
Current and Emerging Tools of Computational Biology To
Improve the Detoxification of Mycotoxins

Natalie Sandlin,a Darius Russell Kish,a John Kim,a Marco Zaccaria,a Babak Momenia

aDepartment of Biology, Boston College, Chestnut Hill, Massachusetts, USA

Natalie Sandlin and Darius Russell Kish contributed equally to this work. The order was determined because Natalie Sandlin started the project and Darius Russell Kish joined subsequently.

ABSTRACT Biological organisms carry a rich potential for removing toxins from our
environment, but identifying suitable candidates and improving them remain challenging.
We explore the use of computational tools to discover strains and enzymes that detoxify
harmful compounds. In particular, we focus on mycotoxins—fungus-produced toxins that
contaminate food and feed—and biological enzymes that are capable of rendering them
less harmful. We discuss the use of established and novel computational tools to comple-
ment existing empirical data in three directions: discovering the prospect of detoxification
among underexplored organisms, finding important cellular processes that contribute to
detoxification, and improving the performance of detoxifying enzymes. We hope to cre-
ate a synergistic conversation between researchers in computational biology and those in
the bioremediation field. We showcase open bioremediation questions where computa-
tional researchers can contribute and highlight relevant existing and emerging computa-
tional tools that could benefit bioremediation researchers.

KEYWORDS biodegradation, bioinformatics, bioremediation, computational biology,
enzymes, exoenzymes, mycotoxins, toxins

BACKGROUND ANDMOTIVATION
Context: detoxifying contaminated food and feed. Fungi that grow on food-

stuffs are one of the major sources of contamination in food and feed; these fun-
gus-produced toxins are called mycotoxins. Currently, an estimated 25% of world
crops is thought to get contaminated with mycotoxins each year (1, 2), putting a
major burden on agriculture and public health. Preventing contamination or detoxi-
fying mycotoxins is a major safety priority (3). In what follows, we briefly describe
the threat of mycotoxins and the potentials of biological organisms to address this
threat via detoxifying enzymes. We then explore the use of computational app-
roaches to discover and improve such potentials. We primarily discuss three
aspects: (i) the use of bioinformatics tools to search genomic databases for candi-
date species and enzymes, (ii) the use of genetics and genomics data to investigate
how the detoxification performance can be improved, and (iii) the use of computa-
tional tools to improve the detoxifying enzymes. While we discuss established com-
putational methods used in identifying mycotoxin-degrading enzymes, we also
consider the use of novel, field-adjacent methods that have potential in mycotoxin
detoxification.

Mycotoxins are prevalent and harmful. Mycotoxins are secondary metabolites
produced by a variety of filamentous fungi that contaminate common food crops and
cause negative health effects in animals and humans. More than 300 types of mycotox-
ins have been identified so far, all of which would be candidates for detoxification (1).
Among these, six major types are of particular interest and the focus of this review
because of their detrimental health impact and because they routinely contaminate
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foods and animal feed (4, 5): aflatoxin (AF), ochratoxin (OT), zearalenone (ZEA), fumoni-
sin, deoxynivalenol (DON), and patulin.

Aflatoxins, produced by Aspergillus species, are among the most carcinogenic natu-
rally occurring substances and active inducers of mutations, liver cancer, congenital
malformations, hormone disorders, and immunodepression (6, 7). Ochratoxin is also
produced by Aspergillus species, as well as certain Penicillium species, and is a nephro-
toxin, immunosuppressant, potent teratogen, and renal carcinogen (6, 8, 9).
Zearalenone and fumonisins are produced by Fusarium species. ZEA acts through
estrogen mimicry to dysregulate the hormone receptor and antagonize the estrogen
pathway, leading to reproductive disorders, hormone imbalance, and breast cancer (6,
10). Fumonisins have been linked to esophageal cancer in humans as well as a variety
of health complications in animals such as pulmonary edema and hepatotoxicity (6,
11). Produced by Fusarium graminearum, DON is a vomitoxin, causing emetic and nau-
seous effects after ingestion (12). Finally, patulin is produced by ascomycetes such as
Penicillium, Aspergillus, and Byssochlamys species and is commonly found in fruit and
vegetable products, especially rotten apples and apple juice (13). Patulin ingestion is
linked to a number of health complications, namely, immune suppression, ulcers, gas-
trointestinal inflammation, and embryotoxicity (13). There are a variety of food crops
that these mycotoxins contaminate, including cereal crops such as wheat, barley, corn,
and oats (6, 11). Due to the serious health implications of mycotoxin contamination,
economic losses arise from reduction of crop and livestock yields as well as the cost of
decontamination efforts. Annually, the United States faces an estimated $932 million
in economic losses from AFs, fumonisins, and DON alone (14). This sizable economic
burden is faced across agriculture and livestock producers globally and requires effi-
cient and cost-effective measures as a solution.

Mycotoxin buildup on foodstuff necessitates methods of decontamination in order
to supply safe foods for consumption. Currently, decontamination is limited to physical
and chemical methods. Physical methods, including sorting and cleaning, have been
shown to be effective in some, but not all, cases of mycotoxin contamination. Chemical
methods, which use chemical agents to reduce or convert mycotoxins into less toxic by-
products, include ozonation and ammoniation. While these physical and chemical meth-
ods have been used to reduce mycotoxin contamination, they suffer from high opera-
tional costs and limited reliability and may decrease the quality or nutritional value of
the food (3, 14–16). These limitations expose the need to look for better solutions.

Toxin removal by biological processes is a promising solution. Bioremediation, or
the use of biological entities to detoxify or remove toxins in the environment, is a promising
alternative to current decontamination methods. Bioremediation offers lower costs, fewer
undesired environmental side effects, and potentially higher efficiency and reliability (17–
19). The use of microbes is a particularly attractive choice in bioremediation, offering faster
activity and the feasibility of strain evolution and engineering for improved performance
(20). There are six key factors that make a good bioremediator: (i) it is fast and efficient at
degradation, (ii) it yields safe degradation products, (iii) it is nonpathogenic to plants, ani-
mals, and humans, (iv) it is not detrimental to the quality of the food/feed, (v) it is applicable
outside lab settings, and (vi) it is applicable to multiple pollutants (17). Among identified
mycotoxin degraders, none effectively has all of these factors, with speed and efficiency of-
ten being subpar. Additionally, the mechanisms of degradation by these identified microor-
ganisms are often unknown or understudied, limiting the ability to improve upon the native
degradation performance. Therefore, identifying new species that possess mycotoxin degra-
dation ability and elucidating the mechanisms of degradation are beneficial in making this
capability effective and commercially viable.

Modes of biological detoxification. In the context of microbial interventions for
removing mycotoxins, the two main modes of detoxification are adsorption and bio-
transformation. In adsorption, mycotoxins are physically bound to polysaccharides and
proteins in the outer cell structures (21, 22). Biotransformation utilizes microbes and
their enzymes to convert mycotoxins into nontoxic compounds (23, 24). In this paper
we are solely concerned with methods to identify and improve biotransformation
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processes. Biotransformation can be further broken into two categories (schematically
shown in Fig. 1): secretion of enzymes (extracellular degradation) and uptake of the
toxin into the cell (intracellular degradation). Intracellular degradation of toxins more
closely follows normal metabolic processing of molecules by microbes inside the cell.
Microbes that mitigate mycotoxins through extracellular degradation are more likely
to produce stable enzymes that can be isolated and used in practice; this has been the
strategy for several existing commercial products (25–27). Table 1 shows some of the
bacterial and fungal enzymes that have been found to degrade major mycotoxins.

Enzymatic degradation has been suggested in a number of studies; however, identification
of the degrading enzymes has proven difficult. Sangare et al. describe a Pseudomonas species
capable of degrading aflatoxin B1 (AFB1) from cell-free culture supernatant, suggesting that an
extracellular enzyme is responsible for the degradation (43). Screening for the effect of com-
mon functional cofactors may potentially help identify the enzyme class. Similar extracellular
degradation has been reported for Rhodococcus spp., Stenotrophomonas spp., andMyxococcus
spp. (44–46). DON has been observed to be assimilated as a carbon source in some, but not
all, strains (47). Other extracellular enzymes with mycotoxin-degrading abilities include oxidor-
eductase, dehydrogenase, aldo-keto reductases, and peroxidases (48–50). While there has
been less focus on intracellular mechanisms, intracellular enzymatic degradation has been
shown by Zhu et al. (51).

Bacteria and fungi carry a rich repertoire of enzymes capable of removing
mycotoxins. Biotransformation of mycotoxins into nontoxic products by bacterial and
fungal enzymes has already been demonstrated (19, 48, 52, 53). The detoxification per-
formance can be improved by identifying and characterizing the enzymes with degra-
dation/detoxification capability. On one side, uncovering the cellular machinery of
degradation (schematically shown in Fig. 1 and explored in “Regulation: even when

FIG 1 Simplified representation of the cellular machinery involved in extracellular (A) versus
intracellular (B) detoxification.
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the detoxification capability exists in an organism, its availability may be under regula-
tion” below) allows us to select conditions to express the enzyme (when searching for
candidates) or engineer strains to improve their performance. On the other hand, the
enzyme itself can be modified and improved. Structural modeling and design-of-
experiments (DOE) techniques can shed light on the identification of key structural
components that contribute to degradation (52).

In the remainder of this work, we limit the scope to extracellular bacterial and fun-
gal detoxifying enzymes. We make this choice to offer a more focused view on recent
developments in computational tools for biological enzymes, but also because deploy-
ing enzymes (versus live organisms) in food/feed applications is a more practical
approach (23, 52). The use of enzymes for reducing the threat of mycotoxins has
reached industrial applications, even if only in a few cases. The Mycofix line of products
(27) combines different modalities, including biotransformation and adsorption, to
remove several mycotoxins from feed. FUMzyme is a commercially available fumonisin
esterase produced in a genetically modified strain of Komagataella pastoris (54) that
has shown success in removing contamination from feed (26). However, more research
is still needed to improve the performance of mycotoxin removal.

Several previous reports have cataloged specific enzymes that act on mycotoxins (17,
48, 55), and Table 1 lists representative examples for the major mycotoxins explored in
this review. Here, instead, we focus on current challenges and questions in the field of
mycotoxin detoxification that can be addressed by computational tools. In this context,
we survey some of the existing tools that have already been applied in this field and
then propose emerging tools that have the potential to lead to transformative progress.

CURRENT CHALLENGES AND COMPUTATIONAL SOLUTIONS

How can we effectively remove mycotoxins using biological organisms? Conceptually,
we break down this search into two steps: (i) finding organisms that have this capability
and (ii) optimizing the performance by modifying the environmental conditions, the
detoxifying strain, or the target enzymes. We survey existing computational tools that can
facilitate this process (Fig. 2). We focus our discussions on genomic and structural biology
tools. We acknowledge that there are other useful tools—including proteomics—that can
offer additional insights but are beyond the scope of this minireview.

Finding candidate organisms: who can do the job? Discovering organisms that
can degrade mycotoxins poses a number of challenges that can be met through both
experimental and computational approaches. In terms of enzymatic degradation, there
are three challenges to be addressed. First, organisms must have the genes necessary to
produce enzymes and possibly cofactors involved in degradation. Second, the

TABLE 1 Representative examples of identified bacterial and fungal enzymes with the capability to degrade major mycotoxinsa

Mycotoxin category Enzyme family Organism(s) Reference
Aflatoxin Reductase Mycobacterium smegmatis 28

Manganese peroxidase Phanerochaete sordida 29
Laccase (oxidase) Trametes versicolor 30
Manganese peroxidase Irpex lacteus 31
Pseudomonas AFB1-degrading enzyme Pseudomonas aeruginosa 32

Deoxynivalenol Peroxidase Aspergillus oryzae, Rhizopus oryzae 33
Fumonisin Fumonisin esterase Sphingopyxis sp. 34

Manganese peroxidase Irpex lacteus 31
Ochratoxin Carboxypeptidase* Aspergillus spp. 35

Peptidase* Pediococcus parvulus 36
Carboxypeptidases Yarrowia lipolytica 37

Patulin Orotate phosphoribosyltransferase Rhodotorula mucilaginosa 38
Zearalenone Zearalenone detoxification gene(s) Pseudomonas putida 39

Zearalenone lactonohydrolase Clonostachys rosea 40
Esterase* Lactobacillus plantarum 41
Manganese peroxidase Irpex lacteus 31
Zearalenone lactonohydrolase Pichia pastoris 42

aEnzymes hypothesized but not yet confirmed are marked by an asterisk.
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organisms must have favorable regulatory mechanisms for these enzymes. Third, the
method of obtaining and isolating the enzymes must be favorable to the end use case.
One can describe the search space as being largely defined by these characteristics that
may be specific to the use cases but are still conceptually similar among different cases.

From the experimental front, high-throughput screening may be used both to iden-
tify candidate organisms and to explore mutations for optimizing degradation potential.
Environmental isolates are a traditional source for identifying mycotoxin degraders.
Isolates can be cultivated and tested for degradation, especially when high-throughput
screening is possible. As an example, Ciegler et al. screened ;1,000 organisms, both
prokaryotes and eukaryotes, for their aflatoxin degradation capability (56). Screening
can also be used for optimizing the environmental conditions or the enzyme itself.
However, unless feasible high-throughput assays are available, this process is resource
and time expensive. Therefore, looking to computational methods to screen for new
organisms will be beneficial.

As an example, there is a known, highly specific two-step enzymatic process in the
detoxification of fumonisin, which involves a carboxylesterase and an aminotransferase
(34). This becomes a useful bottleneck in the search space, as candidate organisms
must contain both enzyme-encoding genes to be viable degraders. Toward this end,
tools such as BLASTp (57) can be utilized in cases where genome sequences are avail-
able. Simply put, the presence of these two genes largely dictates whether or not an
organism is a fumonisin degrader. On the other hand, in the example of AF detoxifica-
tion, many species can possess hydrolases or oxidases related to those that are known
to degrade AF (24, 48, 58). The search space is instead constrained on a separate mani-
fold involving the specificity and affinity of the hydrolase for AFs. That is, the presence
of the same hydrolase gene may not be sufficient to identify degradation potential,
since it may be optimized for a different substrate. The sequence-to-function relation-
ship then becomes critical, which is not guaranteed to be captured by sequence simi-
larity à la BLASTp. This shortcoming can be thought of as a signal-to-noise ratio, where
key amino acids involved in the active-site mechanism are sparse signals, and the rest
of the sequence functions primarily to provide the correct structural shape and may be
noisy in this regard. This is witnessed in the work by Dellafiora and colleagues (59), in
which two related, AF-degrading oxidases shared only 72% sequence similarity, de-
spite using the same mechanism for degradation. In a more extreme example, a
recently identified carboxylesterase that degrades fumonisin showed only around 34%
sequence similarity to previously reported fumonisin-degrading carboxylesterases (60).

Similarity in sequence does not necessarily overlap similarity in function. Sequence
similarity may be used to imply functional similarity; however, such a predicate does
not include enzymes that share functional similarity without sequence similarity. High
sequence similarity among closely related species might not fully overlap functional
similarity either. Therefore, searches should be conducted on a sequence-to-function

FIG 2 Conceptual breakdown of major questions of interest where computational tools can facilitate
more efficient removal of toxins.
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relationship model. While this method loses the high-throughput optimizations of
BLAST-based sequence similarity, it may be modeled via a reductive filter pipeline to
maintain reasonable complexity. It also loses the generalizability of sequence similarity,
and instead, pipelines must be custom designed for each case. Dellafiora et al. have
combined an in silico screen with an enzymatic assay to address this challenge in
search of hydrolyzing enzymes that can degrade ochratoxin A (61). In the example of
AFs, initial work has been performed to design a structure-to-function reductive filter
model using a number of filters. Furthermore, this model does not necessarily require
a labeled, positive enzyme to seed the search; rather, it only requires characteristics to
build the filters. Prior research by Risa and colleagues (62) has revealed that excreted
enzymes can be responsible for degrading AFs. SignalP is able to predict protein excre-
tion in bacteria and can be used as an initial filter to narrow down proteomes. These
sequences can be passed through both size- and sequence-based enzyme classifica-
tion filters based on facile experimental determinations to further reduce the candi-
date pool. From here, three-dimensional (3D) structures may be built, the binding
pockets predicted, and AF docked to identify high-affinity interactions that then may
be confirmed experimentally. These computational processes are expanded below.
The reductive filter model uses low-complexity tools at its head, increasing in complex-
ity toward the tail to ensure efficiency. Similarly, its modular nature allows for easy
insertion or upgrading of components as advances occur in each domain.

Community-level detoxification: when the task needs to be divided. Mycotoxin
degradation may require multiple reactions to reach by-products with significantly
decreased toxicity. There are several examples in which a single enzyme is insufficient
for complete degradation and two or more enzymatic steps are required for the detox-
ification process. In such cases, we need to better understand how multiple enzymes
from the same, or even different, species are required for degradation of a single myco-
toxin. While this increases the difficulty and cost of searching for degrading enzymes
that can work together, the outcome of complete degradation and reduced toxicity is
desirable for application in agriculture, in which mycotoxin levels must fall under set
regulatory limits. For degradation of fumonisin B1 by Sphingopyxis sp. strain MTA144,
Heinl et al. found that two enzymes were involved (34). A carboxylesterase facilitated
the initial deesterification step to form a hydrolyzed fumonisin B1, which is less active
in its known ceramide synthase inhibitory pathway but still possesses a significant
toxic effect (34, 63). A second enzyme, an aminotransferase, deaminated the hydro-
lyzed by-product of the first reaction resulting in complete degradation and loss of
toxic effects (34). Similarly, Carere et al. elucidated a two-component enzymatic path-
way involved in the epimerization of DON by Devosia mutans 17-2-E-8 (64, 65). The
enzymes, designated DepA and DepB, first oxidize DON into 3-keto-DON (DepA) (64)
and subsequently reduce 3-keto-DON into 3-epi-DON (DepB) (65), significantly reduc-
ing toxicity. These examples highlight the need to understand all the enzymes playing
a role in complete degradation.

In some instances, mycotoxin biotransformation does not lead to complete detoxifi-
cation (52); DON degradation, above as an example, leads to end products that are less
toxic than the starting substrate but still retain some toxicity. In biotransformation of
ZEA, there are cases in which microbial breakdown results in by-products, a-zearalenol
and b-zearalenol, that are even more toxic than the original compound (39, 66, 67). In
such cases, we need to identify additional species or enzymes that can take the by-
products and convert them into nontoxic compounds in a multistep process.

Multistep degradation underscores the possible need to look beyond single micro-
organisms and employ microbial consortia to complete the job; as an example, Wang
et al. discovered a microbial consortium that utilizes multiple species across various
taxa working in unison to transform ZEA to nontoxic by-products (68). Bioinformatic
searches for identifying multiple enzymes necessary for a particular case would be an
extension of the single-enzyme searches discussed in the previous section, using
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similar tools. Of note could be searching for individual organisms that carry two or
more necessary enzymes that have previously been identified in multiple species/
strains.

Regulation: even when the detoxification capability exists in an organism, its
availability may be under regulation. Even after organisms have been identified that
are capable of detoxifying target pollutants, the availability of the relevant enzymes
depends on whether the environmental context induces the relevant genes of enzyme
production and secretion effectively. These considerations point to the need to explore
the internal regulation of the production and secretion of detoxification enzymes.
Microorganisms respond to cellular and environmental changes through regulatory
decisions that could impact the availability of degradation machinery for target pollu-
tants (69). Production of enzymes is regulated through different mechanisms, such as
transcription factors binding in and around promoter regions. These mechanisms are
likely influenced by nutrient availability and overall conditions of the cell (i.e., growth
phase) (70). Secreted enzymes have an added layer of regulation due to the high
energy cost of secretion. While these enzymes have beneficial effects, often being
employed to break down macromolecules in the environment for cellular uptake, they
also incur an energy/biomass cost (71). Therefore, certain enzymes targeted for secre-
tion are up- or downregulated by the presence of nutrients in the environment that,
respectively, do or do not require extracellular breakdown.

Here, we primarily emphasize the existing native potential as the starting point,
even though ultimately the deployment likely happens in a safe and tractable host or-
ganism. Our discussion on regulation and the detoxification machinery in the native
context has two purposes. (i) It reveals the preferred conditions for the expression of
the detoxification machinery to enable more effective screening for functions of inter-
est. (ii) It allows us to better understand the diversity of possibilities and the ideal ma-
chinery to be transferred to a host organism. Understanding the influence of regulation
on production and secretion of the enzyme is also necessary for strain optimization to
factor in the cost-benefit balance of increased enzyme production and secretion.

Several existing bioinformatic tools can help us uncover aspects of bacterial gene
regulation, such as promoter and DNA binding sites, operon regions, and secretion sig-
nals, which are touched on in the following sections. The usefulness of these tools in
the context of bioremediation is that they allow researchers to uncover possible mech-
anisms of regulation that control the detoxification process. Insight from regulation,
for example, similarity to a known catabolic pathway, can also be used to choose suita-
ble environmental conditions or infer the mechanism of degradation.

(i) Promoter prediction. Identifying promoter regions and DNA binding sites is im-
portant in that transcription initiation is the most frequently regulated step in gene
expression. Promoters contain an intrinsic strength that governs the amount of tran-
scription a gene undergoes and when transcription occurs according to environmental
factors such as nutrient availability (70). It is important to properly regulate gene
expression to ensure that the degrading enzyme is sufficiently expressed, but only
when the particular substrate is present to limit wasteful production of enzymes that
are disadvantageous to the cell without the substrate (72). By uncovering promoters
associated with genes/enzymes of interest in bioremediation, we can understand how
the cell naturally regulates its expression and better manipulate it toward improved
expression for application in agriculture. There are several existing tools for predicting
and cataloging promoter regions in different organisms, such as phiSITE (73, 74),
SAPPHIRE (75), PRODORIC2 (76), BacPP (77), and Promoter Prediction Convolutional
Neural Network (PPCNN) (78). We expand here on the last three.

PRODORIC2 is a transcription factor binding site (TFBS) database that possesses one
of the largest collections of DNA binding sites in prokaryotic organisms (76). In 2018,
its most recent update, PRODORIC2 expanded its database to host the genomic infor-
mation of 2,274 bacterial strains and their 5,191 replicons (76). This database is curated
to include only experimentally validated binding sites, limiting the expanse of bacterial
species it contains but ensuring accuracy in its TFBS inventory. De Avila e Silva et al.

Minireview Applied and Environmental Microbiology

February 2022 Volume 88 Issue 3 e02102-21 aem.asm.org 7

https://aem.asm.org


created a bioinformatic tool, BacPP, to predict promoter sequences in Escherichia coli
strains through neural network simulations (77). BacPP is able to recognize and predict
promoter sites with various levels of accuracy (all above 83%) across the different
sigma factors crucial for prokaryotic transcription initiation (77). Additionally, BacPP
has 76% prediction accuracy among other enterobacterial species (77). The advantage
of this method is its ability to classify promoter sequences by its sigma factor, an im-
portant distinguishing feature that was a shortcoming of previous tools. However,
BacPP is currently limited to E. coli and, to a lower degree of accuracy, enterobacteria.
Another promoter prediction tool is PPCNN, developed for both eukaryotic and pro-
karyotic prediction and implemented into the CNNProm program. This approach uses
deep learning neural networks for its prediction models (78). For prokaryotes, PPCNN
was trained on E. coli and Bacillus subtilis, offering insight into both Gram-positive and
Gram-negative species. A highlight of this method is its applicability to other sequenced
species because it predicts promoters without prior knowledge of specific promoter fea-
tures (78).

(ii) Operon prediction. Metabolically or functionally related genes within prokary-
otic genomes are often arranged in contiguous segments called operons and are cotran-
scribed along the same mRNA (79). This organization imparts an added layer of regula-
tion on the genes within the operon. Specifically, in the context of bioremediation, if an
enzyme of interest is encoded within an operon, it opens up new genes that could help
play a role in degradation, either functionally or through regulation. As an example,
Heinl et al. identified two fumonisin degrading enzymes that were held within a gene
cluster organized in two operons and subsequently determined that other genes in the
operon held importance to transcriptional regulation and transport of the degrading
enzymes, as well as additional enzymes that might play a role in further breakdown of
the degradation by-products (34). Additionally, downstream utilization of the enzyme-
encoding gene(s) can be affected by its placement within an operon. For example,
Altahli and El-Deeb transferred ZEA degradation capability in Pseudomonas putida into
E. coli via a plasmid encoding detoxification genes (39). Multiple genes were shown to
be expressed for detoxification; however, the authors were unable to separate these
genes due to their organization in operons. Therefore, understanding the genomic orga-
nization of these genes within operons can aid in their use for degradation. Determining
operons computationally has been a field of interest for a number of years, leading to
tools such as Operon DataBase (80, 81), OperomeDB (82, 83), Operon Hunter (84), and
Operon-mapper (85, 86), with recent advances in de novo prediction of operons from
genomic data, which is expanded on below.

Operon-mapper, a web-based server for operon prediction, was developed in 2018
and is the first publicly available tool for operon prediction that requires only genome
sequences as the input (85, 86). Operon-mapper uses a five-step procedure: (i) open
reading frame (ORF) prediction using Prokka software (87, 88), (ii) homology gene deter-
mination using the hmmsearch program based on hidden Markov models (85, 88), (iii)
intergenic-distance evaluation using a custom program (85), (iv) operon prediction using
an artificial neural network with intergenic distance and a score defining functional relat-
edness of protein products as the input arguments (85, 89, 90), and (v) gene function
assignment using the DIAMOND algorithm (91). The accuracy of this method in predict-
ing operons was;90% across eight tested genomes with various sizes and GC contents,
and this method outperformed other algorithms in a recent evaluation of correlation to
experimentally validated operons (92). Operon-mapper also has the advantage of pro-
viding ORF identification and functional annotation of protein (85).

(iii) Secreted-protein prediction. A signal peptide (SP) is a sequence of amino acids
in a newly synthesized protein that targets the protein into or across the membranes in
the cell (93). Determining whether and how an enzyme is secreted outside the cell ena-
bles better utilization of the degradation machinery (schematically represented in Fig.
1A). To predict secreted proteins, several algorithms to identify SPs within a proteome
have been developed: SignalP (94), Psort (95), Pred-Tat (96), and TatP (97).
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Of note, SignalP is able to determine these secretion signals and distinguish between
the type of secretion pathway. The current version, SignalP 5.0, uses deep neural networks
in combination with conditional random field classification and optimized transfer learning
to determine SPs in prokaryotes, eukaryotes, and archaea (94). This update builds upon pre-
vious versions based on artificial neural networks (98), with added improvements of hidden
Markov models (99), enhanced cleavage site predictions (100), and discrimination of signal
peptides and transmembrane helices (101). For prokaryotes, there are two main secretion
pathways, Sec and Tat, with three enzymes, signal peptidases I to III (SPase I to SPase III),
needed to cleave proteins for secretion. SignalP 5.0 is able to distinguish between three
types of SPs: (i) Sec substrates cleaved by SPase I, (ii) Sec substrates cleaved by SPase II, and
(iii) Tat substrates cleaved by SPase I (94). Unfortunately, due to limited training data sets,
SignalP 5.0 is unable to predict Sec substrates processed by SPase III or Tat substrates proc-
essed by SPase II. However, the current ability to determine between the three secretion
pathways is important in understanding how the protein will be secreted and the regulation
of the secretion process. SignalP 5.0 is available either through its web server or as a stand-
alone package, making it an accessible tool for secreted protein prediction. SignalP has al-
ready been used in the context of determining mycotoxin degrading enzymes: Carere et al.
utilized this predictive power in conjunction with an experimental approach to narrow
down gene candidates for the identification of DepA in the DON degradation pathway by
D. mutans (64). This example highlights the application this tool has in aiding mycotoxin
degradation research.

Suboptimal enzymes: naturally evolved enzymes may not be the best match.
Enzymes found to be capable of degrading mycotoxins may not be naturally optimized
for targeting the mycotoxin of interest. Importantly, some of the detoxifying enzymes
belong to common categories such as oxidases and hydrolases; however, it is not well
understood what features of the particular enzymes separate efficient detoxifiers from
nonefficient ones. Thus, there is a need to better understand what aspects determine
the efficacy of the enzymes and how they can be improved. Enzyme optimization often
involves adaptation of a wild-type isolate to a new substrate or reaction environment.
New reaction environments often involve changes of temperature, pH, and solvent con-
ditions, all of which nontrivially affect the structure and activity of the enzyme. One tech-
nique that is agnostic to fundamental understanding of these effects is directed evolu-
tion (102–104). In directed evolution, genetic diversity is introduced via random
mutations and the resultant mutant proteins are screened/selected for improved per-
formance. There is some evidence that restricting directed evolution to residues close to
the active site leads to a higher probability of displaying meaningful contributions to its
activity (105). However, it remains unclear how such a process is achieved through tradi-
tionally structure-agnostic in vitro mutagenesis. Often, directed evolution is applied iter-
atively to further improve strongly performing mutants (106). Though directed evolution
conveniently creates a black-box optimization method, it does so at the cost of effi-
ciency, where screening for fitness can become a major bottleneck in the process (107).
As an alternative, a variety of computational tools have been developed for targeted
enzyme engineering (e.g., those reviewed in references 108 and 109).

Protein sequence activity relationship (ProSAR) models can assist the search algo-
rithm by creating a statistical model that links the protein sequence to its activity (i.e.,
fitness) (110, 111). ProSAR relies on a mutant library generated from mutagenesis with
a constraint of constant protein sequence length, along with the corresponding activ-
ities of interest (catalytic constant, thermostability, etc.). A statistical model is built that
links the presence or absence of individual mutations to a contribution to the activity,
from which some subset of the highest contributing mutations can be fixed for the
next round of mutagenesis. Unlike the close mutations described earlier by Morley and
Kazlauskas (105), this method is able to link individual mutations to activity contribu-
tions without explicit knowledge of the 3D structure. The traditional statistical meth-
ods for ProSAR involved partial least square regression and genetic algorithm, while
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more recently traditional statistical methods could be replaced with recurrent neural
network architectures (112).

Focused evolution, in which targeted mutations are introduced based on rational muta-
tion hypotheses, can increase the efficiency of optimization by narrowing the search space;
however, current robust methods require 3D structures of the enzyme. When optimizing for
known properties such as thermostability and where reasonable 3D models are available,
such as homology models, a small subset of rational mutations can feasibly be explored
through computational methods and the final mutations evaluated experimentally. Rational
mutation methods rely on heuristic evaluation methods like FoldX (113) to predict changes
in Gibbs free energy from mutations or predictive methods like DbD2 (114), which predicts
mutations to introduce disulfide bonds that potentially have stabilizing effects on the pro-
tein for given conditions. Potential mutations identified via heuristic methods are then com-
monly evaluated as a narrow combinatorial library. Although not strictly necessary, to
reduce cost and labor for the in vitro experiments, the mutated proteins are often computa-
tionally evaluated for stability to further narrow down viable mutations. Because of their
heuristic nature, it is always necessary to be able to introduce the mutations in vitro and
evaluate them experimentally under the target conditions to confirm that the mutated pro-
tein is improved.

FUTURE OUTLOOK

Computational biology tools we have discussed above—although not comprehen-
sive—represent a range of traditional applications for better understanding the mech-
anisms and ultimately improving the performance of toxin biodegradation. Some of
these tools have already been used in this context, whereas others have the potential
to yield helpful insights. Table 2 captures the current landscape, using representative
examples from the literature. Next, we explore ongoing and future advancements in
computational methods that would further facilitate answering pertinent questions in
the field of mycotoxin bioremediation.

Taking the next step: combining machine learning with high-throughput
experimentation. Both the use of machine learning and automated, high-throughput
laboratory experiments are becoming increasingly prevalent for enzyme optimization.
Enzyme engineering may become a useful tool for the optimization of known degrad-
ing enzymes, especially when only sequences, rather than solved crystallographic
structures, are known (135). Models for directed evolution can be experimentally real-
ized in parallel and incrementally updated, moving toward an optimal sequence. Like
directed evolution, biopanning assays, also known as phage display assays, are a tech-
nique often used to determine novel antibodies with high affinity to known antigens
(136, 137). Biopanning involves washing a random peptide library over a target ligand

TABLE 2 Representative examples of applications of computational biology tools for usages outlined in the previous sectiona

Category Function Computational tool
Reference(s) describing
examples of use

Functional-gene level/community level Protein sequence homology search BLASTp* 50, 64, 115, 116
Regulation Promoter prediction BacPP 117, 118

PRODORIC2 119, 120
PPCNN 121

Operon prediction Operon-mapper 122, 123
Secretion prediction SignalP* 64, 124

Suboptimal enzymes Optimizing existing enzymes Response-surface-methodology* 125, 126
MD/QM studies 127–129

Discovery of novel enzymes Biopanning 130
ML generative models 131
Directed evolution* 132
ProSAR 133
TD-MS/shotgun MS 134

aTools used for bioremediation are marked by an asterisk. TD-MS, thermal desorption-mass spectrometry.
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immobilized on some substrate. The nonbinding peptides may be washed away, after
which the peptides with high affinity remain bound to the ligand and can be sepa-
rately identified. Like a genetic algorithm, these peptides form the seed for the next
round of mutation and panning. While this technique does not offer per-sequence per-
formance metrics, we obtain partitioned sequence data sets resulting from the pann-
ings. Such partitioned data sets have been used in unsupervised, autoregressive
sequence models for nanobodies to generate novel sequences that overlap the high-
affinity partition without a need to perform additional physical experiments (138, 139).
While further evaluation is needed to obtain specific performance estimates for these
novel sequences, the method aims to narrow the search space needed in optimization.
Biopanning has been previously shown to optimize TEM-1 beta-lactamase and biotin
ligase, indicating that it may be feasible to use in optimizing mycotoxin degrading
enzymes (140–143).

Complemented by high-throughput assays, machine learning approaches are grad-
ually taking charge to bring out patterns, similarities, and dependencies—for example,
in sequence-function relation of an enzyme family—that may otherwise be too cryptic.
The use of machine learning is in particular expanding in situations when an a priori
model does not exist.

Computational chemistry can further advance our understanding of enzymatic
processes. Towards the understanding of enzymatic mechanisms, advancements in
quantum mechanics (QM) and molecular mechanics (MM, atomistic) studies will be vital
for characterizing reaction mechanisms and exploring the chemical space available via
mutations (144). Additionally, crystallographic structures can be slow and expensive to
solve; therefore, recent advances in protein 3D structure prediction will be instrumental
to develop high-throughput pipelines.

Molecular mechanics provides a view of a system at the atomic level. It is often used
for molecular dynamics (MD) simulations, in which a system (e.g., a protein-substrate
interaction) is studied using Newtonian physics, often at nanosecond to microsecond
timescales. For some protein systems, this timescale is sufficient to study the relevant
mechanisms, such as in the case of using steered MD simulations to characterize an afla-
toxin oxidase enzyme isolated from Armillariella tabescens as a member of the dipeptidyl
peptidase III family of enzymes (145). However, for larger proteins, or proteins involving
large conformational shifts, extensive computation may be needed. For these systems, a
coarse-grained approach is taken in which moieties in the system are combined to
reduce the total atom count, reducing the computational cost (146, 147). Some exam-
ples are coarse-grained water models, as well as proteins in which the side chains are of-
ten reduced to a single pseudoatom. Coarse-grained models face issues in faithfully
reproducing the system, and current research is focused on this area (147).

Atomistic models allow some insight into the interaction between the protein and
the toxin. Such models are often sufficient to determine if the toxin will sterically fit in
the binding pocket and may also help to determine pose, electrostatic favorability of the
binding, and conformational changes of the protein-ligand complex (148, 149). Unlike
the more common use for MM in evaluating noncovalent inhibitors, some difficulty
emerges in the inherent covalent nature of detoxification, which cannot be captured by
an atomistic view (150). This issue may preclude some energetic effects brought about
by the changes in electronic structure, raising concerns about how realistic such a model
is. This concern may be partially solved by using QM/MM methods, in which part of the
system is partitioned into a QM region and the rest remains in MM views (151). The QM
region then can model electronic changes, and the rest can remain in lower-cost MM
regions. However, the QM region cannot be too large, which precludes cases that require
large, complex QM regions (e.g., in metalloenzymes like laccases). Additionally, the QM
region adds computational cost and cannot be well integrated into microsecond time-
scale calculations.

At a relatively high computational cost, QM calculations provide a detailed and compre-
hensive view of the electronic state of the system. They can provide information about cova-
lent and electronic changes, often necessary for detoxification studies. An example of this is
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calculating a Fukui function of a molecule, which describes the change in a frontier orbital
as the molecule undergoes a redox reaction. Fukui functions have been used to identify the
location of redox in an AF-laccase system (152). QM may also be used to study electron
transfer in the protein. As a tool for microbiologists, however, QM remains prohibitively ex-
pensive both in computational cost and in learning curve, and it is often used for fine-
grained mechanistic studies in collaboration with a QM expert.
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