Skip to main content
. 2021 Jun 23;106(12):e5236–e5246. doi: 10.1210/clinem/dgab435

Table 2.

Machine learning prediction of benign and nonbenign cytology

Accuracy, % (± SD) False-negative rate, % (± SD) False-positive rate, % (± SD) Area under receiver operator curve, % (± SD)
Historical practice (clinical formulation) 65.67 0.00 82.14 58.93
Random forest 83.55 ± 1.58 12.50 ± 4.79 21.43 ± 9.22 83.04 ± 2.48
Rule set 77.57 ± 5.07 10.27 ± 6.78 14.10 ± 5.43 83.78 ± 4.46

Compares the results of historical practice to random forest classifier and the simplified rule set using 4 measures of performance.