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Muscle seen on CT images is an important biomarker 
in patients with cancer (1–3). Although the muscle 

cross-sectional area (CSA) is a surrogate of muscle quan-
tity, muscle quality can be characterized based on at-
tenuation (radiodensity, radio attenuation) (4). Adipose 
tissue can be equally quantified and characterized (5).

Machine learning algorithms enable the automated 
analysis of muscle and adipose tissue (6,7). Automated 
body composition analysis pipelines at the level of the 
T12 and L3 vertebral bodies have been described, but 
pipelines for multi–vertebral level quantification and 
characterization of thoracic muscle and adipose tissue 
have not been reported (7–10).

A recent multicenter study showed that the muscle 
CSA measured at multiple vertebral levels on chest 
CT images prior to lobectomy refines morbidity risk 
prediction in patients with lung cancer (11). The pur-
pose of this study was to report the development and 
validation of a pipeline to fully automate the quan-
tification and characterization of thoracic muscle and 
adipose tissue.

Materials and Methods
Our institutional review board approved this Health In-
surance Portability and Accountability Act–compliant, 
retrospective prespecified secondary analysis. The need 
for informed consent was waived.

Patient Selection
We used routine chest CT scans obtained between 2014 and 
2017 for staging and surgical planning within 90 days prior 
to lobectomy in patients with lung cancer (one scan per 
patient) at three institutions, as previously described (11). 
Patients were retained from the previously reported cohort if 
muscle and adipose tissue were completely imaged at one or 
more of the T5, T8, or T10 vertebral body levels (11). Rea-
sons for exclusion are detailed in Figure E1 (supplement).

Ground Truth
Two trained research assistants (T.D.B., M.M.W.) su-
pervised by a board-certified radiologist (F.J.F.) gener-
ated the ground truth–level selection and segmentation. 
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Body composition on chest CT scans encompasses a set of important imaging biomarkers. This study developed and validated a fully auto-
mated analysis pipeline for multi–vertebral level assessment of muscle and adipose tissue on routine chest CT scans. This study retrospectively 
trained two convolutional neural networks on 629 chest CT scans from 629 patients (55% women; mean age, 67 years 6 10 [standard devia-
tion]) obtained between 2014 and 2017 prior to lobectomy for primary lung cancer at three institutions. A slice-selection network was devel-
oped to identify an axial image at the level of the fifth, eighth, and 10th thoracic vertebral bodies. A segmentation network (U-Net) was trained 
to segment muscle and adipose tissue on an axial image. Radiologist-guided manual-level selection and segmentation generated ground truth. 
The authors then assessed the predictive performance of their approach for cross-sectional area (CSA) (in centimeters squared) and attenuation 
(in Hounsfield units) on an independent test set. For the pipeline, median absolute error and intraclass correlation coefficients for both tissues 
were 3.6% (interquartile range, 1.3%–7.0%) and 0.959–0.998 for the CSA and 1.0 HU (interquartile range, 0.0–2.0 HU) and 0.95–0.99 for 
median attenuation. This study demonstrates accurate and reliable fully automated multi–vertebral level quantification and characterization of 
muscle and adipose tissue on routine chest CT scans.
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mance of our pipeline by comparing predicted CSA, median 
attenuation, and mean attenuation values of muscle and adi-
pose tissue for each level with the ground truth. Addition-
ally, we assessed the performance of the slice-selection and 
segmentation networks individually (Appendix E1 [supple-
ment]). We investigated whether intravenous contrast mate-
rial affected our results by comparing model errors and raw 
predicted values (slice selection, CSA, and median attenua-
tion) within the test set by using the Wilcoxon rank sum test 
(stratified by algorithm, tissue, vertebral body level, and sex) 
and adjusting for multiple testing by using the Šidák correc-
tion method.

We quantified the performance for each of the 18 test case 
scenarios resulting from the combination of tissue (muscle, 
adipose), vertebral body level (T5, T8, or T10), and measure-
ments (CSA, median attenuation, and mean attenuation). 
We calculated absolute errors, signed errors, intraclass cor-
relation coefficients, and the Dice similarity coefficient. We 
investigated agreement with Bland-Altman plots, calculated 
limits of agreement (1.96 standard deviations) for each of the 
18 scenarios independently, and defined outliers as measure-
ments outside the limits of agreement. An analyst (T.D.B.), 

Threshold-based manual segmentation (−29 to 1150 HU for 
muscle, −190 to −30 HU for adipose tissue) was performed 
on a graphic tablet by using 3D Slicer (https://www.slicer.org/) 
(2–4,12). Subcutaneous and intermuscular adipose tissue were 
considered one class (Fig E2 [supplement]). Additional details 
are described in Appendix E1 (supplement).

Convolutional Neural Networks
We adapted a previously described body composition analy-
sis pipeline to quantify muscle and adipose tissue at the T5, 
T8, and T10 vertebral body levels (6,8). The first stage is a 
slice-selection convolutional neural network (DenseNet) that 
analyzes each two-dimensional axial image in the input series 
to select individual images representative of each of the three 
vertebral levels of interest (13). The second stage is a segmen-
tation convolutional neural network (U-Net) that segments 
muscle and adipose tissue on each selected image (Fig E3 
[supplement]) (14).

The included 629 CT scans were randomly divided into a 
training set (75%), a validation set (10%) used during initial 
experiments to choose network hyperparameters and moni-
tor overfitting, and a test set (15%) held out for performance 
evaluation at the end of the study. Details of the network 
architecture, preprocessing, augmentation, weight initializa-
tion, hyperparameters, and training are described in Appen-
dix E1 (supplement).

Statistical Analysis including Network Performance 
Assessment and Outlier Analysis
We performed inter- and intrareader analysis of manual seg-
mentations on 100 randomly selected cases to assess the reli-
ability of the ground truth (manual segmentation) expressed 
as interclass correlation coefficients. Error was defined as de-
viation from the ground truth. We assessed the overall perfor-

Abbreviation
CSA = cross-sectional area

Summary
We report the development and validation of a fully automated deep 
learning pipeline for body composition analysis at multiple thoracic 
vertebral bodies; the results are not affected by intravenous adminis-
tration of contrast material and demonstrate a level of accuracy very 
similar to that of human analysts.

Key Points
 n For the cross-sectional area, the median absolute percentage error 

for muscle and adipose tissue compared with manual segmenta-
tions were 3.8% and 3.4%, respectively.

 n For median attenuation, the median absolute error for both tissues 
compared with manual segmentations was 1.0 HU.

 n Our pipeline matches the performance of human analysts, with 
intraclass correlation coefficients ranging from 0.95 to 0.99.

Keywords
Skeletal Muscle, Adipose Tissue, CT, Chest, Body Composition 
Analysis, Convolutional Neural Network (CNN), Supervised Learn-
ing

Table 1: Baseline Characteristics of Study Population

Parameter Finding (n = 629)

Female sex 348 (55)
Age at date of chest CT examination (y)* 66.95 6 9.8
Height (cm)* 167.8 6 9.7
Weight (kg)* 75.1 6 17.0
Body mass index (kg/m2)* 26.6 6 5.1
Race
 White 547 (87)
 Black 45 (7)
 Asian 29 (5)
 Other 4 (0.6)
 Missing 4 (0.6)
Tumor stage
 IA 260 (41)
 IB 153 (24)
 IIA 53 (8)
 IIB 83 (13)
 IIIA 68 (11)
 IIIB 2 (0.3)
 IV 7 (1)
 Missing 3 (0.5)
Institution
 A 348 (55)
 B 194 (31)
 C 87 (14)

Note.—Unless otherwise indicated, data are presented as num-
ber of patients, with the percentage in parentheses. 
* Data are mean 6 standard deviation.

http://radiology-ai.rsna.org
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Results

Patient and CT Characteristics
The 629 included patients were predominantly female (n = 
348, 55%) and White (n = 547, 87%), predominantly had 
early stage lung cancer (n = 549 [87%]), had a mean age of 67 
years 6 10 [standard deviation], and had a mean body mass 
index of 27 kg/m2 6 5 (Table 1). Patient characteristics did not 
differ significantly among the training, validation, and test sets 
(Table E1 [supplement]).

a data scientist (C.P.B.), and a board-certified radiologist 
(F.J.F.) jointly reviewed all test cases and performed root-
cause analysis of each outlier.

Descriptive statistics are reported as the frequency, mean 6 
standard deviation, or median and interquartile range, as appro-
priate. Statistical analyses were performed with Python 3.6.8 by 
using the open-source SciPy 1.4.1 and Pingouin 0.3.8 packages 
(15). The source code for model training and evaluation is avail-
able online (https://github.com/CPBridge/ct_body_composition 
[commit 0321e02dcb6e4fc763c2054d49b0a544707b5270]).

Table 2: Performance of Pipeline on Test Set for Cross-sectional Area, Median Attenuation, and Mean Attenuation

Parameter

T5 T8 T10 All Levels

Muscle
Adipose  
Tissue Muscle

Adipose  
Tissue Muscle

Adipose  
Tissue Muscle

Adipose  
Tissue

Cross-sectional 
area

 Absolute error 
(cm2)

7.6 6 
8.4, 4.3 
(1.9–9.9)

4.5 6 
4.9, 3.6 
(1.1–6.3)

5.6 6 
4.4, 4.6 
(1.9–9.0)

7.1 6 
7.1, 4.8 
(2.3–9.5)

3.0 6 
2.5, 2.2 
(1.0–4.3)

8.9 6 
9.3, 6.2 
(1.8–12.5)

5.1 6 
5.4, 3.1 
(1.4–7.4)

7.2 6 
7.8, 4.6 
(1.6–10.1)

 Absolute per-
centage of 
  error

4.9 6 
5.3, 2.9 
(1.0–5.8)

2.4 6 
2.8, 1.7 
(0.7–3.2)

6.5 6 
5.4, 4.6 
(2.3–9.9)

4.6 6 
4.2, 3.6 
(1.2–6.4)

3.9 6 
3.2, 3.0 
(1.4–5.8)

8.1 6 
9.8, 5.3 
(1.5–9.7)

5.1 6 
4.8, 3.8 
(1.5–7.1)

5.4 6 
7.1, 3.4 
(1.2–7.0)

 ICC 0.959 (0.93, 
0.98)

0.998 (1.00, 
1.00)

0.959 (0.94, 
0.97)

0.995 (0.99, 
1.00)

0.980 (0.97, 
0.99)

0.988 (0.98, 
0.99)

0.985 (0.98, 
0.99)

0.994 (0.99, 
1.00)

 No. of outliers* 4 3 3 6 6 7 … …

Median attenua-
tion

 Absolute error 
(HU)

1.4 6 
1.5, 1.0 
(0.0–2.0)

1.0 6 
1.1, 1.0 
(0.0–1.0)

2.1 6 
1.9, 1.0 
(1.0–3.0)

1.2 6 
1.3, 1.0 
(0.0–2.0)

1.5 6 
1.2, 1.0 
(1.0–2.0)

1.4 6 
1.3, 1.0 
(0.0–2.0)

1.7 6 
1.6, 1.0 
(1.0–2.0)

1.2 6 
1.2, 1.0 
(0.0–2.0)

 Signed error 
(HU)

0.3 6 2.0, 
0.0 (−1.0 
to 1.0)

−0.2 6 1.4, 
0.0 (−1.0 
to 0.0)

−0.9 6 2.7, 
−1.0 (−2.0 
to 1.0)

0.1 6 1.7, 
0.0 (−1.0 
to 1.0)

−0.5 6 1.9, 
0.0 (−2.0 
to 1.0)

0.1 6 1.9, 
0.0 (−1.0 
to 1.0)

−0.5 6 2.3, 
0.0 (−2.0 
to 1.0)

0.0 6 1.7, 
0.0 (−1.0 
to 1.0)

 ICC 0.951 (0.92, 
0.97)

0.992 (0.99, 
1.00)

0.955 (0.93, 
0.97)

0.992 (0.99, 
0.99)

0.977 (0.97, 
0.98)

0.991 (0.99, 
0.99)

0.969 (0.96, 
0.98)

0.992 (0.99, 
0.99)

 No. of outliers* 3 5 6 5 3 9 … …

Mean attenuation

 Absolute error 
(HU)

1.5 6 
1.2, 1.1 
(0.7–1.8)

1.0 6 
1.1, 0.6 
(0.2–1.3)

1.7 6 
1.6, 1.2 
(0.4–2.7)

1.1 6 
1.2, 0.6 
(0.3–1.6)

1.5 6 
1.2, 1.2 
(0.6–2.1)

1.4 6 
1.4, 1.0 
(0.4–1.8)

1.6 6 
1.4, 1.2 
(0.5–2.2)

1.2 6 
1.3, 0.7 
(0.3–1.6)

 Signed error 
(HU)

0.7 6 1.8, 
0.7 (−0.6 
to 1.7)

0.0 6 1.5, 
−0.1 (−0.8 
to 0.4)

−0.9 6 
2.2,−0.4 
(−2.1 to 
0.2)

1.8 6 1.6, 
0.1 (−0.5 
to 0.9)

−0.5 6 1.8, 
−0.3 (−1.5 
to 0.9)

0.3 6 2.0, 
0.2 (−0.7 
to 1.3)

−0.4 6 
2.0,−0.2 
(−1.4 to 
0.9)

0.2 6 1.7, 
0.1 (−0.6 
to 0.9)

 ICC 0.948 (0.91, 
0.97)

0.989 (0.98, 
0.99)

0.950 (0.93, 
0.97)

0.991 (0.99, 
0.99)

0.964 (0.95, 
0.98)

0.988 (0.98, 
0.99)

0.962 (0.95, 
0.97)

0.989 (0.99, 
0.99)

 No. of outliers* 5 4 5 7 5 7 … …

Note.—Absolute errors and signed errors are presented as mean 6 standard deviation, followed by the median, and with the interquartile 
range in parentheses. For intraclass correlation coefficients (ICCs), data in parentheses are the 95% CI.
* Outliers were identified by using the limits of agreement, as defined through Bland-Altman analysis.

http://radiology-ai.rsna.org
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Reliability of Manual Segmentations
The inter- and intraclass correlation coefficients of manual seg-
mentations were excellent (0.999; 95% CI: 0.999, ,1.000), 
as previously reported (11).

CT scans were acquired with 37 scanner models from four 
manufacturers (Table E2 [supplement]). Intravenous contrast 
material was used for 353 of 629 scans (56%). Slice thick-
ness ranged from 1.25 to 5.00 mm, 67% of scans had a slice 
thickness of 2–3 mm, and all scans were obtained using a 
soft-tissue kernel.

Figure 1: Performance of the pipeline for cross-sectional area. Bland-Altman plots show agreement between the pre-
dicted and ground truth muscle and adipose tissue cross-sectional areas at T5, T8, and T10 vertebral bodies. The pipeline is 
compared with human analysts. SD = standard deviation.

http://radiology-ai.rsna.org
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was excellent in all cases, ranging from 0.951 to 0.998. Re-
sults for mean attenuation, the slice-selection network, and 
the segmentation network individually are presented in Ap-
pendix E1 (supplement). There was no significant difference 
between scans with and those without intravenous contrast 
material with respect to slice selection (all P values  .08), 

Pipeline Performance
For the CSA, median absolute errors were 3.1 cm2 (3.8%) 
for muscle and 4.6 cm2 (3.4%) for adipose tissue (Table 2, 
Fig 1). For median attenuation, the median absolute error 
was 1.0 HU for both muscle and adipose tissue (Table 2, Fig 
2) across all levels. Intraclass correlation with ground truth 

Figure 2: Performance of the pipeline for median attenuation. Bland-Altman plots show agreement between predicted 
and ground truth muscle and adipose tissue median attenuation at T5, T8, and T10 vertebral bodies. The pipeline is com-
pared with human analysts. SD = standard deviation.

http://radiology-ai.rsna.org
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CSA (all P values  .23), and median attenuation (all P 
values  .56) errors and predictions, which were corrected 
for multiple testing.

Outlier Analysis
Bland-Altman analysis identified 93 outliers on 57 scans (Ap-
pendix E1 [supplement]) out of a total of 1476 (6%) measure-
ments obtained in the 18 test case scenarios (Table 2). For the 
29 CSA outliers, the median absolute percentage error was 13% 
(interquartile range, 4%–20%). For the 31 median attenuation 
outliers, the median absolute error was 5.0 HU (interquartile 
range, 4.0–5.5 HU). We attributed 84 of 93 (90%) outliers to 
the selection of a slice that differed from the ground truth, as 
segmentations were anatomically correct on review. Additional 
details are presented in Table E4 (supplement). The pipeline 
did not erroneously segment the pleura, lung, or mediastinum, 
even if pleural effusions and parenchymal abnormalities, such 
as masses, were present (Fig E2 [supplement]).

Discussion
We developed and validated a fully automated pipeline on a 
large dataset of routine chest CT scans obtained with multiple 
scanner models from four vendors at three institutions. Our 
pipeline can accurately and reliably analyze muscle and adipose 
tissue at three thoracic vertebral levels, demonstrating an ac-
curacy matching that of radiologist-guided human analysts on 
scans with and without intravenous contrast material. Ninety 
percent of outliers identified by using the limits of agreement 
could be attributed to slice selection differences.

Previously reported automated body composition analysis 
pipelines were focused on lumbar vertebral levels (6–8,10,16) 
or were limited to paraspinous muscle at the level of the T12 
vertebral body (9). Although the muscle CSA at the L3 vertebral 
body level has been shown to correlate best with overall body 
composition of all single slices, no single-slice analysis captures 
the entire body composition perfectly (17,18).

We developed this method by retraining a pipeline designed 
for body composition analysis at the L3 vertebral body level 
and making only minor changes to the network output layers 
to reflect the number of levels and tissue classes. This suggests 
the possibility of scaling this approach to more vertebral levels. 
Furthermore, segmentation is achieved with one U-Net network 
at all three levels, suggesting that it may be capable of analyzing 
additional thoracic levels.

With our pipeline, slice selection and segmentation occur 
in a matter of seconds, which facilitates large-scale analyses of 
chest CT scans, similar to recent work by Magudia et al (6) and 
Pickhardt et al (7). On the basis of our formal outlier analysis, 
we believe that the output of all automated body composition 
analysis pipelines should undergo rigorous quality assurance and 
expert review to generate the feedback necessary for model im-
provement (3,19).

Our pipeline had limitations. First, patients in the cohort 
used for training had lung cancer and were older than the gen-
eral population, which may limit generalizability. Second, our 
sample had limited racial diversity, with only 7% of patients 
being Black and 5% being Asian, despite pooling data from 

three institutions. Last, our dataset consisted of outpatients 
and was manually curated. Even though the outlier analysis 
suggested that our pipeline could be used to analyze CT scans 
of patients with conditions affecting the lung parenchyma and 
pleura, the application to inpatients with soft-tissue edema or 
the presence of compression fractures may have resulted in a 
higher error rate (20).

In conclusion, we developed and validated a fully automated 
analysis pipeline for the multi–vertebral level quantification and 
characterization of thoracic muscle and adipose tissue, which 
demonstrated a level of accuracy very similar to that of human 
analysts and thus enabled large-scale biomarker collection.
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