary cells were seeded in a petri dish and
cultured for 7-10 days.

MACS and flow cytometry

Trypsinized primary CSCC cells were re-suspended in
MACS (magnetic-activated cell sorting) separation buffer
and incubated with anti-EpCAM magnetic microbeads
(Miltenyi Biotec Inc, Auburn, CA, USA) according to the
manufacturer’s instructions. Then, the EpCAM-positive
cells were collected and cultured in high-glucose DMEM
medium with FBS (5%). Flow cytometry (FCM) was used
to identify the purity of the CSCCs immediately after cell
sorting or a short period of culture: Purified primary cells
were stained with fluorescent-conjugated antibodies
against anti-human EpCAM FITC (BioLegend Inc., San
Diego, CA, USA) and anti-human vimentin PE (Miltenyi
Biotec Inc, Auburn, CA, USA) on ice. Since vimentin was
the cellular marker used, the cells were pretreated with
Fixation/Permeabilization reagent (Invitrogen, Carlsbad,
CA) according to the protocols recommended by the
manufacturer. FCM acquisition was performed using a
Beckman coulter-Dxflex flow cytometer. Flow Jo V10 soft-
ware was used for the data analysis. The purity of the
sorted cells reached -~ 96% purity. After the purification
was identified, the cells were collected and cultured for
functional examination.
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Quantitative real-time PCR

Total RNA was extracted from the cultured cells and fro-
zen tissues using Trizol Reagent (Invitrogen, Carlsbad,
CA). The quality and concentration of the RNA were de-
termined using a Nanodrop Spectrophotometer (Thermo
Scientific, Wilmington, DE). The RNA was reverse tran-
scribed to ¢cDNA using a Reverse Transcriptase Kit
(Takara, Japan) and amplified by RT-qPCR using Power
SYBR Green PCR Master Mix (Life, Applied Biosystems)
on the Step One Plus Real-Time PCR System (Life, Ap-
plied Biosystems). The target gene expression levels were
calculated with the 274" method, and each sample was
analyzed in triplicates. The primers were synthesized by
Sangon Technologies (Shanghai, Corp.) and the sequences
were as follows:

NODIL:FW5' -TACTGAAAAGCAATCGGGAACT,
RW: 5'-GTAGAGGAAGAACTCGGACACG;
NOD2: FW: 5'-TGCGGACTCTACTCTTTGAGC,
RW: 5'-CCGTGAACCTGAACTTGAACT;
GAPDH: FW: 5'-GCACCGTCAAGGCTGAGAAC,
RW: 5'-TGGTGAAGACGCCAGTGGA.

Hematoxylin-eosin staining (HE) and
immunohistochemistry (IHC)

The tissue samples were fixed with 4% paraformaldehyde
for 24 h, embedded in paraffin, cut into 5-pm-thick sec-
tions, and coated at 75°C for 2h. The sections were
deparaffinized using xylene and rehydrated through an
ethanol gradient. HE staining was performed as standard
protocols. For IHC, the sections were heated in citrate
buffer for antigen retrieval, incubated with 2% hydrogen
peroxide for quenching endogenous peroxidase, and
blocked using 1% goat serum (ZSJQ, Beijing, China).
The slices were then incubated overnight with rabbit
anti-human vimentin (without diluted, Origene, Beijing,
China), mouse anti-human pan-cytokeratin AE1/AE3
(without diluted, Origene, Beijing, China), mouse anti-
human Ki67 (diluted 1:200, ZSGB-BIO, Beijing, China),
mouse anti-human P16 (diluted 1:200, ZSGB-BIO,
Beijing, China), mouse anti-human NOD1 (B-4; dilution:
1:100; sc-398696, Santa Cruz, USA), and mouse anti-
human NOD2 (2D9; dilution: 1:100; sc-56168, Santa
Cruz, USA) antibodies and the isotype control at 4 °C.
After washing with PBST (Phosphate Buffer Solution
with Tween-20), the sections were sequentially stained
with DAB chromogen (diaminobezidin, ZS]JQ, Beijing,
China) and hematoxylin (Sigma-Aldrich, USA). NOD1
and NOD2 expression parameters were scored by Image
Pro Plus software (USA).

Immunofluorescence staining
The cells cultured on chamber slides were fixed with
cold 4% paraformaldehyde and permeabilized with 0.1%
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Triton X-100 for 15min. After washing with PBS, the
cells were incubated overnight with rabbit anti-human
vimentin (diluted 1:100, Abcam, Cambridge, MA, USA),
mouse anti-human AE1/AE3 (diluted 1:100, ZSGB-BIO,
Beijing, China), rabbit anti-human CDKN2A/p16INK4a
(P16) (diluted 1:200, Abcam), mouse anti-human NOD1
(B-4; dilution: 1:100; sc-398696, Santa Cruz), and mouse
anti-human NOD2 (2D9; dilution: 1:100; sc-56168, Santa
Cruz) primary antibodies. The slides were then incu-
bated with Alexa Fluor-conjugated secondary antibodies
(Abcam) for 1h at room temperature and counter-
stained with DAPI (4',6-diamidino-2-phenylindole,
Cat.H3570, Life Technologies). The stained tissues and
cells were viewed using Olympus scanner or laser scan-
ning confocal microscope (LSM780; Zeiss), and the
staining intensity was evaluated by a pathologist blinded
to the samples using image plus software (USA).

Lentiviral transduction

Human NODI1 (BC040339.1) and NOD2 (NM022162.2)
were respectively cloned into the pLVX-P2A-ZsGreen-
T2A-Puro vector at the Xhol and BamHI sites. The
lentivirus  with pLVX-hNOD1/hNOD2-ZsGreen-Puro
was purchased and packaged as per the manufacturer’s
description (Likeli Biotec Inc, Beijing, China USA). The
CSCC cell lines (Siha, CasKi and C33a) were transduced
with the NOD1/NOD2 or empty vector lentiviruses and
selected using puromycin. NOD1/2 overexpression was
verified by western blotting.

Small interfering RNA (siRNA) transfection

NOD1, NOD2, EN1, and scrambled siRNAs were syn-
thesized by JTS Scientific Company (Beijing, China). The
sequences are as follows:

NODL1: Sil (866) - CCUGCUCACUCAGAGCAAALt,
UUUGCUCUGAGUGAGCAGGtt

Si2 (1240) - GCAUGUUCAGCUGCUUCAALt,
UUGAAGCAGCUGAACAUGCtt

Si3 (2095) - CCUUCUUUACAGCCUUCUULt,
AAGAAGGCUGUAAAGAAGGtt

NOD2: Sil (952) - GCAAGAAGUAUAUGGCCAALt,
UUGGCCAUAUACUUCUUGCtt

Si2 (1253) - GCAAGACUUCCAGGAAUUULtt,
AAAUUCCUGGAAGUCUUGCtt

Si3 (2798) - GCUCAUUGAAUGUGCUCUUtt, AAGA
GCACAUUCAAUGAGCtt

FN1 - CCAUUUCACCUUCAGACAALtt, UUGUCU
GAAGGUGAAAUGGtt

The Siha/LV-NODI, Siha/LV-NOD2, CasKi/LV-
NOD1, and CasKi /LV-NOD2 cell lines were grown till
70% confluency and transfected with the respective siR-
NAs using Lipofectamine™ 2000 (Invitrogen, Thermo
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Fisher Scientific). Briefly, siRNA and 1 pl Lipofectamine™
2000 was respectively diluted in 50 ul Opti-MEM, incu-
bated for 15 min at room temperature, and then mixed.
The mixture was incubated for 15min at room
temperature and added to each well. The cells were in-
cubated at 37 °C for 24 h, and the transfection efficacy
was tested.

Human cytokine array, western blotting, and ELISA

The cultured cells were harvested for cytokine array and
western blotting, and the supernatants were collected for
ELISA. The cytokine levels were analyzed with the G-
Series Human Cytokine Antibody Array 440 as per the
manufacturer’s instructions (Ray Biotech Inc. Quanti-
body service, China). Western blotting was performed
using standard protocols after the cells were lysed in
RIPA buffer (Sigma, Saint Louis, MO) [59]. The follow-
ing primary antibodies were used: B-actin (AC-15; 1:
2000; Sigma), NOD1 (mouse anti-human, B-4; 1:500; sc-
398696, Santa Cruz), NOD2 (mouse anti-human, 2D9; 1:
500; sc-56168, Santa Cruz), P65 (rabbit anti-human,
D14E12, 1:1000; CST, USA), p-P65 (rabbit anti-human,
93H1, 1:1000; CST, USA), P44/42 MAPK (ERK1/2)
(rabbit anti-human, 1:1000; CST, USA), and pP44/42
MAPK (pERK1/2) (Thr202/Tyr204, rabbit anti-human,
1:1000, CST, USA). The IL-8 and IL-6 levels in the su-
pernatants were quantified using LEGEND MAX™ Hu-
man IL-8 and Human IL-6 ELISA Kits (Biolegend, USA)
according to the manufacturer’s instructions.

Cell counting and CCK8 assays

Cells were seeded in 6-cm petri dishes at the logarithmic
phase of growth, and harvested after 24, 48, 72, 96, and
120 h, respectively. The number of cells was recorded
using a cell counter II (Life Corp, USA). The cells were
seeded into 96-well plates for the Cell Counting Kit-8
(CCK8) assay (Dojindo Laboratories, Japan), and 10 ul
CCK8 solution was added per well at 24, 48, and 72 h of
culture. The optical density at 450 nm (OD.450) was
measured using a Model 680 Microplate Reader (BIO-
RAD, Hercules, CA). Five replicates were tested per
sample.

Cell cycle profiling

The transfected cells were seeded into 12-well plates and
cultured for 24 h. After fixing in cold 4% paraformalde-
hyde (PFA) for 15 min and permeabilizing with 0.1% Tri-
ton X-100 for 15 min, the cells were incubated with EAU
(5-Ethynyl-2'-deoxyuridine) (Beyotime Biotechnology,
China) for proliferation. The cells were then washed
thrice with PBS, counterstained with DAPI (Beyotime
Biotechnology, China), and observed under a laser scan-
ning confocal microscope (LSM780; Zeiss). For FCM,
the cells were harvested, washed sequentially with citrate
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buffer and PBS, and incubated with ribonuclease (RNA-
ase) and propidium iodide (PI) (Ref. CYT-PIR-25, Cytog-
nos, Spain) at room temperature for 1h. The stained
cells were acquired in a flow cytometer (Beckman
coulter-Dxflex) and analyzed by the Flow Jo V10
software.

Colony formation assay

The primary cells and cell lines were seeded in six-well
plates at the respective densities of 800 cells/well and
500 cells/well. After culturing for 10-14 days, the cells
were fixed with cold 4% PFA and stained with crystal
violet (Solarbio, Beijing, China).

Wound healing assay

Siha/LV-Ctrl/NOD1/NOD2 and CasKi/LV-Ctrl/NOD1/
NOD2 cells were seeded into 6-well plates at the density
of 1 x 10° cells/well in complete DMEM/F12 (10% EBS).
After 24 h of culture, the monolayer was scratched using
a 10-pl pipette tip, and the wound region was measured
at 0, 6, 12, and 24h under a microscope. The wound
healing rate at the different time points was quantified
as the width of the wound region relative to the initial
width at O h.

Transwell assay

The different cell lines and primary cells were seeded
into transwell chambers (Costar, Cambridge, MA) at the
respective densities of 3—5 x 10* cells/well and 0.5-1 x
10° cells/well in 200 ul serum-free DMEM/F12. The
lower chambers were filled with 600 pul complete
DMEM/F12 (10% FBS). After 20—24 h of incubation, the
cells that had migrated through the membrane were
fixed and stained, and counted in four randomly chosen
fields. The invasive capacity of the cells was similarly an-
alyzed using Matrigel-coated (BD Biosciences, San Jose,
CA, USA) transwell membranes.

In vivo experiments

All animal experiments were approved by the Beijing
Municipal Science and Technology Commission, and
conducted in accordance with the relevant guidelines.
The xenograft model was established by subcutaneously
inoculating 8-week-old BALB/c nude mice or 7—8 weeks
NOD/SCID mice with 3 x10° Siha/LV-Ctrl/NOD1/
NOD2 cells and bilaterally. Palpable tumors (>3 mm)
appeared 7 days after injection and were measured every
3days. The mice were euthanized 28-56 days post-
inoculation, and the tumors were removed and weighed.
The lung metastasis model was established by intraven-
ously injecting 8—9-week-old NOD/SCID mice with 1 x
10° Siha/LV-Ctrl/NOD1/NOD2 cells. Metastatic growth
in the lungs was detected by labeling with luciferase or
GEP. The mice were sacrificed 56—84 days, and the

Page 12 of 15

number of metastatic nodules was counted. For the
treatment regimen, the tumor-bearing mice were divided
into the placebo control, Reparixin, and EVP-4395
groups, and the tumor growth was monitored as de-
scribed above.

Statistical analysis

Statistical analysis was performed using SPSS 19.0 soft-
ware, and GraphPad Prism 5.0 software was used for
plotting graphs. Quantitative variables between two
groups were compared by Student’s ¢ test (normal distri-
bution) or Mann-Whitney U test (non-normal distribu-
tion), and one-way or two-way ANOVA was used for
comparing multiple groups. Pearson x” test or Fisher’s
exact test was used to compare qualitative variables. Sur-
vival curves were plotted by the Kaplan-Meier method
and compared by the log-rank test. P values of <0.05
were considered statistically significant.
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Additional file 1. The IHC scores of NOD1 and NOD2 expression levels.
A) Representative images of HE-stained human CSCC tissues (n = 113,
magnification 10X), P16 and/or Ki67 and/or CK immunostaining, and
AE1/AE3 and vimentin immunofluorescence (n = 6; scale bar - 30 um). B)
DEGs by Venn diagrams (left panel): the red number represents the up-
regulated gene amount, blue number represents the downregulated
gene amount; Scatter plot (right panel): hierarchical clustering of 5,140
upregulated mRNAs, using X Y axis represents log10 transformed gene
expression level, red color represents the up-regulated genes, blue color
represents the downregulated genes, gray color represents the non-DEGs
(Normal cervix, n = 4; cervical cancer, n = 6). C) IHC scores for NOD1 and
NOD?2 in the early and advanced stage tumors (for NODT1, Il stages: n =
39, lIl-IV stages: n = 53; for NOD2, I-Il stages: n = 34, lll-IV stages: n = 52).
D) IHC scores of NOD1 and NOD?2 in tumors of different grades (for
NOD1, high and middle: n = 46, poor: n = 60; for NOD2, high and middle:
n = 43, poor: n = 50). E) The positive correlation mRNA expression of
NOD1 and NOD2 was identified by database (n = 306, http://timer.
cistrome.org). F) Kaplan-Meier curves showing overall survival of CSCC
patients demarcated on the basis of in situ NOD1 and NOD2 expression
(http://www.proteinatlas.org). All data are presented as mean + SD. *, P
<0.05; **, P <0.01; ***, P <0.001.

Additional file 2. NOD1/2 expression in primary CSCC cells and CSCC
cell lines. A) Morphology of the cultured Siha, Caski, C33a cell lines and
the primary CSCC cells (left). EpCAM positive cells were sorted by MACS
and identified by FCM (middle). The continuum of cultured primary CSCC
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cells were confirmed using immunofluorescence (AE1/AE3+ and P16+
and vimentin) (right). B) The level of NOD1 and NOD2 in CSCC cell lines
and primary cells was upregulated through pretreatment by specific
ligands (10 ng/mL) at 24 h by gPCR (upper) and in-cell immunofluores-
cence staining (lower). C) Stable NOD1 and NOD2 expression in the cul-
tured Siha, CasKi and C33a cell lines were confirmed by green
fluorescence (GFP flag), gPCR and western blotting.

Additional file 3. NOD1 and NOD2 enhanced the tumorigenic and
metastatic abilities of CSCC cells. A) The percentages of wound healing,
while data on C33a wound closure was normalized using the wound
length at O h (left, 24 h and 48 h). The image on the right shows the
percentage of wound closure of the Siha and CasKi cells, which were
normalized to the wound length at 0 h (48 h). B) The weights of mice
injected with different cell lines. ***, P < 0.001; **, P < 0.01; *, P < 0.05.

Additional file 4. Siha/LV-NOD1 and Siha/LV-NOD2 cells transfected by
SiRNA. The expression of NOD1 mRNA (A, data were from three
independent experiments with three replicates) and protein (B, the
picture is a representative from two independent experiments). SIRNA
was presented as Sil, Si2 and Si3.

Additional file 5. Over-expression of NOD1 or NOD2 of Siha cells pro-
motes FNT and IL-8. A) Representative results of adhesion and invasion
molecules with over-expression of NOD1/NOD?2. (Siha cells, two inde-
pendent experiments using triplicated wells). B) Transwell assays revealed
that the migration and invasion abilities of the Siha/LV-NOD1 and Siha/
LV-NOD2 cells were inhibited by knock down FN1. C) Reparixin downre-

gulates FNT mRNA expression.
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