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Abstract

Platelets play a key role in thrombosis and hemostasis. Platelet count (PLT) and mean platelet volume (MPV) are highly
heritable quantitative traits, with hundreds of genetic signals previously identified, mostly in European ancestry
populations. We here utilize whole genome sequencing (WGS) from NHLBI’s Trans-Omics for Precision Medicine initiative
(TOPMed) in a large multi-ethnic sample to further explore common and rare variation contributing to PLT (n = 61 200) and
MPV (n = 23 485). We identified and replicated secondary signals at MPL (rs532784633) and PECAM1 (rs73345162), both more
common in African ancestry populations. We also observed rare variation in Mendelian platelet-related disorder genes
influencing variation in platelet traits in TOPMed cohorts (not enriched for blood disorders). For example, association of GP9
with lower PLT and higher MPV was partly driven by a pathogenic Bernard-Soulier syndrome variant (rs5030764,
p.Asn61Ser), and the signals at TUBB1 and CD36 were partly driven by loss of function variants not annotated as pathogenic
in ClinVar (rs199948010 and rs571975065). However, residual signal remained for these gene-based signals after adjusting for
lead variants, suggesting that additional variants in Mendelian genes with impacts in general population cohorts remain to
be identified. Gene-based signals were also identified at several genome-wide association study identified loci for genes not
annotated for Mendelian platelet disorders (PTPRH, TET2, CHEK2), with somatic variation driving the result at TET2. These
results highlight the value of WGS in populations of diverse genetic ancestry to identify novel regulatory and coding signals,
even for well-studied traits like platelet traits.

Introduction
Platelets play a critical role in thrombosis and hemostasis, and
anti-platelet agents are used for secondary prevention of cardio-
vascular disease events, preventing thrombosis and inflamma-
tion which can lead to further acute events (1). Platelet count
(PLT) and mean platelet volume (MPV) are commonly measured
platelet quantitative traits used in clinical diagnosis. Very high
PLT can indicate thrombocytosis, a type of myeloproliferative
neoplasm (MPN) caused primarily by somatic variation in JAK2,
CALR and MPL, and can lead to thrombosis/clotting (2). Very low
PLT, known as thrombocytopenia, can instead lead to bleeding,
for example during surgery (3). However, there is also exten-
sive variation in PLT and MPV in healthy individuals, and this
variability has been epidemiologically associated with chronic
disease outcomes (such as associations of higher MPV with
higher risk of myocardial infarction (4) and diabetes (5)).

Like other clinical hematologic laboratory measures, PLT
and MPV are highly heritable, with hundreds of genetic signals
identified in recent genome-wide association studies (GWAS),
mostly in European populations (6,7). Better knowledge of the
genetic determinants of platelet measures is important for
informing diagnosis and understanding penetrance of inherited
bleeding disorders, elucidating novel mechanisms of platelet
production and clearance, and understanding of platelet biology
and its connection with clinical disease endpoints (8). Along with
common, noncoding variants most often identified in GWAS,
analyses of exome arrays and exome sequencing have pointed
to the role of lower frequency coding variants in genes like
GFI1B, CD36, IQGAP2, PLG and TUBB1, or the African-specific MPL
coding variant rs17292650 (p.Lys39Asn), in explaining platelet
phenotypic variation (7,9,10). Mutations in many of the same
genes identified by GWAS and exome analyses are known to
cause Mendelian platelet disorders, often with a recessive mode
of inheritance; the impact of heterozygote carrier status for
such Mendelian disease variants, or of other coding variation in
these genes, in general population cohorts is unclear. Studies
of PLT and MPV in a significant number of individuals without
known hematological disorders, or other disease case selection,
have not been conducted using whole genome sequencing
(WGS) data, though some analysis of WGS in a small number of

individuals (n < 4000) in combination with densely imputed
cohorts with genotype array data only has been conducted
(11). The first study of WGS with platelet aggregation traits
in a general population was only recently conducted (12).
A WGS approach allows more complete assessment of rare
and ancestry-differentiated variants than imputation-based
approaches.

Here we present results from the first WGS-based analysis
of PLT and MPV, two platelet quantitative traits which tend to
be inversely correlated with one another. These results from a
multi-ethnic population help identify new secondary signals at
known loci by direct conditional analysis and novel rare variant
gene-based signals. Our results demonstrate the potential of
WGS, but also point to the need for larger and more diverse
sample sizes to accelerate genetic discovery for platelet-related
traits.

Results
Analyses of PLT were conducted in 61 200 individuals of
diverse ancestral backgrounds from thirteen studies (including
n = 14 392 African Americans, n = 13 985 Hispanic/Latino individ-
uals, n = 32 129 European ancestry, n = 681 East Asian ancestry,
and n = 13 from other ancestry groups). MPV analyses were
conducted in 23 485 individuals (n = 7440 African American,
n = 5466 Hispanic/Latino, n = 10 120 European ancestry, n = 447
East Asian, n = 12 other ancestry). Cohort demographics are
described in Supplementary Material, Table S1. Average age
was 56 years, with 64% women, for PLT, and average age was
57 years, with 61% women, for MPV. For the 23 331 individuals in
our sample sets that have both PLT and MPV data available, the
Pearson correlation coefficient between PLT and MPV is −0.3294.
Distributions for PLT and MPV in each race/ethnicity group
are displayed in Supplementary Material, Fig. S1. Compared to
European ancestry individuals, and adjusting for age and sex,
there is evidence of higher MPV and PLT in African Americans,
lower PLT in East Asians, and higher MPV in Hispanics/Latinos
and East Asians (Supplementary Material, Table S2). Similar
racial/ethnic differences in platelet traits have been previously
reported (13)), though the prior literature is inconsistent
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and sample sizes are generally small (14,15). Moreover, we
note that these categories are derived primarily from self-
reported and socially constructed race/ethnicity identifiers (with
genetic ancestry clustering only used when self-report was not
available). These race/ethnicity groupings include individuals
with a variety of genetic ancestry backgrounds; this emphasizes
the need for further understanding of the actual genetic variants
where differential frequencies across genetic ancestry groups
might lead to differences in reference ranges or population
means for platelet traits.

Single variant results

We first conducted single variant analyses for variants across
the autosomes and X chromosome with a minor allele count
of at least 10 (Supplementary Material, Fig. S2). We observed
little evidence of inflation in this or aggregate analyses (Supple-
mentary Material, Table S3). We identified 44 loci (defined using
±500 kb boundaries from each sentinel variant) for PLT (Sup-
plementary Material, Table S5) and 28 for MPV (Supplementary
Material, Table S4) at a genome-wide significance threshold of
P < 1 × 10−9. Many loci (N = 16) were significantly associated with
both PLT and MPV, as expected given the strong inverse corre-
lation between these two phenotypes. Where the lead sentinel
variant was shared (N = 8 loci), the PLT and MPV effects were in
the opposite direction. All 56 loci significantly associated with
PLT or MPV in the Trans-Omics for Precision Medicine initiative
(TOPMed) were located within 1 Mb (500 kb on either side of
sentinel) of at least one variant from the GWAS, Exome Chip,
and exome-sequencing literature previously reported to be asso-
ciated with the respective quantitative trait (6,7,9–11,16–33). To
evaluate which populations might be driving association signals
in the pooled ancestry analysis, and to more finely examine
association signals in European, African, Hispanic/Latino and
East Asian ancestry populations with different linkage disequi-
librium patterns, we also performed ancestry-stratified single
variant analyses on autosomes. Ancestry stratified results are
displayed for sentinel lead variants from the pooled ancestry
analysis in Supplementary Material, Tables S4 and S5.

Conditional analyses

We next evaluated whether each of the 44 genome-wide signif-
icant signals for PLT and 28 for MPV included novel variants,
conditionally distinct from variants reported in previous publi-
cations for any quantitative platelet trait (PLT, MPV, plateletcrit
and platelet distribution width). The latter two measures were
previously assessed in (6) but are not available in TOPMed (Sup-
plementary Material, Table S6). For signals that remained signif-
icant after conditioning on variants in Supplementary Material,
Table S6, we also performed analyses adjusting for variants
identified in recent large GWAS from the Blood Cell Consor-
tium (BCX) meta-analyses (Supplementary Material, Table S10)
(17,16), published while this paper was in preparation, leaving
two signals at a conventional GWAS threshold (P < 5 × 10−8) for
PLT and one for MPV (Table 1). These signals can be consid-
ered as additional (secondary) independent signals at previously
reported genomic loci. Ancestry stratified results for the three
lead variants post conditional analysis are also displayed in
Supplementary Material, Table S7.

PLT associated single variant signals

The first conditionally distinct signal (Supplementary Material,
Table S7) for PLT in the ancestry-combined analysis is an Ta
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intronic variant of MPL (rs532784633, P = 1.01 × 10−8 post-
conditioning, β = −19.53, overall effect allele frequency = 0.34%,
MAC = 410, more common in African ancestry populations
(1.15%, MAC = 332)) associated with lower PLT. In TOPMed,
this variant is not significantly associated with MPV (P = 0.32).
MPL encodes the receptor for the hematopoietic growth
factor thrombopoietin, which regulates platelet production.
Rare loss-of-function (LoF) mutations of MPL underlie the
autosomal recessive disorder congenital amegakaryocytic
thrombocytopenia, whereas ‘gain-of-function’ germline and
somatic MPL coding mutations are associated with familial
thrombocytosis and predisposition to MPNs [MIM 159530]. The
latter category of germline mutations includes a MPL coding
variant rs17292650 (p.Lys39Asn) associated with higher PLT and
common only in African ancestry individuals. The sentinel
variant at the MPL locus (rs59506047), prior to conditional
analysis, is a near perfect LD proxy for rs17292650 (r2 = 0.98 in
all TOPMed samples with measured PLT). However, the newly
discovered MPL intronic rs532784633 variant is associated with
PLT independently of the rs17292650 missense variant (r2 < 0.01
with rs532784633 in all TOPMed samples with measured PLT)
as well as other recently reported common or intermediate
frequency PLT-associated MPL coding and non-coding variants
in the region (17,16). The intronic MPL rs532784633 variant
associated with lower PLT is located within an ENCODE cross-
tissue enhancer (EH38E1342407) and overlaps a binding site and
canonical motif for the transcription factor E2F1, which plays
a role in megakaryocyte differentiation and proliferation (34).
The second conditionally distinct signal, an intronic variant in
RCL1 (rs78022296), is also more common in African ancestry
versus European ancestry individuals (8.2% versus 1.8%) but has
little compelling functional evidence linking it to PLT. However,
it does lie ∼175 kb upstream from JAK2, a key blood lineage
factor mutated in MPNs, raising the possibility of long-range
interactions between these genomic loci.

MPV associated single variant signals

For MPV, we identified an association with an intronic vari-
ant in PECAM1 common only in African ancestry populations
(rs73345162, P = 2.38 × 10−10 post-conditioning, β =−0.15, 12.56%
in African ancestry participants, and 0.05% in Europeans). This
conditionally distinct variant is also nominally associated with
higher PLT (P = 4.82 × 10−4,β = 3.75). PECAM1 encodes a cell adhe-
sion molecule expressed on platelets, leukocytes and vascular
endothelial cells, and is involved in leukocyte transendothelial
migration and regulation of platelet activation and thrombosis
(35) as well as megakaryopoiesis (36). Other common non-coding
variants 3′ of PECAM1 (such as rs1050382) have been associated
through prior GWAS with both higher MPV (16) and increased
risk of coronary heart disease (37), providing a potential genetic
link between epidemiologic observations that suggest MPV as a
predictor of CVD outcomes (38).

Replication

We pursued replication analyses in independent samples from
multi-ethnic GWAS and sequencing studies (no overlap with
TOPMed samples), including studies with representation of
African American and Hispanic/Latino participants. Cohorts
included for replication analyses were (1) participants from
the INTERVAL study (WGS data), and imputed genome-wide
genotype data from (2) additional, non-overlapping African
Americans from the Women’s Health Initiative, (3) African

American and Hispanic/Latino participants from the Genetic
Epidemiology Research on Adult Health and Aging (GERA) cohort
and (4) African ancestry participants from the UK Biobank).
For PLT, the MPL signal replicated in the meta-analysis of
these four independent cohorts (P = 4.74 × 10−6) but RCL1 did
not replicate (P = 0.20) (Supplementary Material, Table S9). For
MPV, the PECAM1 signal also replicated (P = 1.86 × 10−6) (we do
note that the variant/chromosomal location is not mapped in
build 37, which may explain why this signal was not identified
in prior genetic analyses). The replicated MPL and PECAM1
signals are both largely driven by African ancestry participants
and are non-significant in individuals of European ancestry
in ancestry stratified marginal and conditional analyses
(Supplementary Material, Table S7, Supplementary Material, Fig.
S3E–H), unsurprisingly based on the allele frequency differences
for MPL and PECAM1 lead variants.

Gene-based aggregated rare variant results

Next, we performed gene-based aggregate association analy-
ses for variants with a minor allele frequency <1%. In these
aggregate tests, we included only variants which, based on their
genomic annotation, are more likely to play a functional role.
Criteria for variant inclusion are described in detail in the Meth-
ods section. We first assessed LoF, missense and synonymous
variants, using three different filters with a decreasing level
of stringency for inclusion of protein- or splice-altering vari-
ants. Using efficient variant-set mixed model association test
(SMMAT) (39) and burden tests, and a Bonferroni corrected sig-
nificance threshold for the number of genes tested with each
filter, we identified 11 unique genes associated with PLT (ITGA2B,
PTPRH, TUBB1, MPL, CD36, TET2, TNFRSF13B, GP9, ITGB3, SH2B3,
CHEK2) and 4 with MPV (TUBB1, IQGAP2, GFI1B, GP9), with some
genes identified under multiple variant filters (Table 2). Two
genes were significantly associated with both traits (GP9 and
TUBB1). We also performed gene-based burden and SMMAT tests
incorporating non-coding regulatory promoter and enhancer
variants (in addition to coding variants), but no additional genes
were identified that were not also identified by the coding only
variant filters.

Adjusting for all single variants within 500 kb previously
reported in the GWAS literature for any PLT trait (Supplementary
Material, Tables S6 and S10), the gene-based rare variant associ-
ation signals at two of the genes (TNFRSF13B, IQGAP2) were com-
pletely attenuated (P > 0.05). All other gene-based rare variant
tests retained at least some nominally significant signal; GFI1B,
GP9, CD36, CHEK2, ITGA2B, ITGB3, SH2B3, TET2, MPL and TUBB1
remained genome-wide significant (based on thresholds in Sup-
plementary Material, Table S3) for at least one of the variant
filter/association models following adjustment for all previously
identified coding and non-coding GWAS single variants in the
region. Variant level residuals for rare variant carriers for each
of the 15 associations, after adjusting for prior GWAS variants
within 500 kb, are presented alongside functional annotation
and ClinVar pathogenicity in Supplementary Material, Fig. S4.

Most of the associated genes are noted in the Online
Mendelian Inheritance in Man (OMIM) catalog for their associa-
tion with inherited or acquired quantitative platelet disorders. In
each instance, the overall direction of effect for PLT and MPV is
consistent with the phenotypic disease characteristics: ITGA2B,
ITGB3 and CD36 with congenital thrombocytopenia (lower PLT),
GP9 and TUBB1 with congenital macro-thrombocytopenia (lower
PLT/higher MPV); MPL and SH2B3 with familial and essential
thrombocytosis (higher PLT). Germline CHEK2 mutations are
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Table 2. Lead results for gene-based aggregate tests, for burden and SMMAT tests, with PLT and MPV

Gene_name OMIM Mendelian
platelet disorder
gene

Number of
included
sites

Number of
alternate
alleles

P-value Trait Test Filter Maximum
P-value post
conditioning

GFI1B Yes 36 197 4.48E-08 MPV SMMAT 2 3.02E-07
GP9 Yes 27 171 4.23E-08 MPV SMMAT 3 6.62E-06
IQGAP2 No 66 298 2.52E-07 MPV Burden 1 0.24
TUBB1 Yes 59 254 6.21E-15 MPV SMMAT 2 5.52E-03
CD36 Yes 248 2886 5.66E-08 PLT SMMAT 2 8.06E-08
CHEK2 No 193 2520 3.06E-07 PLT Burden 3 3.13E-06
GP9 Yes 42 487 5.96E-17 PLT SMMAT 3 1.03E-09
ITGA2B Yes 232 2565 4.11E-10 PLT SMMAT 3 5.13E-09
ITGB3 Yes 203 1693 5.40E-10 PLT SMMAT 3 1.10E-06
MPL Yes 73 414 2.92E-11 PLT Burden 1 1.61E-11
PTPRH No 91 1303 2.76E-08 PLT Burden 1 2.39E-05
SH2B3 Yes 71 585 1.15E-07 PLT SMMAT 2 2.17E-07
TET2 No 134 138 8.67E-07 PLT SMMAT 1 8.52E-07
TNFRSF13B No 89 1560 3.24E-07 PLT Burden 1 0.17
TUBB1 Yes 107 635 1.95E-24 PLT SMMAT 2 1.29E-06

Only the most significant test (burden or SMMAT) and variant filter combination are displayed for each gene, full results can be found in Supplementary Material, Table
S8. The maximum P-value post-conditioning is taken from either the GWAS catalog (Supplementary Material, Table S6) or the BCX (Supplementary Material, Table S10)
identified variant conditional analysis.

one of the most frequent causes of hereditary predisposition
to cancer (40), which is a common acquired cause of throm-
bocytosis and therefore consistent with the observed burden
test association with higher PLT. Along with information from
the functional annotation scoring programs (such as FATHMM,
PolyPhen, etc.) used to select variants, we additionally include
annotation from ClinVar in Supplementary Material, Table S11
(which lists all variants included in our gene-based tests),
highlighting reported Mendelian disease variants included in
our TOPMed based aggregate tests (for example, rs5030764,
Asn61Ser in GP9, which has also been reported to have a
heterozygote effect for platelet traits in (17), see Supplementary
Material, Table S10).

Somatic mutations of TET2 are associated with MPNs or
myelodysplasia, which often secondarily result in thrombo-
cytosis or thrombocytopenia, respectively (41). Based on this
prior literature for TET2, we annotated somatic variants using
the COSMIC database (https://cancer.sanger.ac.uk/cosmic) for
all included variants in our gene-based tests (Supplementary
Material, Table S11); for TET2, which is a reported driver gene
for clonal hematopoiesis of indeterminate potential (CHIP),
we also annotated variants included in (42) as CHIP driver
variants. We observed that a large percentage of variants in
TET2 were somatic (77.6% [104] of 134 variants, all but one
a singleton, in the most significant gene-based test); similar
results were not observed for other genes, though multiple
likely somatic variants were also observed in MPL (14% [10] of 73
included variants, including nominally significant single variant
rs141311765 [P = 2.11E−06]) and SH2B3 (10% [7] of 71 included
variants). We therefore specifically assessed whether the TET2
gene-based signal for PLT in the bi-directional SMMAT was
driven primarily by somatic variants. As seen in Supplementary
Material, Fig. S5, most of the variants contributing to our
aggregate signal (at extreme ends of the null model residual
distribution) at TET2 were in fact somatic. Conditional analysis of
the TET2 gene-based signal in which we conditioned on variants
that were reported somatic attenuated the signal (P = 0.227).

The aggregate gene-based results may also aid in identifica-
tion of likely causal genes at previously identified platelet GWAS
loci. In particular, the PTPRH gene associated with lower PLT

in TOPMed contains a rare LoF variant (rs147881000) recently
reported (17) to be strongly associated with lower PLT as well
as other quantitative blood cell traits, though some residual
signal for this gene remains in TOPMed after adjusting for this
variant (P = 5.14E-04). Though PTPRH is not highly expressed
in platelets, other protein tyrosine phosphatase receptors are
present in platelets/megakaryocytes and are involved in platelet
signal transduction and biogenesis (43,44). Specifically, PTPRJ
(CD148) LoF mutations have been reported in cases of familial
autosomal recessive thrombocytopenia (44).

Lastly, for gene-based signals which included coding variants
common enough to be tested in our single variant analyses
(MAC > 10), we assessed whether these variants had a single
variant P-value for association <0.001, and further adjusted for
any such nominally significant single variants in our gene-
based tests (Supplementary Material, Table S7). This additional
adjustment step was included to evaluate whether gene-based
signals were driven in large part by a small set of individual
single variants. Some residual signal remained for all tested
genes, but some tests were attenuated (for example GP9, where
for filter 1 and filter 3 burden tests for PLT (the most and least
stringent coding variant filters used) P-values were attenuated
from P < 1 × 10−14 to P < 1 × 10−9 by adjustment for lead single
variant rs5030764, p.Asn61Ser, P = 3.83E-09 in pooled analysis).

Discussion
Our analyses of WGS data from the TOPMed consortium
highlight the role of ancestry-specific and rare/low-frequency
variants in variability in platelet count and size. Our work has
particularly highlighted the influence of both common and
Mendelian disease rare variants in the genetic architecture of
quantitative platelet traits, in general population cohorts not
enriched for blood disorders (for example at GP9 and TUBB1
gene-based signals). This approach is complementary to efforts
utilizing WGS to screen large numbers of patients with rare
diseases and/or those in the tails of the quantitative phenotypic
distribution for patient diagnosis and coding and non-coding
causal variant discovery (45). We anticipate more information to
accrue on the penetrance of high-impact rare variants or clinical
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importance of ancestry-specific variants on platelet disorders
as larger sequencing-based analyses are conducted in diverse
populations. Ultimately, we expect that sequencing studies will
lead to an increased understanding of the joint importance of
common, mostly noncoding variation and rare, high impact
variation for platelet trait variance in the population, as
demonstrated by identification of multiple Mendelian disease
related genes by our rare variant gene-based aggregation tests.
As platelets play roles in both bleeding and thrombotic disorders,
additional rare variant associations of large effect may inform
platelet biology and interpretation of future clinical genetics
cases (46). The large impact of genetic variation on platelet
traits (with heritability estimated at ∼50–80% (47)) in general
population cohorts is often underappreciated, and improved
elucidation of the genetic component of variation in platelet
traits in individual patients (for example through polygenic
scoring) may influence clinical inference and care. This current
work in TOPMed makes several important contributions to
understanding this joint impact of both common and rare
variation on platelet variation, including identification of
secondary, conditionally distinct signals at known loci more
common in understudied African ancestry populations and
identification of multiple novel aggregate rare variant signals,
which are distinct from previously identified GWAS variants.

Identification of secondary signals at known loci was facili-
tated in our analyses by availability of individual level data in a
large sample size. In most GWAS studies, summary statistics are
contributed by each individual study and then meta-analyzed.
Secondary signals are thus usually identified using approximate
conditional analysis, with tools like GCTA. Approximate condi-
tional analysis methods are challenging, however, with rare vari-
ants and with admixed populations, due to lack of availability of
appropriate reference panels. Thus, it would be difficult to find
signals such as our novel secondary signal at MPL, low-frequency
intronic variant rs532784633. The original sentinel variant at MPL
(rs59506047), prior to conditional analysis, is a linkage disequilib-
rium proxy for known African-specific coding signal rs17292650,
as reflected in the very low allele frequency and non-significant
association for this variant in Europeans in our TOPMed data.
This secondary signal is also largely African ancestry specific
(too rare to be assessed in European and East Asian ancestry
subsets, frequency 1.1% African ancestry individuals, P = 4.50E-
09, frequency 0.3% Hispanic/Latino individuals, P = 0.18). This
type of secondary signal would be very difficult to observe
using summary data, instead of direct conditional analysis using
individual level data. Unfortunately, neither our novel MPL nor
PECAM1 variant was available in platelet specific eQTL datasets
from either GeneSTAR (48) (megakaryocytes and platelets) or
CEDAR (49) (platelets only), likely due to low frequency for MPL
and lack of mapping to build 37 for PECAM1; however, given the
known role of both PECAM1 (50) and MPL (51) in platelet biology
we assume these are the likely target genes.

Our gene-based tests for coding variants highlighted multiple
genes known from the Mendelian platelet disorder literature.
All identified genes were near a prior GWAS signal, but residual
signal which remains after adjusting for these GWAS variants
also provides evidence of low frequency coding variant sig-
nal independent of common, mostly noncoding variants iden-
tified by GWAS. Some of the variants partially driving these
gene-based tests have been specifically reported in the clini-
cal literature. For example, the top variant contributing to the
GP9 gene based signal is rs5030764 (chr3:129061921, p.Asn61Ser,
P = 3.83E-09 in pooled analysis, frequency 0.09%, correspond-
ing to 108 counts of the minor allele in our TOPMed sample,

all heterozygotes). The variant is more common in European
populations (P = 7.31E-09, 0.1% frequency, 96 counts of minor
allele). Conditioning on this lead variant, which has also been
reported to have a heterozygote effect in prior GWAS from
UK Biobank (17), the GP9 gene-based signal was attenuated,
though still significant (P = 9.57 × 10−10 for top filter in Table 2,
upon adjustment for rs5030764, P = 1.03 × 10−9 after adjusting
for all variants identified in (16,17)). This suggests that multiple
additional coding variants in this gene impact platelet traits
in the general population. rs5030764 is listed as pathogenic/-
likely pathogenic in ClinVar for Bernard-Soulier syndrome, a
rare autosomal recessive platelet bleeding disorder. Bernard-
Soulier syndrome is caused by a defect in or deficiency of the
platelet glycoprotein membrane complex GPIb-IX-V which binds
von Willebrand factor (vWF). Inability to bind vWF impairs the
clotting process and causes excessive bleeding. Bernard-Soulier
syndrome is clinically characterized by low PLT, large platelets,
prolonged bleeding time, and abnormal platelet agglutination
response to ristocetin. In a 2015 study of 30 carriers of Bernard-
Soulier syndrome variants, individuals showed lower PLTs than
controls, mild bleeding phenotype and higher vWF levels (52).
We also note that some tests are at least partially driven by
loss of function variants, including PTPRH (rs147881000, P = 1.61E-
04 in single variant analyses), TUBB1 (rs199948010, P = 2.48E-07,
previously reported in BCX) and CD36 (rs571975065, P = 4.78E-
05) (Supplementary Material, Table S11). Some additional tests
also include variants reported in ClinVar and nominally signif-
icant in single variant analyses, including variants of uncer-
tain significance for the platelet disorder Glanzmann throm-
basthenia rs142445733 (P = 0.003) and rs143967758 (P = 2.25E-05)
in ITGA2B. The lead variant within ITGB3 (integrin subunit beta
3, also known as platelet membrane glycoprotein IIIa), which
was also significantly associated with PLT, was the missense
variant rs5917 (chr17:47284587, R143Q), which is annotated as
benign in ClinVar. Previous work has linked this polymorphism
to the Pena/Penb or Human Platelet Alloantigen (HPA)-4 sys-
tem (53), which is a cause of platelet alloimmune disorders
such as neonatal alloimmune thrombocytopenic purpura and
post transfusion purpura, highlighting the plausibility of the
aggregate rare variant association for platelet related traits.

Our gene-based results showed broad concordance with pre-
vious whole exome sequencing and Exome Chip analyses of
rare coding variation, while expanding the number of identified
genes for platelet traits. A large Exome Chip paper including
>150 000 people (7) identified five gene-based signals (TUBB1,
SH2B3, JAK2, LY75, IQGAP2) in aggregate tests of >1 coding variant
associated with either MPV or PLT; we similarly identify signif-
icant signals at three of these genes (TUBB1, SH2B3, IQGAP2).
Coding single variant signals at IQGAP2, TUBB1 and SH2B3 from
this Exome Chip paper were adjusted for in conditional analy-
ses, but residual signal remained at all genes (though IQGAP2
was attenuated to non-significance on adjustment for all previ-
ously known single variant associations from GWAS, Exome Chip
and exome sequencing based analyses in general population
cohorts). This highlights the additional power to detect rare vari-
ant signals using an unbiased sequencing method in TOPMed
(despite smaller total sample size), as opposed to genotyping
of selected variants from a small sequencing reference panel
(as was done for Exome Chip). The largest existing platelet trait
exome sequencing study in ∼15 000 people (25) identified two
single variant signals for low frequency and rare variants (CPS1
and GFI1B); GFI1B was also identified in our analyses for MPV,
and was robust to adjustment for the lead variant identified from
this prior exome sequencing study, rs150813342, as well as other
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mostly common noncoding variants. We also checked results in
ancestry pooled PLT and MPV analyses for previously identified
genes JAK2, LY75 and CPS1, which did not meet multiple test-
ing corrected significance thresholds in any of our gene-based
analyses. All, however, showed nominal significance (P < 0.05)
for at least one test and filter (JAK2, filter 2, burden, P = 9.56E-05,
LY75, filter 3, burden, P = 7.23E-05, CPS1, filter 2, burden, P = 0.013,
all for PLT). We note that the lead variant from Polfus et al.
(25) at CPS1 (rs1047891) was too common to be included in our
gene-based analyses (MAF ∼ 32.6% in TOPMed pooled ancestry
analyses, P = 9.08E-14 for PLT, see Supplementary Material, Table
S5), and that this variant has also been identified in multiple PLT
GWAS analyses (6,16).

Some genes (PTPRH, TET2, CHEK2) are in loci which are near
GWAS signals, but which have not been previously implicated
as associated with platelet traits through coding variant analy-
sis either in general population cohorts or through Mendelian
disease genetics (for example GP9, as discussed earlier). All are
genes which have been associated with cancer risk; for example,
CHEK2 is a Mendelian cancer gene and critical for cell cycle
arrest. TET2 is a known oncogene, an epigenetic and cell differen-
tiation regulator (54), and has a key role in regulation of telomere
length. It is also a known driver gene for CHIP. Germline non-
coding variants at this locus more common in African ancestry
populations have also been associated with CHIP risk (42). CHIP
from TET2 driver variants has been associated with lower PLT
as well in previous work from TOPMed (P = 0.005); this signal for
TET2 variants is stronger in our analysis, likely due to inclusion
of additional somatic variants not annotated as CHIP driver
variants (42). The influence of coding variants in these genes on
platelet levels is less clear. In megakaryocyte RNA-sequencing
data, expression of CHEK2 (P = 0.04) and TET2 (P = 0.02) were
associated with measured platelet production (Supplementary
Material, Table S12), again suggesting a plausible role in platelet
biology for these genes. PTPRH was not associated with platelet
production (P = 0.13).

Our analysis does have limitations. While these analyses
were being completed, new larger GWAS analyses (17,16) have
been published from the BCX consortium; these variants were
included in secondary conditional analyses for significant loci
only. Sample overlap between this effort and previous analyses
of GWAS, Exome Chip and exome sequencing datasets make
TOPMed an inappropriate replication dataset for these prior
findings. Larger sample sizes and fuller integration of platelet
specific regulatory information are needed to fully explore rare
variation in the noncoding space; our joint analyses of coding
variation with non-coding variation in enhancers and promot-
ers only identified genes already found in coding variant only
analyses and for simplicity are not presented here. Identifi-
cation of somatic variants driving the observed rare variant
association signal in TET2, with a smaller percentage of likely
somatic variants also contributing to gene-based signals such
as SH2B3 and MPL, suggests that somatic variation, not just
germline variation, is included in calls from TOPMed WGS (and
likely in other sequencing studies for common complex disease).
This could be a potential confounder in blood-based sequencing
studies for age-related diseases (given the increases in CHIP and
other somatic variation with increased age (55)), and suggests
examination of somatic versus germline origin for identified
variants may be warranted using clinical information, variant
characteristics, or repeated sequencing (56) in future sequencing
based work. We also note that we do not have consistent data
on whether participants in TOPMed cohorts have conditions

that cause reactive thrombocytosis (such as cancer or acute
infections).

To conclude, our analyses of platelet related traits in TOPMed
WGS data has added to our knowledge of ancestry-specific vari-
ants and rare variants, notably coding variants, in genetic regula-
tion of platelets. These results highlight the utility of sequencing
data in better understanding complex traits, even in relatively
modest sample sizes. These results also highlight the impor-
tance of larger and more diverse cohorts for the genetic anal-
ysis of platelet-related traits, to allow identification of ancestry
differentiated variants which may influence baseline levels of
these highly heritable platelet traits and inform clinical practice
and understanding of platelet biology.

Materials and Methods
Description of TOPMed sequencing, freeze 8

In brief, >30× WGS was completed across >70 cohorts and
subcohorts and 140 062 individuals (some from CCDG sequenc-
ing initiative, but from TOPMed overlapping cohorts), and then
jointly called. Details are described at https://www.nhlbiwgs.org/
topmed-whole-genome-sequencing-methods-freeze-8. Freeze
8 TOPMed data (and all positions in this paper) are on build
38. The 13 included cohorts with blood cell traits are further
described in the Supplementary Material.

Single variant association analysis methods

Genome-wide single variant association tests for the PLT and
MPV traits were performed using linear mixed models (LMM)
implemented in GENESIS (57). A ‘null model’ was fit under the
null hypothesis that there is no association between the trait and
variant. The null model included fixed effect covariates of age
at time of trait measurement, sex, study phase and the first 11
genetic principal components (PCs) estimated using PC-AiR (58).
The null model incorporated a fourth degree sparse empirical
kinship matrix estimated using PC-Relate (59) to account for
genetic relatedness. These PCs and the kinship matrix were
generated by the TOPMed Data Coordinating Center (DCC). The
null model also allowed for heterogeneous residual variance for
groups defined by HARE (60) strata. HARE strata with fewer than
30 subjects were merged with the largest HARE stratum for that
study.

To avoid increased false positives and power reduction
associated with non-normal trait distributions, the null model
was fit using a fully-adjusted two-stage procedure for rank-
normalization. In stage 1, a LMM was fit using the trait as the
outcome, fixed effect covariates, a sparse kinship matrix and
heterogeneous residual variance groups. The resulting marginal
residuals were rank-based inverse-normal transformed and
rescaled by their original variance. In stage 2, a second LMM was
fit using the rescaled marginal residuals as the outcome with the
same fixed effect covariates, sparse kinship and heterogeneous
residual variance groups as in stage 1.

The model fit in stage 2 was used to perform score tests
to interrogate association of each variant on chromosomes 1
through 22 that had minor allele count of at least 10 and passed
the IRC quality filters. Genome-wide significance was set at the
P < 1 × 10−9 level, based on estimates of the number of indepen-
dent tests for WGS data in populations with at least some African
admixture (61). The X chromosome was analyzed separately
using a sex-chromosome specific kinship matrix, as in (62).
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Single variant tests for ancestry stratified groups were per-
formed similarly. Self-report race/ethnicity was used to assign
individuals to ancestry stratified groups, and then inference
using HARE was used when self-report was not available. Self-
report outliers were not removed. HARE groups were used to
stratify individuals into one of four ancestral groups: East Asian,
African American, Hispanic/Latino (including Central American,
Cuban, Puerto Rican, Dominican, Mexican and South American
HARE strata) and European (including White and Amish HARE
strata). HARE strata with five or fewer subjects were excluded.

Gene-based aggregate rare variant

Gene-based aggregate rare variant tests were performed using
burden tests (63) and SMMAT (39). The same fully-adjusted two-
stage null models as the single variant tests were used. Variant
sets consisted of variants with minor allele frequency less than
1%. Flat weights were applied to variants. Genome-wide signifi-
cance was determined using Bonferroni correction (Supplemen-
tary Material, Table S3).

Description of gene-based filters

Three gene-based filters with decreasing levels of stringency for
variant inclusion were used. Coding filter 1, the strictest variant
set, retained high-confidence LoF variants inferred using LOFTEE
(64), missense variants with MetaSVM (65) score > 0 and protein
altering or synonymous variants with FATHMM XF coding score
(66) >0.5. Coding filter 2 retained high-confidence LoF variants,
missense variants which were predicted deleterious by all of the
included prediction approaches (SIFT4G (67), Polyphen2_HDIV
(68), Polyphen2_HVAR, and LRT (69)), and protein altering or syn-
onymous variants with FATHMM XF coding score > 0.5. Coding
filter 3 retained high-confidence LoF variants, missense vari-
ants if they are predicted deleterious by any of the prediction
algorithms tested (SIFT4G, Polyphen2_HDIV, Polyphen2_HVAR, or
LRT_pred), and protein altering or synonymous variants with
FATHMM XF coding score > 0.5.

Finally, we tested a fourth filter including both coding and
noncoding variants. However, all genes identified were the same
ones already identified in the first three coding filters, and
these results were not considered further. This combined cod-
ing and noncoding variant filter retained high-confidence LoF
variants, missense variants with MetaSVM_score > 0, protein
altering or synonymous variants with Fathmm-XF score > 0.5,
variants overlapping with enhancer(s) linked to a gene using
GeneHancer (70), and which have Fathmm-XF score > 0.5 and
overlap with regions defined as ‘Promoters’, ‘Promoter flanking
regions’, ‘Enhancers’, ‘CTCF binding sites’, ‘Transcription factor
binding sites’ or ‘Open chromatin regions’ by Ensembl regula-
tory build annotation, and variants overlapping with promoters
either linked using GeneHancer or 5 Kb upstream of the Tran-
scription start site, and which have Fathmm-XF score > 0.5 and
overlap with regions defined as ‘Promoters,’ ‘Promoter flanking
regions,’ ‘Enhancers,’ ‘CTCF binding sites,’ ‘Transcription factor
binding sites’ or ‘Open chromatin regions’ by Ensembl regulatory
build data.

Description of conditional analyses

Conditional analyses for the MPV and PLT traits were performed
for genome-wide significant loci from single variant and gene-
based aggregate rare variant association tests. Conditional anal-
yses were performed separately for each locus by incorporating
variants to condition on as a fixed effect in the null model

(see Supplementary Material, Table S6) for previously reported
variants for each locus). In some cases, variants that had been
reported in previous publications did not pass all sequencing
quality controls. We performed conditional analyses with and
without these ‘fail’ variants. In general, fail variants will still
capture informative genotypes for most individuals. Conditional
single variant tests were performed for all variants with a MAC of
at least 10, which passed the sequencing quality filters, and were
within 500 kb of each sentinel variant using a score test as previ-
ously described with the adjusted null model. Conditional gene-
based aggregate rare variant association tests were performed
for each aggregate unit using a burden or SMMAT test with the
adjusted null model.

We defined a locus as containing a conditionally distinct vari-
ant if there were any variants more significant than a Bonferroni
corrected significance threshold, adjusting for the number of
tested variants within 500 kb of each sentinel variant.

Additional large GWAS analyses were released while this
paper was being prepared (17,16). For significant single variant
and aggregate tests, we reran conditional analyses adjusting for
all conditionally distinct variants identified in these publications
(see Supplementary Material, Table S10).

We performed conditional analysis on the TET2 gene-based
SMMAT test under coding filter 1 to test if somatic variants drive
the association between TET2 and PLT. We included as fixed
effects variants that were reported somatic and aggregated the
remaining rare variants in a testing unit.

Description of replication cohorts

We sought replication of the lead variants at genome-wide
significant loci identified in the trait-specific conditional
analysis in independent studies including the INTERVAL study
(https://www.intervalstudy.org.uk/), the Kaiser-Permanente
Genetic Epidemiology Research on Adult Health and Aging
(GERA) cohort (71,72) (genotyping data on African American and
Hispanic/Latino participants), non-TOPMed samples from the
Women’s Health Initiative—SNP Health Association Resource
(WHI-SHARe) (https://www.whi.org/) (73) and African ancestry
samples from phase 2 of UKBB (as defined in (74)). INTERVAL
used WGS, while either TOPMed or 1000G phase 3 imputed data
was used in all other cohorts. In all cohorts, we adjusted for
at a minimum age, sex and cohort specific principal compo-
nents/genetic relationship matrix, and assessed association
of each variant with inverse normalized PLT or MPV values,
adjusted for covariates. Results from each study were combined
using a sample-size weighted meta-analysis approach in METAL
(75). Explained briefly, for each study and for each variant, the
direction of effect and P-value is converted into a signed Z-
score. Z-scores for each variant are combined across studies as
a weighted sum, with weights proportional to the square root
of the sample size for each study. The overall Z-score is used
to compute a meta-analysis P-value; this meta-analysis P-value
tests the null hypothesis that there is no association between
the variant in question and the trait of interest.

Megakaryocyte RNA-seq and platelet production

Immortalized cells were differentiated into megakaryocytic cell
line (imMKCL) clones as previously described (76). Phenotyp-
ically heterogeneous single-cell subclones were cultured and
expanded via doxycycline dependent expression of C-MYC, BMI-
1 and BCL-XL. Clones were differentiated to generate platelets
(three biological replicates of eight clones), with megakaryocytic

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab252#supplementary-data
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Omics support
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phs001644 BioMe BioMe 3 Baylor HHSN268201600033I
phs001644 BioMe BioMe 3 MGI HHSN268201600037I
phs001612 CARDIA CARDIA 3 Baylor HHSN268201600033I
phs001368 CHS CHS 3 Baylor HHSN268201600033I
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RNA extraction on day 3 of differentiation and platelet pro-
duction assessed by flow cytometry on day 6. Total RNA was
extracted with miRNeasy Mini Kit (Qiagen), libraries prepared
with NEB Ultra (PolyA) kits with 50 ng RNA input, and sequenced
with 200-cycle paired-end kits on an Illumina HiSeq2500 sys-
tem. Tuxedo Tools was utilized for read mapping (TopHat v.
2.1.0; Bowtie2 v. 2.2.4). Association of CHEK2, PTPRH and TET2
MK expression with platelet production was assessed by linear
mixed effects (LME) models between transcript levels (FPKM) and
platelet production (number of platelets/megakaryocyte) for the
eight clones with replicate experiments as random effects in the
models.
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