Skip to main content
. 2021 Jun 23;106(12):e5236–e5246. doi: 10.1210/clinem/dgab435

Table 6.

Machine learning prediction for benign vs nonbenign histology

Accuracy, % (± SD) False-negative rate, % (± SD) False-positive rate, % (± SD) Area under receiver operator curve, % (± SD)
Historical practice 45.28 0.00 69.05 65.48
Random forest classifier 83.24 ± 4.33 29.17 ± 17.18 14.09 ± 8.79 78.37 ± 4.96
Rule set 77.47 ± 2.71 11.67 ± 1.32 45.83 ± 20.83 61.64 ± 10.28

Compares the results of historical practice to random forest classifier and the simplified rule set using 4 measures of performance.