Skip to main content
. 2022 Jan 24;16(1):e0010071. doi: 10.1371/journal.pntd.0010071

Table 1. Performance of dengue incidence prediction models from different time horizons, for the time period between January 2011 and July 2016, in the city of Barra Mansa, State of Rio de Janeiro, Brazil.

Each time horizon is examined across all four possible features sets: autoregressive terms alone (AR), autoregressive terms together with Google Trends data (AR+GT) and with weather data (AR+GT+W), as well as google trends data alone (GT). Numbers in bold represent the best performance for a given model and autoregressive lag across each of the metrics. This corresponds to the lowest value for the RMSE and relative RMSE metrics, and the highest value for the R^2 and Pearson correlation metrics.

Model Reporting Delay Features RMSE Relative RMSE R^2 Pearson Correlation
Lasso Regression 8 weeks AR 28.425 0.897 0.009 0.188
GT 23.606 0.745 0.317 0.563
AR+GT 23.828 0.752 0.304 0.555
AR+GT+W 24.67 0.778 0.254 0.505
6 weeks AR 26.65 0.845 0.122 0.355
GT 23.546 0.746 0.315 0.562
AR+GT 22.615 0.717 0.368 0.608
AR+GT+W 23.039 0.73 0.344 0.587
3 weeks AR 19.264 0.615 0.536 0.733
GT 21.581 0.689 0.418 0.649
AR+GT 18.859 0.602 0.556 0.752
AR+GT+W 18.789 0.6 0.559 0.753
1 week AR 12.485 0.4 0.804 0.897
GT 20.229 0.649 0.485 0.703
AR+GT 12.259 0.393 0.811 0.901
AR+GT+W 12.222 0.392 0.812 0.901
Random Forest 8 weeks AR 26.382 0.832 0.146 0.508
GT 21.061 0.664 0.456 0.68
AR+GT 23.355 0.737 0.331 0.596
AR+GT+W 22.514 0.71 0.378 0.631
6 weeks AR 24.625 0.781 0.251 0.591
GT 22.203 0.704 0.391 0.642
AR+GT 22.055 0.699 0.399 0.664
AR+GT+W 21.154 0.671 0.447 0.678
3 weeks AR 18.332 0.585 0.58 0.776
GT 21.07 0.673 0.445 0.676
AR+GT 17.613 0.562 0.612 0.793
AR+GT+W 19.354 0.618 0.532 0.749
1 week AR 11.047 0.354 0.846 0.92
GT 19.408 0.622 0.526 0.729
AR+GT 11.027 0.354 0.847 0.924
AR+GT+W 11.844 0.38 0.823 0.91